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Abstract: Methyl CpG binding protein-2 (MeCP2) isoforms (E1 and E2) are important epigenetic
regulators in brain cells. Accordingly, MeCP2 loss- or gain-of-function mutation causes
neurodevelopmental disorders, including Rett syndrome (RTT), MECP2 duplication syndrome
(MDS), and autism spectrum disorders (ASD). Within different types of brain cells, highest MeCP2
levels are detected in neurons and the lowest in astrocytes. However, our current knowledge of
Mecp2/MeCP2 regulatory mechanisms remains largely elusive. It appears that there is a sex-dependent
effect in X-linked MeCP2-associated disorders, as RTT primarily affects females, whereas MDS is
found almost exclusively in males. This suggests that Mecp2 expression levels in brain cells might be
sex-dependent. Here, we investigated the sex- and cell type-specific expression of Mecp2 isoforms in
male and female primary neurons and astrocytes isolated from the murine forebrain. Previously, we
reported that DNA methylation of six Mecp2 regulatory elements correlated with Mecp2 levels in the
brain. We now show that in male brain cells, DNA methylation is significantly correlated with the
transcript expression of these two isoforms. We show that both Mecp2 isoforms are highly expressed
in male neurons compared to male astrocytes, with Mecp2e1 expressed at higher levels than Mecp2e2.
Our data indicate that higher DNA methylation at the Mecp2 regulatory element(s) is associated with
lower levels of Mecp2 isoforms in male astrocytes compared to male neurons.

Keywords: Rett syndrome; neurodevelopmental disorders; DNA methylation; epigenetics; MeCP2
isoforms; neurons; astrocytes; brain cells

1. Introduction

The X-linked methyl CpG binding protein 2 (MECP2/Mecp2) gene encodes for two MeCP2 protein
isoforms, E1 and E2. MeCP2 is a major transcriptional regulator in the brain with solid links to
neurodevelopmental disorders [1]. Altered expression and function of MECP2/Mecp2/MeCP2 have
been linked to Rett syndrome (RTT) [2–4], MECP2 duplication syndrome (MDS) [5–7], autism spectrum
disorders (ASD) [8,9], and fetal alcohol spectrum disorders (FASD) [10,11]. MeCP2-associated diseases
have a strong sex correlation (especially in the case of RTT and MDS), possibly due to the X-linked
nature of the MECP2 gene [12] and/or X chromosome inactivation (XCI) in females [13]. Currently, these
disorders have no cure, and restoring the normal MeCP2 levels is suggested as a possible therapeutic
approach. Therefore, a better understanding of Mecp2/MeCP2 regulation in brain cells is critically
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important. Here, we aimed at studying the sex-specific levels of Mecp2 isoforms in the two major cell
types of the brain, namely neurons and astrocytes.

Originally, research on MeCP2 was mostly focused in neurons, primarily due to the belief that
symptoms resulting from Mecp2 loss of function were of neuronal origin. However, the discovery of
MeCP2 expression in glia, and the functional consequences of glial Mecp2 loss on neuronal phenotypes,
caused a paradigm shift in the MeCP2 field [14]. Independent groups, including our team, have shown
that total Mecp2/MeCP2 and MeCP2E1 expression are higher in neurons than in astrocytes [15,16]. We
have shown differential expression of Mecp2 isoforms during neural stem cell differentiation [17,18]
and in the adult brain regions that have different cellular composition [19]. However, it is still unclear
whether the expression of Mecp2 isoforms in embryonic brain cell types is sex-dependent.

We have characterized DNA methylation of six regulatory elements (REs) in the Mecp2 promoter
(R1–R3) and intron 1 (R4–R6) that may impact Mecp2 isoform-specific expression [17]. DNA methylation
at these REs was correlated with Mecp2 isoforms in different adult mouse brain regions [19], the
embryonic forebrain [20], and alcohol-mediated change in Mecp2 isoforms [18]. Hypermethylation
of the MECP2 promoter has also been detected in ASD patients with reduced MECP2 levels [8,9],
where there is a higher sex-association towards males (3 to 4 times higher in males compared to
females) [21,22]. Therefore, correlational studies of DNA methylation at the Mecp2 REs with Mecp2
isoform-specific expression were done in male brain cells. Our results highlight the existence of a cell
type-specific DNA methylation pattern at the Mecp2 gene locus in male neurons and male astrocytes.

2. Results

2.1. Establishment of Sex-Specific Cultures of Male and Female Primary Neurons and Astrocytes

To characterize the cell type-specific expression of Mecp2 isoforms in both sexes, we isolated
and cultured male and female primary embryonic cortical neurons and astrocytes according to our
previously established and validated protocols [15,23,24]. Separation and confirmation of embryonic
sexes were performed by independent and parallel techniques. First, the male and female embryos
were separated based on visual observation of testes in male embryos and fallopian tubes and
ovaries in female embryos, respectively (Figure 1A). The sex of cultured cells was further confirmed
by qRT-PCR-based detection of Xist transcripts, which are specific to females [25]. As expected,
Xist transcripts were absent in male cells and were exclusively detected in female cells (Figure 1B).
PCR-based detection of Il3/Sry genes was used to confirm the sex of male cells. Sry is expressed in
male cells [26], while Il3 is expressed in male and female cells [27]. Male cells showed detection of both
Sry and Il3, thereby confirming the male origin of these cells (Figure 1C).
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Figure 1. Culturing sex-specific neurons and astrocytes and their molecular identification. (A) Visual
examination-based separation of male (a) and female (b) embryos based on observation of testes and
ovaries, respectively. (B) Confirmation of sex-specific nature of cultured neurons and astrocytes using
female-specific Xist gene expression. Xist transcript expression is detected only in female cells. For all
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samples, N = 3, except for female neurons, for which N = 2. Error bars represent standard error of the
mean (SEM) with **** p < 0.0001. (C) Il3/Sry-based confirmation of male or female sex using agarose gel
electrophoresis. PCR product sizes are Sry, 402 bp; Il3, 544 bp. Sry is detected only in males, while Il3 is
detected in all samples.

2.2. Mecp2 Isoforms Show Cell Type- and Sex-Specific Expression in Neurons and Astrocytes

Mecp2/MeCP2 expression level in brain cells is cell type-dependent [15,16]. Mecp2 is X-linked
and undergoes XCI escape with biallelic expression as early as the two-cell stage of mouse embryonic
development [28]. Therefore, we determined Mecp2e1 and Mecp2e2 transcript levels in male neurons
and male astrocytes and compared these levels to female cells (Figure 2).
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Figure 2. Cell type- and sex-specific expression of Mecp2 isoforms in primary mouse embryonic
neurons and astrocytes. The figure illustrates cell type-specific and sex-specific comparison of Mecp2
isoforms in neurons and astrocytes. (A) Mecp2 expression in male neurons and astrocytes. (B) Mecp2
expression in female neurons and astrocytes. Significant differences are indicated with **** p < 0.0001,
*** p < 0.001. For male neurons, male astrocytes, and female astrocytes, N = 3 ± SEM and N = 12 ± SEM
(biological replicates are reported as N, while technical repeats of biological replicates are reported as
N). For female neurons, N = 2 ± SEM and N = 8 ± SEM. The transcript levels were normalized to the
endogenous control Gapdh.

Cell type-specific expression of Mecp2e1 was 3.02-fold (p < 0.0001) higher in male neurons
compared to male astrocytes (Figure 2A). Similarly, Mecp2e2 transcripts were 1.63-fold higher in male
neurons than in male astrocytes. This suggested that both Mecp2 isoforms have higher expression in
male neurons compared to male astrocytes. This pattern was not seen in female cells, and Mecp2e1
transcript levels were similar for female neurons and astrocytes (1.06-fold: female neurons vs. female
astrocytes). However, Mecp2e2 transcript levels were higher (1.80-fold) in female neurons in contrast to
female astrocytes (p < 0.001; Figure 2B). In male neurons, Mecp2e1 transcripts were higher than Mecp2e2
(2.99-fold, p < 0.0001; Figure 2A). Similarly, in male astrocytes, Mecp2e1 levels were slightly higher than
Mecp2e2 (1.61-fold). In female neurons, Mecp2e1 and Mecp2e2 levels were similar (1.07-fold; Figure 2B),
but Mecp2e1 levels were higher than Mecp2e2 in female astrocytes (1.80-fold, p < 0.001). Therefore, in
both cell types, except for the female neurons, Mecp2e1 transcripts were the major transcripts.

These observations provide evidence that these two studied brain cell types (neurons and
astrocytes) have differential expression of Mecp2 isoforms depending on the sex of embryos, raising
the possibility that the transcription levels of these two isoforms are differentially regulated.

2.3. DNA Methylation at the Mecp2 Regulatory Elements May Contribute to Higher Expression of Mecp2 in
Male Neurons Compared to Male Astrocytes with Lower Mecp2 Expression

In a previous section, we showed the higher transcript levels of Mecp2 isoforms in male neurons
compared to male astrocytes, which was highly significant for Mecp2e1. To study if DNA methylation
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impacts the detected difference in Mecp2e1 and Mecp2e2 transcript levels, we analyzed male neurons and
male astrocytes that contain only one X-chromosome, avoiding complications of X-linked inactivation
that exists in female cells. For these studies, we analyzed DNA methylation patterns at the known
Mecp2 REs [17,18] (Figure 3B). Previous genome-wide DNA methylation analyses have indicated
differential DNA methylation at the CpG islands that include the CpG islands, N shore, N shelf, S
shore, and S shelf that flank the CpG islands (Figure 3A,B). The ‘shores’ comprise the 2-kb region
flanking CpG islands and display dynamic DNA methylation patterns in contrast to the lower DNA
methylation levels seen at CpG islands. The ‘shelves’ are located 4 kb further away from the CpG
islands. Similar to shores, these regions are differentially methylated [29–31].

These previous studies suggest that hypomethylated or hypermethylated blocks of CpGs such
as CpG islands or CpG shores may have a significant impact in determining the diagnosis of disease
conditions such as cancer [31–33]. Also, increased methylation of the MECP2 promoter in autistic male
patients is reported to correlate with reduced MECP2 expression [8]. Therefore, we analyzed DNA
methylation at individual CpG sites (Figure 3C,D) and average DNA methylation over the entire REs
(Figure 4). As reported previously [17,18], Mecp2 promoter regions R1, R2, and R3 contained 13, 4, and
2 CpG sites, respectively. The intron 1 silencer element contained three REs, namely R4, R5, and R6,
with 1, 1, and 2 CpG sites, respectively (Figure 3B).

Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW  4 of 15 

 

inactivation that exists in female cells. For these studies, we analyzed DNA methylation patterns at 
the known Mecp2 REs [17,18] (Figure 3B). Previous genome-wide DNA methylation analyses have 
indicated differential DNA methylation at the CpG islands that include the CpG islands, N shore, N 
shelf, S shore, and S shelf that flank the CpG islands (Figure 3A,B). The ‘shores’ comprise the 2-kb 
region flanking CpG islands and display dynamic DNA methylation patterns in contrast to the lower 
DNA methylation levels seen at CpG islands. The ‘shelves’ are located 4 kb further away from the 
CpG islands. Similar to shores, these regions are differentially methylated [29–31]. 

 
Figure 3. Bisulfite pyrosequencing analysis of DNA methylation at the Mecp2 regulatory elements 
(REs) in male neurons and male astrocytes. (A) Schematic representation of CpG island regions 
characterized based on distribution of CpGs. Part A of the figure is modified from [34,35] (not drawn 
to scale). (B) Location of CpGs in Mecp2 gene REs. Figure not drawn to scale. The figure illustrates the 
six previously reported REs [17], R1–R3 promoter Res, and R4–R6 intron 1 silencer element REs (not 
drawn to scale). The methylation symbol indicates the number of CpGs found within each RE: R1: 13 
CpGs, R2: 4 CpGs, R3: 3 CpGs, R4: 1 CpG, R5: 1 CpG, and R6: 2 CpGs. (C) Percentage of DNA 
methylation (%) of CpG sites within the Mecp2 promoter regions (a) R1, (b) R2, and (c) R3. (D) 
Percentage of DNA methylation (%) of CpG sites within the Mecp2 intron 1 regions (a) R4, (b) R5, and 
(c) R6. Significant differences between male neurons and male astrocytes are indicated with **** p < 
0.0001, *** p < 0.001, N = 3 ± SEM. 

These previous studies suggest that hypomethylated or hypermethylated blocks of CpGs such 
as CpG islands or CpG shores may have a significant impact in determining the diagnosis of disease 
conditions such as cancer [31–33]. Also, increased methylation of the MECP2 promoter in autistic 
male patients is reported to correlate with reduced MECP2 expression [8]. Therefore, we analyzed 
DNA methylation at individual CpG sites (Figure 3C,D) and average DNA methylation over the 
entire REs (Figure 4). As reported previously [17,18], Mecp2 promoter regions R1, R2, and R3 
contained 13, 4, and 2 CpG sites, respectively. The intron 1 silencer element contained three REs, 
namely R4, R5, and R6, with 1, 1, and 2 CpG sites, respectively (Figure 3B). 

Figure 3. Bisulfite pyrosequencing analysis of DNA methylation at the Mecp2 regulatory elements (REs)
in male neurons and male astrocytes. (A) Schematic representation of CpG island regions characterized
based on distribution of CpGs. Part A of the figure is modified from [34,35] (not drawn to scale).
(B) Location of CpGs in Mecp2 gene REs. Figure not drawn to scale. The figure illustrates the six
previously reported REs [17], R1–R3 promoter Res, and R4–R6 intron 1 silencer element REs (not drawn
to scale). The methylation symbol indicates the number of CpGs found within each RE: R1: 13 CpGs,
R2: 4 CpGs, R3: 3 CpGs, R4: 1 CpG, R5: 1 CpG, and R6: 2 CpGs. (C) Percentage of DNA methylation
(%) of CpG sites within the Mecp2 promoter regions (a) R1, (b) R2, and (c) R3. (D) Percentage of DNA
methylation (%) of CpG sites within the Mecp2 intron 1 regions (a) R4, (b) R5, and (c) R6. Significant
differences between male neurons and male astrocytes are indicated with **** p < 0.0001, *** p < 0.001,
N = 3 ± SEM.
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Based on a general repressive role of DNA methylation, we hypothesized that higher Mecp2
expression in male neurons is associated with lower DNA methylation at the Mecp2 REs, while lower
Mecp2 expression in male astrocytes is associated with higher DNA methylation. First, we assigned
the CpG island regions illustrated in Figure 3A to Mecp2 gene REs (Figure 3B). R1 of Mecp2 promoter is
considered as a portion of a CpG island, which spans over exon 1. On the other hand, R2 and R3 belong
to the N shore (Figure 3B). As intron 1 REs are located more than 4 kb downstream of the CpG island,
they do not belong to either an S shelf or S shore. Based on previous studies in autistic patients and a
rare case of an RTT patient [8,9,36], we hypothesized that blocks of DNA methylation at the CpG island
and/or N shore may have differentially methylated CpG blocks, which may contribute to differential
Mecp2 expression in male neurons and male astrocytes. Bisulfite pyrosequencing experiments showed
that the percentage of DNA methylation at the 13 CpGs within the Mecp2 promoter region R1 was higher
in male astrocytes compared to male neurons (CpG1: +7.87%, CpG2: +6.23%, CpG3: +3.77%, CpG4:
+4.08%, CpG5: +5.42%, CpG6: +8.46%, CpG7: +6.02%, CpG8: +8.49%, CpG9: +5.75%, CpG10: +4.33%,
CpG11: +3.76%, CpG12: +4.60%, and CpG13: +3.86%) (Figure 3C). In general, DNA methylation
(5mC) of regulatory elements is associated with decreased gene transcription; therefore, higher DNA
methylation could lead to reduced gene expression [37]. Our results are consistent with this idea that
increased DNA methylation at these CpG dinucleotides in male astrocytes may collectively contribute
to the lower Mecp2 levels in these cells. Similarly, the percentage of DNA methylation at the four
CpG sites at the R2 region was significantly higher in male astrocytes compared to male neurons
(CpG1: +7.22%, CpG2: +8.74%, CpG3: +4.32%, and CpG4: +4.88%). However, DNA methylation at
R3 CpGs was not statistically significant (CpG1: +0.71% and CpG2: +2.18%). Regardless, the proximal
Mecp2 promoter, which contains R1 and R2, showed a higher percentage of DNA methylation in male
astrocytes compared to male neurons, potentially contributing to the lower Mecp2e1 and Mecp2e2 levels
in male astrocytes. These data imply that in contrast to R1 and R2, DNA methylation at R3 of the
promoter may not play a significant role in differential expression of Mecp2 isoforms in male neurons
and male astrocytes.

We then studied the Mecp2 intron 1 regions for DNA methylation changes (Figure 3D). The CpG
sites of R4 and R5 were similarly methylated in male astrocytes and male neurons (difference: CpG1-R4:
+0.54%, CpG1-R5: −0.36%). However, the two CpGs within R6 had a significantly higher percentage of
DNA methylation in male astrocytes compared to male neurons (CpG1: +40.40% and CpG2: +6.29%).
Since this DNA methylation pattern is in agreement with our previous studies highlighting their role
in Mecp2 regulation [17,18], it is likely that higher methylation at the R6 region may contribute to lower
expression of Mecp2 isoforms in male astrocytes compared to male neurons. It is possible that DNA
methylation at the intronic R4 and R5 may not play significant roles in differential expression of Mecp2
isoforms in male neurons and male astrocytes.
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Furthermore, we calculated the average DNA methylation of the REs that contained more than
one CpG site (R1, R2, R3, and R6). Both R1 (+5.59%) and R2 (+6.29%) showed greater than 5% DNA
methylation change over the entire region (Figure 4).

Although individual CpG sites of R3 were not significantly changed, the average DNA methylation
over promoter R3 was slightly higher (+1.44%, p < 0.05) in male astrocytes. The average DNA
methylation over individual R4–R6 CpG sites was not statistically significant. However, R6 showed
+23.34% (p = 0.08) higher average DNA methylation in male astrocytes than in male neurons. Also,
average methylation over the intron 1 silencer element (R4–R6) showed +11.45% hypermethylation in
male astrocytes compared to male neurons. In other words, the difference in average DNA methylation
between male neurons and male astrocytes was higher in the CpG island (R1), while the difference was
reduced further away from the exonic region (R3). However, the average methylation within the intron
1 REs was similar between the two cell types, implying that the distinct differential average methylation
observed in CpG island regions was not significantly different in the analyzed R4–R6 intronic region.
Overall, these analyses showed that male neurons have significantly lower DNA methylation, mainly
at the Mecp2 promoter REs, in contrast to male astrocytes. DNA methylation levels at the Mecp2 REs
may contribute to the epigenetic regulation of Mecp2 isoforms in male neurons and male astrocytes.

2.4. Expression of Mecp2 Isoforms Correlates with DNA Methylation at the Mecp2 REs

To gain insight into the impact of DNA methylation on Mecp2e1 and Mecp2e2 expression in
male neurons and astrocytes, we performed a correlational analysis between Mecp2 isoform-specific
transcripts and DNA methylation at the individual CpG sites of R1–R6 (Figure 5). First, we determined
the relation between Mecp2e1 transcripts in male neurons with Mecp2 promoter regions (Figure 5A).
For R1, CpG1 showed a very strong negative correlation with Mecp2e1 expression (r = −0.99, p < 0.05),
implicating a repressive role of DNA methylation at this CpG. Similarly, CpG8 showed a very strong
negative correlation with Mecp2e1 (r = −0.99, p < 0.05). Although CpG13 showed a negative correlation
with Mecp2e1, it was not statistically significant (r = −0.97, p = 0.15). The other CpG sites (CpG 2, 3, 4,
5, 6, 7, 9, 10, 11, and 12) showed varying degrees of positive correlations that were not statistically
significant. Correlations between DNA methylation at the CpG sites of promoter R2 and Mecp2e1
expression had a very strong positive nature (r > −0.9). CpG3 and CpG4 showed significant positive
correlation (CpG3: r = +0.99, p < 0.05; CpG4: r = +0.99, p = 0.051), usually referring to an active role.
Mecp2e1 showed a positive but statistically insignificant correlation with DNA methylation at the
promoter R3 and at the intron 1 regions R3, R4, and R6.

When correlation between Mecp2e2 and DNA methylation at the REs was studied, we found that
Mecp2 REs showed varying degrees of positive and negative correlations. However, these correlations
were statistically insignificant. It should be noted that this might not necessarily suggest the absence of
a role for DNA methylation in Mecp2e2 regulation in male neurons. This may be due to the involvement
of different types of DNA methylation or that DNA methylation does not play a significant role here.

Unlike male neurons, which showed widely distributed correlation patterns between DNA
methylation and Mecp2 transcripts; male astrocytes demonstrated distinct DNA methylation patterns
that correlated with Mecp2 expression (Figure 5B). Both Mecp2e1 and Mecp2e2 expression in male
astrocytes negatively correlated with DNA methylation of all CpGs of R1, which is in agreement
with the repressive role of DNA methylation at R1 that we previously noted [17,18]. Among them,
correlation between Mecp2e1 and R1: CpG2 (r = −0.9984, p < 0.05) and R1: CpG3 (r = −0.9994,
p < 0.05) was significant. Similarly, Mecp2e2 showed a negative and significant correlation with DNA
methylation at R1: CpG7 (r = −0.9999, p < 0.01). These data suggest that R1 may play a repressive
role for both Mecp2 isoforms. Correlation between DNA methylation at R2, R3, and intron 1 R4−R6
regions and Mecp2 isoforms was statistically insignificant. However, R2: CpG1, R2: CpG2, and R3:
CpG1 showed a positive correlation with both Mecp2 isoforms. In contrast, R2: CpG3, R2: CpG4, and
R3: CpG2 showed a negative correlation with both Mecp2 isoforms. These data suggest that DNA
methylation plays a different role in regulating Mecp2 isoform-specific expression in male astrocytes
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and male neurons. Similar to neurons, DNA methylation at R4−R6 showed a positive but statistically
insignificant correlation with Mecp2e1. Correlation between Mecp2e2 and DNA methylation at R4−R6
was not fully consistent between the two cell types.Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW  7 of 15 
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on the x-axis.

3. Discussion

Understanding how Mecp2/MeCP2 expression is controlled in major brain cell types is important
not only developmentally, but also for human diseases affecting the brain. Such studies would provide
insight in understanding how different levels of Mecp2/MeCP2 isoforms contribute to the maintenance
of proper brain cellular functions and activities. Accordingly, investigation of Mecp2 cell type-specific
expression and regulation may provide valuable insights on how regulatory mechanisms can be used
for potential strategies for MeCP2-associated diseases. Therefore, our study contributes to cell type-
and sex-specific health research in brain cells.

Our study explored the expression of Mecp2 isoforms in a sex-specific manner in primary neurons
and astrocytes. The sex-specific difference in the basal level of Mecp2 transcripts in embryonic
brain cells highlights the importance of considering sex as a biological factor in MeCP2-associated
neurodevelopmental disorders. In agreement with sex-specific levels of MeCP2, it is the study of
Mecp2/MeCP2 expression in male and female rat brains during development [38] that indicated higher
Mecp2/MeCP2 levels in the female amygdala and ventromedial hypothalamus at postnatal day 1
(P1) compared to male brain regions. However, at P10, males expressed more Mecp2/MeCP2 in the
preoptic area. The observed higher expression of Mecp2 in females than males in the rat brain at
P1 is in agreement with the higher Mecp2e1 levels in astrocytes and Mecp2e2 levels in neurons and
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astrocytes. However, our study shows that in E18-isolated primary brain cells, Mecp2e1 expression is
higher in male than female neurons. In agreement with a previous report [38], our study demonstrates
the possibility that Mecp2 expression is sex-dependent, cell type-specific, and isoform-specific. These
results may also implicate age/developmental stage-specific regulatory mechanisms.

Several studies have shown XCI escape and biallelic expression of the X-linked genes such as
histone deacetylase 6 (Hdac6) and lysine demethylase 6A (Kdm6a) that are associated with the more
accessible chromatin structure at the promoters of these genes, as indicated by DNase I hypersensitivity,
occupancy of RNA polymerase phosphorylated at Ser 5 (PolII-S5p), recruitment of CCCTC-binding
factor (CTCF), and enrichment of active histone modifications such as H3K4me3 [39,40]. Not only
MECP2, but also other X-linked genes, such as GRB2-associated-binding protein 3 (GAB3), ribosomal
protein S4, X-linked (RPS4X), Jumonji/ARID domain-containing protein 1C (JARID1C), ubiquitin-like
modifier activating enzyme 1 (UBE1), baculoviral IAP repeat-containing protein 4 (BIRC4), and solute
carrier family 16 member 2 (SLC16A2), show differential expression between the two sexes, with
higher expression in female bovine fetal muscle tissues compared to males [41]. Generally, when
genes escape XCI in females, they show higher expression in females due to biallelic expression, in
contrast to monoallelic expression in males. However, here, the higher expression in females was
not observed in all cases, suggesting such discordance regarding XCI escape could be due to other
complicated regulatory mechanisms. Literature supports such discordance where male cells show
higher gene expression. For instance, using microarray analysis, Talebizadeh et al. [42] demonstrated
that only 10% of the 299 X-linked genes that they studied showed higher expression levels in the
female human cerebrum (female (F) /male (M) ratio ≥ 0.7), and 17% of the genes showed higher
X-linked gene expression in the male cerebrum (F/M ratio ≥ 1.5) [42]. The MECP2 uni-gene cluster
(Hs.200716) showed an F/M ratio = 0.8 in the cerebrum in this study, suggesting MECP2 abundance in
the male cerebellum may be higher than in the female cerebellum. The cerebellum is a brain region
with the highest neuronal density in the brain [43,44]. Therefore, it is worth questioning whether there
are deviating or complex Mecp2 regulatory mechanisms seen in neurons, and more specifically, in
male neurons, which drive higher Mecp2 expression levels. However, in our study, the two Mecp2
isoforms showed opposing trends (Mecp2e1: male > female; Mecp2e2: male < female). The presence of
correlation between Mecp2e1 and DNA methylation and the absence of such correlation with Mecp2e2
sought us to speculate whether DNA methylation plays a role in this observation. It is also possible that
an alternative splicing mechanism is shifted in male neurons in contrast to female neurons. In general,
DNA methylation can regulate alternative splicing [10]. In our previous studies in differentiating
murine neural stem cells, we proposed that DNA methylation status at R1 (promoter), R4, and R5
(intron 1 silencer element) might be involved in alternative splicing of the Mecp2 gene. The potential
impact of DNA methylation at the Mecp2 intron 1 silencer element in regulating Mecp2 splicing in
neurons and astrocytes is also a possibility. However, investigating the role of DNA methylation in
regulating Mecp2 alternative splicing was not within the scope of this current study. Regardless, it
is important to determine the role of DNA methylation in Mecp2 alternative splicing, as this may
modulate the expression of Mecp2e1 and Mecp2e2 in different type of brain cells including neurons
and astrocytes. It is possible that a ‘kinetic coupling model’ of cotranscriptional splicing via DNA
methylation- and CTCF-mediated mechanisms [45] may contribute to Mecp2 splicing in neurons and
astrocytes. Regardless, establishing the precise role of DNA methylation in Mecp2 splicing warrants
further investigations.

Here, DNA methylation at the six Mecp2 REs was determined by bisulfite pyrosequencing,
followed by correlational analysis in male neurons and male astrocytes. While comparison between
male neurons and male astrocytes highlighted a negative correlation between Mecp2 expression and
DNA methylation, correlational analysis in male neurons showed otherwise for Mecp2 promoter R2.
Generally, bisulfite pyrosequencing does not distinguish between 5mC and 5hmC DNA methylation
marks [46] and may somehow overrepresent 5mC [47]. Therefore, additional analysis of 5mC and
5hmC at the Mecp2 REs may provide further insight. Within the body, the brain and specifically
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neurons show the highest conserved non-CpG DNA methylation [48], which could provide more
in-depth knowledge. We observed that the strongest correlation to be in the R1 promoter region
between male neurons and male astrocytes, which was relatively small in terms of the percentage of
DNA methylation. However, as we reported for Mecp2 in differentiating brain-derived embryonic
neural stem cells, even small percentage changes at its REs might be biologically significant and cause
2–3-fold change at the MeCP2 protein levels [17]. In general, DNA methylation may also exist in the
form of CpH (rather than CpG) and may be differently involved in primary neurons and astrocytes.
Although CpH DNA methylation was not part of our reported study here, investigation of CpH DNA
methylation would be important in the context of cell type-specific expression of Mecp2e1/e2.

Previously, we reported differential correlation of Mecp2 isoforms with DNA methylation that
varied with the stages of neural stem cell differentiation [17] or between murine strains [20]. For
differentiating neural stem cells isolated from E14 mouse embryos, the correlation was seen in almost
all the CpG sites with both Mecp2 isoforms. However, in in vivo differentiated neurons isolated from
E18 embryos in this study, significant correlation was limited to four CpGs in the Mecp2 promoter
and with Mecp2e1. Similarly, the number of significant correlations observed in male astrocytes
isolated from E18 embryos was low, albeit the correlations that were observed for both Mecp2 isoforms.
This may implicate that DNA methylation might be more critical at earlier stages of embryonic
development and during neural stem cell differentiation, in comparison to differentiated cell types
at later stages of embryonic development. These differences further emphasize the existence of cell
type-specific Mecp2 regulatory mechanisms. Yet, differential cell type-specific expression and/or
regulation make it challenging to develop strategies to rescue abnormal MeCP2 expression in disease
conditions. For instance, decitabine treatment during embryonic neural stem cell differentiation
induced Mecp2e1/MeCP2E1 [17], while similar studies in fibroblasts isolated from RTT patients did
not respond to 5-aza-2′-deoxycytidine (similar to decitabine) treatment at lower concentrations [49].
It is questionable as to whether similar treatments would be successful in elevating Mecp2/MeCP2
expression in differentiated cell types such as neurons and in later stages of development or adulthood.
DNA-demethylating agents that are capable of inducing Mecp2/MECP2/MeCP2 levels may be helpful
for RTT. However, it is unclear if knowledge on the effect of DNA methylation on Mecp2 could be
used in MECP2 duplication syndrome. In lens epithelial cells, scientists demonstrated that a DNMT
inhibitor (which can also be a DNA-demethylating agent), zebularine, attenuated MeCP2 expression in
a time- and dose-dependent manner [50]. Similarly, in the human fetal retinal pigment epithelial cells,
5-aza-2′-deoxycytidine reduced MeCP2 expression in a dose-dependent manner [51]. Therefore, it
is possible that depending on the cell type, the effect of DNA-demethylating agents and/or DNMT
inhibitors on MeCP2 expression may be different.

4. Materials and Methods

4.1. Ethics

Our experimental studies were performed in agreement with the standards of the Canadian
Council on Animal Care with approval of the Office of Research Ethics, University of Manitoba. All
procedures were reviewed in advance of conducting the experiments and were approved by the
University of Manitoba Protocol Management and Review Committee at the Bannatyne Campus,
under the approved protocol number 12-031/1/2 (16 June 2014) and subsequent renewal(s).

4.2. Primary Culture of Embryonic E18.5 Neurons

Primary embryonic neurons from the cortex of E18.5 CD1 mice were isolated and cultured as
previously described [15,23,24]. Embryos were separated based on the sex by visual sex recognition
under a dissecting Zeiss microscope. In brief, dissected cortices were dissociated by papain and
trituration through a Pasteur pipette. Dissociated cells were resuspended in neurobasal media
supplemented with B27 and were then plated at a density of 1.2 × 105 cells/mL in poly-lysine-coated
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dishes. Half of the media was replaced after 72 hours (h) and was refreshed every 48 h thereon.
According to published protocols for primary neurons, cells were collected after eight days in culture.

4.3. Primary Culture of Embryonic E18.5 Astrocytes

Primary embryonic astrocytes from the cortex of E18.5 CD1 mice were cultured as previously
described [15,24]. Embryos were separated based on the sex and as described above for primary
neurons. In brief, dissected cortices were further dissociated using papain enzyme and triturated with
Pasteur pipette. Cells were subsequently resuspended in minimum essential medium (MEM, Thermo
Fisher Scientific) supplemented with 10% FBS. Cells were then seeded at a density of 2 × 105 cells/mL
in poly-lysine-coated dishes. Media were replaced every 48 h until the day of collection. According to
the published protocols for primary astrocytes, cells were collected after 15 days.

4.4. Culture and Identification of Sex-Specific Neurons and Astrocytes

Genomic DNA was extracted from neurons and astrocytes by DNeasy Blood and Tissue Kit
(Qiagen). Semiquantitative polymerase chain reaction (PCR)-based amplification of sex-determining
region protein gene on Y chromosome (Sry) was done as previously reported [17] to identify and
confirm male cells. We used the interleukin 3 (Il3) gene as an autosomal gene and an internal control for
both sexes. PCR products were identified based on size (Sry, 402 base pairs (bp); Il3, 544 bp). RNA was
extracted from male and female cells by Trizol extraction method (Life Technologies Inc., 15596-026)
and mirVana RNA extraction kit (Thermo Fisher Scientific, AM1560), respectively. Quantitative reverse
transcription PCR (qRT-PCR) for X-inactive specific transcripts (Xist) was done for female cells as
previously described [17,52].

4.5. Quantitative RT-PCR (qRT-PCR)

RNA was extracted from male cells and female cells by Trizol and mirVana RNA extraction kit
methods, respectively. RNA that was converted to cDNA using previously established protocols prior
to qRT-PCR [17]. Relative gene expression was calculated with reference to the housekeeping gene
glyceraldehyde 3-phosphate dehydrogenase (Gapdh).

4.6. DNA Methylation Analysis by Bisulfite Pyrosequencing

Bisulfite pyrosequencing was performed for the six Mecp2 REs (R1 to R6) as a service at the
Hospital for Sick Children, Toronto, Canada, as we reported previously [17–20]. For the sequence of
the primers, please refer to our previous reports [17–20].

4.7. Correlation Analysis between Detected DNA Methylation at the Mecp2 Regulatory Elements and
Transcript Expression Levels of Mecp2 Isoforms

Pearson’s correlation analysis and linear regression were done as we reported previously [17,19],
and statistical significance was determined at p < 0.05 as described elsewhere [17–19].

4.8. Statistical Analysis

The graphs represent an average of 2-3 independent biological experiments (N = 2–3) and 8–12
technical replicates (n = 8–12) with error bars showing standard error of the mean (SEM). Statistical
significance was determined at **** p < 0.0001, *** p < 0.001, ** p < 0.01, or * p < 0.05. All experiments
were performed in primary cortical neurons or astrocytes isolated from 2–3 separate pregnant mothers
as N = 2–3 biological replicates [17,18,24]. For the comparison of cell type-specific, sex-specific, and
isoform-specific expression of Mecp2 isoforms, two-way ANOVA was used.
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5. Conclusions

In conclusion, our studies presented here report the cell type-, sex-, and isoform-specific expression
of Mecp2 isoforms in primary cortical neurons and astrocytes. Neither Mecp2 isoform showed equal
expression in male and female cell types. In comparison to male astrocytes, male neurons had higher
levels of Mecp2 transcripts. Our results provide evidence that the DNA methylation of Mecp2 regulatory
elements contributes to the differential expression of Mecp2 in male neurons and astrocytes. In male
neurons, Mecp2e1 was the major isoform, with approximately three-fold higher levels than Mecp2e2.
The reduced methylation of the Mecp2 response elements in male neurons may alter transcription
elongation rates and splicing of the Mecp2 transcripts, giving rise to greater levels of Mecp2e1 transcripts.
The major findings of our study and potential mechanisms are summarized in Figure 6.
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neurons and male astrocytes. Based on the findings of this study, this figure illustrates a summary of the
proposed mechanism of Mecp2 regulation by DNA methylation in male neurons and male astrocytes.
Higher Mecp2 expression levels in male neurons compared to male astrocytes could be in part driven
by lower DNA methylation. It is possible that a lower DNA methylation at the Mecp2 promoter in male
neurons may induce an “active chromatin conformation”, allowing higher transcription. In contrast,
higher DNA methylation at the Mecp2 promoter in male astrocytes may cause a “less active and more
condensed chromatin conformation”, leading to lower Mecp2 level. We propose that DNA methylation
may act as a switch for fine-tuning of the Mecp2 gene expression from “ON” (active promoter) to “DIM”
(less active promoter) to “OFF” (repressed promoter).
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Abbreviations

5hmC 5-hydrocymethylcytosine
5mC 5-methylcytosine
ASD autism spectrum disorder
BIRC4 baculoviral IAP repeat-containing protein 4
bp base pairs
cDNA complementary DNA
CTCF CCCTC-binding factor
DNMT DNA methyltransferase
E embryonic day
ENCODE Encyclopedia of DNA Elements
F female
FASD fetal alcohol spectrum disorder
FBS fetal bovine serum
GAB3 GRB2-associated-binding protein 3
Gapdh glyceraldehyde 3-phosphate dehydrogenase
h hours
Hdac Histone deacetylase 6
Il3 interleukin 3
JARID1C Jumonji/ARID domain-containing protein 1C
Kdm6a lysine demethylase 6A
M male
MDS MECP2 duplication syndrome
MeCP2 Methyl CpG binding protein 2
P postnatal day
PCR polymerase chain reaction
PolII-S5p RNA polymerase phosphorylated at Ser 5
qRT-PCR quantitative reverse transcription PCR
R region
r Pearson’s correlation coefficient
REs regulatory elements
RPS4X ribosomal protein S4 X-linked
RTT Rett syndrome
SEM standard error of the mean
SLC16A2 solute carrier family 16 member 2
Sry sex-determining region protein gene on the Y chromosome
UBE1 ubiquitin-like modifier activating enzyme 1
XCI X chromosome inactivation
Xist X-inactive specific transcript
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