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Introduction: Adolescent-onset cannabis use is rising in the era of marijuana

legalization. Recent imaging studies have identified neuroanatomical differences between

adult cannabis users and controls that are more prominent in early-onset users. Other

studies point to sex-dependent effects of cannabis.

Methods: A systematic review following PRISMA guidelines and subsequent

effect-size seed-based d mapping (SDM) meta-analyses were conducted to investigate

relationships between age (across the 12-to-21-year-old developmental window), sex,

and gray matter volume (GMV) differences between cannabis using (CU) and typically

developing (TD) youth.

Results: Our search identified 1,326 citations, 24 of which were included in a

qualitative analysis. A total of 6 whole-brain voxel-based morphometry (VBM) studies

comparing regional GMV between 357 CU [mean (SD) age = 16.68 (1.28); 71%

male] and 404 TD [mean (SD) age = 16.77 (1.36); 63% male] youth were included

in the SDM-meta-analysis. Meta-analysis of whole-brain VBM studies identified no

regions showing significant GMV difference between CU and TD youth. Meta-regressions

showed divergent effects of age and sex on cortical GMV differences in CU vs. TD

youth. Age effects were seen in the superior temporal gyrus (STG), with older-aged CU

youth showing decreased and younger-aged CU youth showing increased STG GMV

compared to age-matched TD youth. Parallel findings in the STG were also observed

in relation to duration of CU (years) in supplemental meta-regressions. Regarding sex

effects, a higher proportion of females in studies was associated with increased GMV in

the middle occipital gyrus in CU vs. TD youth.
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Conclusions: These findings suggest that GMV differences between CU and TD youth,

if present, are subtle, and may vary as a function of age, cumulative cannabis exposure,

and sex in young people. Whether age- and sex-related GMV differences are attributable

to common predispositional factors, cannabis-induced neuroadaptive changes, or both

warrant further investigation.

Keywords: adolescence, cannabis use and dependence, development, age, brain structural alterations, voxel-

based morphometry, sex

INTRODUCTION

Cannabis is the most commonly used federally illicit,
psychoactive drug by U.S. adolescents and young adults,
and the most common drug problem that teens receive substance
use treatment for in the U.S. (1, 2). Over 1.6 million adolescents
between the ages of 12 and 17 and 7.6 million young adults
between the ages of 18 and 25 residing in the U.S. report current
use of cannabis (1). In 2018, 24% of U.S. high school seniors
reported past-30-day use of cannabis with 6.4% reporting daily
use (3, 4). Patterns of cannabis use (CU) have changed among
U.S. youth during the era of cannabis legalization. Over the
past two decades, legalization of cannabis for medical and
recreational use by a majority of U.S. states has dramatically
altered societal perceptions of youth and their parents, resulting
in a more permissive environment and increased access to
cannabis, including new cannabis products (e.g., concentrates,
edibles, vaped cannabis) with high concentrations of delta-
9-tetrahydrocannabinol (1-9-THC), the main psychoactive
component of cannabis (5). While population-wide use of
cannabis by adolescents has not changed appreciably in the
past 10 years, recent studies point to increased prevalence of
daily CU and expanded use of concentrates and vaped cannabis
among U.S. youth, along with increased prevalence of CU
among different subgroups (e.g., college-aged young adults) (5).
This is problematic given growing literature that recreational
use of cannabis, particularly high-1-9-THC-potency cannabis,
during adolescence is associated with numerous adverse
health outcomes including increased risk for psychiatric
disorders, academic failure, and higher rates of morbidity and
mortality (6, 7).

The use of cannabis during adolescence may have complex

effects on brain structure and function that extend into

adulthood (8). While preclinical studies show strong and
consistent evidence for a causal relationship between exposure
to cannabinoids and changes in brain morphology [see (9) and
(10) for reviews], there is conflicting evidence on the long-
term effects of cannabis on brain structure in humans (11).
Evidence from human structural magnetic resonance imaging
(sMRI) studies has been mixed to date, with some studies
reporting increased brain volumes related to CU (12) and other
studies reporting decreased brain volumes (13) or the absence of
volumetric differences between CU and non-users (11). Factors
thought to contribute to the variability in human sMRI findings
related to cannabis exposure include age of cannabis initiation
and onset of regular use, frequency and chronicity of use,

co-occurrence/comorbidity of CU with other substance use and
substance use disorders such as alcohol and tobacco, and the
presence of comorbid psychiatric disorders (11, 14). Many of
these confounding factors also emerge during adolescence, a
period of increased sensitivity to the negative effects of1-9-THC,
alcohol, and nicotine exposure (8).

One understudied factor that may account for some of
the variance observed in morphologic findings is the age or
developmental period at which cannabis exposure effects are
investigated. Based upon systematic examination of the adult
sMRI literature [see (15) for review], adult studies typically show
evidence of decreased gray matter volume (GMV) between CU
adults and age-matched non-using controls. Compared to age-
matched controls, decreased GMV in CU adults [especially heavy
users (15, 16), dependent users (17, 18), and those who initiated
cannabis before age 16 (19, 20)] has been observed across
diverse brain regions with elevated cannabinoid receptor type 1
(CB1) expression including the medial temporal cortex, temporal
pole, hippocampus/parahippocampal gyrus, insula, amygdala,
thalamus, prefrontal cortex (PFC), orbitofrontal cortex (OFC),
and cerebellum. Relatedly, a recently published meta-analysis of
adult sMRI studies showed that regular CU adults had decreased
hippocampal and medial and lateral OFC volumes compared
to age-matched controls (21). Other adult sMRI studies have
shown no neuroanatomical differences between CU adults and
age-matched controls (11, 22). Notably absent from this literature
are GMV studies in adults that show increased cortical thickness
or GMV in relation to cannabis use (21), although one or two
studies have reported increased volumes in non-cortical regions
including the striatum (23) and cerebellum (15). In contrast,
based upon systematic examination of the adolescent sMRI
literature [see (24) for review], more variability in morphologic
findings is seen, and the opposite pattern of cannabis-related
GMV abnormalities is observed, with a number of studies
showing larger GMV volumes in CU compared to typically-
developing (TD) youth (12, 25, 26). Across these studies,
differences in GMVbetween CU and TD youth are primarily seen
in the same brain regions as those observed in CU adults (e.g.,
amygdala, hippocampus, PFC, cerebellum). Using data from the
IMAGEN trial, Orr et al. (12) found evidence for increased
GMV in the amygdala, hippocampus, striatum, left PFC, lingual
gyrus, posterior cingulate, and cerebellum in a sample of 14-year-
old low-level CU compared to age-matched TD youth. Another
study by Medina et al. (26) reported increased hippocampal
volumes in adolescent CU compared to TD youth. Not all studies
have shown increased GMV in adolescent CU compared to
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age-matched youth. In addition to studies showing null findings
(11), some studies have conversely shown decreased GMV in
CU vs. age-matched TD youth (27), although these have been
primarily in late adolescent or young adult samples. When taken
together, the collective findings across adult and adolescent sMRI
studies suggest the possibility of an age/developmental gradient
with regard to the effects of cannabis exposure on cortical
morphology. As such, age-related influences on the relationship
between CU and morphology warrant further investigation,
especially across adolescence and young adulthood (ages 12-21
years), the main time period of peak cannabis exposure and
cortical maturational changes.

Another factor that could account for variance in
morphological findings across studies is the distribution of
females-to-male participants in studies. There is growing
evidence in support of sex differences in the development,
clinical and behavioral presentation, and neural correlates of CU
from both clinical and preclinical studies (28). Women begin
using cannabis at a later age than men and progress more quickly
from first use to dependence (known as the “telescoping” effect)
(29), although this pattern is less pronounced in adolescents.
Women also report greater abuse-related subjective effects,
withdrawal severity, and cannabis-related problems, along
with higher rates of comorbid mood and anxiety disorders
compared to men (28, 30, 31). In preclinical studies, female
rodents show greater sensitivity to the anxiogenic, reinforcing,
and sedative effects of cannabinoids (32). While preclinical
adolescent cannabis exposure studies largely show widespread
desensitization and downregulation of CB1 receptors in the
brains of both male and female rodents, some studies also point
to sex-specific effects in the cerebellum, hippocampus, PFC,
amygdala, and striatum (28, 33). Recent human imaging studies
indicate that sex may moderate the relationship between CU
and brain morphometry in PFC, ACC, cerebellar, and amygdala
regions in adolescents and adults (34, 35). Results from two
studies in CU adolescents found that female cannabis users
had increased PFC and amygdala volumes compared to female
controls, while male cannabis users had smaller volumes or no
volumetric differences from male controls (26, 34) [conversely
see (36)]. These findings indicate the need for future imaging
studies to determine how sex influences the neuroanatomical
alterations observed in relation to cannabis exposure in humans.

Given the changing legal status of cannabis and potential
for negative downstream effects on health indices for American
youth, it is increasingly important to understand the effects of CU
on neurodevelopment. Major time sensitive goals of the scientific
field today are to determine if neuroanatomical abnormalities
emerge as a result of adolescent cannabis exposure, and if
present, whether these abnormalities mediate the relationship
between cannabis exposure during adolescence and adverse
health outcomes in adulthood. Variability in morphological
findings across studies in the nascent literature warrant further
investigation, especially, to determine whether some of the
variance across studies is the result of age/developmental effects
or cumulative cannabis exposure, and whether sex-dependent
effects are present. Obtaining a comprehensive understanding of
neurodevelopmental and sex-dependent effects of CU on GMV
requires meta-analysis of sMRI studies examining adolescent

boys and girls at various developmental stages. As such, the
present study, a whole-brain voxel-based morphometry (VBM)
meta-analysis, focused on age-related and sex-related cortical
and subcortical GMV differences in relation to CU across
adolescence and young adulthood. Using effect-size seed-based
d mapping (SDM, also known as signed differential mapping)
(37), a coordinate-based meta-analytic approach on whole-brain
VBM studies comparing CU and TD youth, our study aims
were three-fold: (1) to identify brain regions of increased or
decreased GMV in CU relative to TD youth, (2) to explore
whether specific regional GMV differences in CU vs. TD youth
are age-related (i.e., do they vary as a function of age), and
(3) to determine if regional GMV differences in CU vs. TD
youth are sex-dependent (i.e., do they vary as a function of the
distribution of females-to-male participants in the sample). Based
upon previous VBM studies (12, 34), we hypothesized that CU
and TD youth would showGMVdifferences in brain regions with
elevated CB1 receptor expression including the medial temporal
lobe, hippocampus, amygdala, PFC, OFC, and cerebellum, and
that these GMV differences would vary as a function of age
and sex. Specifically, we predicted that increasing age across
adolescence would be associated with decreasing GMV in these
brain regions in CU youth compared to age-matched TD youth
and that increasing proportion of female participants in studies
would be associated with increasing GMV in these regions in CU
youth compared to sex-matched TD youth.

MATERIALS AND METHODS

A systematic review of peer-reviewed studies was conducted
following the Preferred Reporting Items for Systematic Reviews
and Meta-analyses (PRISMA) guidelines and methods (38).
A subset of the studies from the review that included
coordinate-level data or parametric maps were used in the
SDMmeta-analyses.

Search Strategy
We searched for studies indexed in the online databases
PubMed/Medline, Cochrane, Embase, and Web Science from
January 1990 to November 2019 using the following search
terms: “Adolescent”[Mesh] OR “adolescent” OR “young adult”
OR “youth” OR “teenager” AND “Neuroimaging”[Mesh] OR
“Magnetic Resonance Imaging”[Mesh] OR “MRI” OR “structural
MRI” OR “sMRI” OR “voxel-based morphometry” OR “VBM”
OR “voxel-based” OR “voxel-wise” OR “neuroimaging”
OR “brain circuit” OR “neural” AND “Cannabis-Related
Disorders”[Mesh] OR “cannabis use” OR “marijuana use”
OR “cannabis abuse” OR “marijuana abuse” OR “cannabis
dependenc∗[tiab]” OR “marijuana dependenc∗[tiab]” OR
“cannabis addiction” OR “marijuana addiction” OR “cannabis
use disorder” OR “marijuana use disorder” OR “cannabis∗[tiab]”
OR “marijuana∗[tiab]” OR “marihuana∗[tiab]” OR “1-9-tetra-
hydrocannabidol” OR “THC”. Broad search terms were used to
minimize the likelihood of the search not identifying all relevant
studies. In addition, we manually scanned the references of
included studies and cross-referenced relevant original research,
reviews, and meta-analyses to identify studies that may have
been missed by the search.
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Study Selection
Studies were selected if they met the following criteria: (1)
included > 10 participants; (2) participants were between the
ages of 12 and 21 years; (3) used diagnostic criteria for cannabis
use disorder (CUD) as specified by the DSM (DSM-IV or DSM-
5) or described frequency of cannabis use (e.g., daily, weekly,
etc.) in study participants; (4) used whole-brain VBM and voxel-
wise analyses; (5) reported within- or between-subject contrasts
in GMV across cannabis use (CU) and typically developing (TD)
control youth, or brain-behavior correlations between GMV and
cannabis-related variables; (6) reported coordinates from the
above whole-brain analyses in standardized anatomic space [i.e.,
Talairach or Montreal Neurologic Institute (MNI) space] and
(7) provided information about the inclusion/exclusion criteria,
clinical characteristics, and demographics of the study sample.

Articles that studied adolescent CU within the context of
co-occurring psychiatric disorders were included if studies also
included controls that did not use cannabis. Studies with young
adult samples were included if they the mean age of participants
was below 21 years.

Data Extraction
Articles were extracted, organized, and reviewed using Covidence
software (covidence.org). Initial independent title and abstract
evaluations were done to identify potential articles of interest
by two authors (A.A. and K.R.). Data extraction accuracy
showed high correspondence/agreement (>80%) between
reviewers. Abstract evaluation was followed by an independent
full-text review of articles. Group discussion was used to
resolve uncertainties about inclusion criteria and finalize
the list of articles included in the qualitative review and
SDMmeta-analysis.

To facilitate exploration and interpretation of results, studies
that examined GMV differences but failed inclusion criteria due
to lack of statistical maps or whole-brain analytic approaches
were retained for the purposes of qualitative analysis.

To create the final list of studies included in the meta-analysis,
we took a three-step approach: Studies identified with the above
search that reported coordinates of anatomical differences in CU
groups from whole-brain analyses in Talairach or MNI space
were identified and marked for inclusion in the SDM meta-
analysis. For those studies and for whole-brain VBM studies that
provided insufficient information on coordinates, corresponding
authors were contacted via email to determine if unthresholded
statistical maps or coordinates could be provided. Additionally,
we searched NeuroVault (neurovault.org) using select search
terms (from above) to try to find unthresholded statistical
maps from the relevant studies. These approaches did not yield
additional studies or unthresholded statistical maps. Thus, peak
coordinates from published data were used for the meta-analysis.

Data Analysis
SDM Meta-Analysis Procedures
All meta-analyses were carried out using the anisotropic effect-
size signed differential mapping permuting subject images
(SDM-PSI) software, v.6.21 (http://www.sdmproject.com). SDM-
meta-analysis is a statistical technique for meta-analyzing

neuroimaging data that approach that recreates voxel-level maps
of effect sizes and their variance based upon T-maps (37). In
contrast to othermeta-analytic approaches, SDM enables original
statistical parametric maps and peak coordinates to be combined,
and reconstructs positive and negative effects within the same
statistical maps, preventing a voxel from appearing in opposite
directions, and providing for more accurate representation of
the results.

Data Coding and Preparation for SDM Meta-Analysis
In preparation for the SDM meta-analysis, the following data
coding steps were taken: For studies that met inclusion criteria,
coordinates associated with CU groups or variables were
manually recorded by two authors (A.A. and C.J.H.). Coded
anatomical foci were then double screened for accuracy. If
the studies reported coordinates in either Talairach or MNI
coordinates, a text file containing the reported coordinates and
the t-score associated with those coordinates was created. If
a study reported multiple experiments, the results were still
reported in the same text file. P-values or z-values were converted
into t-scores using SDM Utilities calculator, otherwise sign of
their effect was reported as positive or negative. In addition, a
table was made the study identifier (main author), the t-score
used to determine significance, and the number of people in the
experimental and control groups. If a study reported a statistically
significant corrected p-value, but didn’t give provide sufficient
information to transform the corrected p-value into a t-score, a
t-score of 3.1 was used, providing a conservative estimate. Studies
that had no significant peaks were also included. To prepare for
the meta-regressions, data on CU and TD youth’s age at time of
scan, proportion of female participants, age range, average days
of cannabis use in past-30-days, and duration of cannabis use
(years) were obtained for each study and included as variables.

Meta-Analysis Procedures
The main analysis was conducted in two steps: First SDM
meta-analyses were conducted on the statistical parametric maps
showing group-level effects for each study to examine for
unadjusted differences between youth with CU and matched
TD youth. Next, two linear meta-regressions were conducted,
one using mean age (years) at time of scan and the other
using the proportion of females to males from each study
as dependent variables to examine effects of increasing age
across adolescence and increasing proportion of female sex
on GMV. All models were thresholded using an uncorrected
p-value < 0.005 consistent with other SDM meta-analyses
(37). Familywise error correction was also carried out using
1,000 permutations, then thresholded using a corrected p-value
of 0.05.

Reliability Analysis and Supplemental Subgroup

Meta-Analyses and Meta-Regressions
To establish the reliability of ourmeta-analytic results, a jackknife
analysis was performed by removing a single dataset and
repeating the analysis in sequence. This was done for the primary
SDM meta-analysis and meta-regression analyses. Supplemental
subgroup meta-analyses were conducted to examine subgroup
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effects in (1) studies that controlled for alcohol and tobacco
use, (2) studies that excluded youth with comorbid psychiatric
disorders, and (3) studies with samples restricted to youth
who met CUD diagnostic criteria. Supplemental linear meta-
regression analyses were used to examine the influence of
(1) age range, (2) mean days of CU in the past 30 days
(indexing recent CU), and (3) mean years of cannabis use
(indexing duration of CU) on GMV differences between CU and
TD youth.

RESULTS

Systematic Review and Qualitative
Analysis
The initial search identified 1,327 citations with 822 records
excluded following title and abstract screen. Out of 436 citations
that underwent full text review, 20 studies examining GMV
differences were included in the qualitative analysis, 6 of
which met all inclusion criteria. A PRISMA flow diagram

FIGURE 1 | Flowchart outlining selection procedure of studies of GMV differences.
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TABLE 1 | Summary of VBM studies included in the meta-analysis.

References Diagnosis No. of CU

youth

(% male)

Age of CU

youth,

mean

(range)

Quantity of

CU by CU

youth

No. of TD

youth

(% male)

Age of TD

youth,

mean

(range)

Quantity of

CU by TD

youth

Sample Measures of

CU or CUD

traits

Time

between

MR scan

and last CU

Comorbidity

(% of CU

youth with

each

condition)

Scanner

strength

(T)

FWHM

(mm)

P-value Results

Cousijn et al.

(40)

Weekly CUA 33 (64%) 21.3

(18.0-25.0)

>10 days per

month;

1579.5

(1425.0)

joints lifetime

use; duration

use: 2.5(1.9)

years

42 (62%) 21.9

(18.0-25.0)

<50 joints

lifetime use

Community TLFB; CUDIT 24 h

abstinent;

average

abstinence in

CU sample:

1.8 (2.3) days

TU (70%) 3.0T 8 ROI mask:

p < 0.005

Whole Brain:

p < 0.001,

FWE: p <

0.05

Group-level analysis Heavy

cannabis using adolescents had

larger L/R anterior cerebellum

volumes compared to Controls,

but did not differ from controls in

volumes of other brain regions.

Correlation analysis Among

heavy CU adolescents,

amygdala and hippocampal

volumes correlated negatively

with the amount of cannabis use

or problem-severity scores.

Gilman et al.

(39)

Weekly

ND-CUB

20 (45%) 21.3

(18.0-25.0)

>one use per

week; 3.8

days/week;

11.2

joints/week;

duration use:

6.21(3.43)

years

20 (45%) 20.7

(18.0-25.0)

<5 use

episodes

lifetime; 0 use

episodes in

past 12

months

Community TLFB; SCID

DSM-IV

Overnight

abstinence

(> 12 hours)

OTU (70%)

DTU (5%)

3.0T 6.9 Bonferroni

Correction: (p

< 0.05/4 =

0.0125)

Group-level analysis For GMV:

MJ users had increased nucleus

accumbens volumes compared

to HC that reached trend-level.

For GM density: MJ users had

increased GM density in the left

nucleus accumbens extending

into the subcallosal cortex,

hypothalamus, amygdala, and

SL-extended amygdala after

controlling for age, sex, alcohol

use, and cigarette smoking.

Jarvis et al.

(42)

BP-CUDC 7 (29%) 15

(12.0-18.0)

NR; all with

CUD

diagnosis;

duration use:

NP

BP: 7 (43%) 16

(12.0-19.0)

0 Clinical:

Inpatient

Psychiatric

Unit

SCID DSM-IV,

ASI, Substance

Abuse Course-

Modified Life

II

NP; > 72

hours

abstinent

(based upon

inpatient

setting)

BP (100%) 3.0T 12 P ≤ 0.001,

minimum

cluster size

200 voxels

Group-level analyses: BP w/

CUD patients had decreased

GMV in left fusiform gyrus and

increased GMV in the right

caudate and precentral gyrus

and increased GM density in the

right middle occipital gyrus, right

fusiform gyrus, and cerebellar

vermis compared to BP w/o

CUD patients.

Orr et al. (12) Low-level

CUD

46 (65%) 14.6

(14–16)

1-2 instances

of CU,

lifetime;

duration use:

< 1 year

46 (48%) 14.5

(14.0-16.0)

0 Community ESPAD NP; 13% of

CU reported

use of

cannabis in

past 7 days;

22% of CU

reported use

in past 30

days.

None 3.0T 8 P <

0.001,600

voxel cluster

Group-level analysis Low-level

early-adolescent cannabis users

had larger volumes in a number

of brain regions compared to

non-using age-matched

controls. Low levels of cannabis

use in cohort one was

associated with greater gray

matter volume in the

hippocampus, amygdala, and

striatum, bilateral parietal

regions, cerebellum, and left

middle temporal gyrus.

Correlation analysis In addition,

the magnitude of differences in

GMV were associated with CB1

receptor availability from a

separate dataset.

(Continued)
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TABLE 1 | Continued

References Diagnosis No. of CU

youth

(% male)

Age of CU

youth,

mean

(range)

Quantity of

CU by CU

youth

No. of TD

youth

(% male)

Age of TD

youth,

mean

(range)

Quantity of

CU by TD

youth

Sample Measures of

CU or CUD

traits

Time

between

MR scan

and last CU

Comorbidity

(% of CU

youth with

each

condition)

Scanner

strength

(T)

FWHM

(mm)

P-value Results

Thayer et al.

(41)

Weekly CUE 201 (74%) 16

(14.0-18.0)

>one use per

week; 20.6

(9.5) use

days in past

30 days;

duration use:

NP

238 (66%) 16.0

(14.0-18.0

0 Juvenile

Justice

Involved

TLFB NP Alcohol Use 3.0T 6.9 Whole Brain:

P < 0.001,

1000 voxel

cluster

Group-level analysis No

group-level differences in GMV

were observed between CU and

TD youth.

Weiland et al.

(11)

Daily CU 50 (82%) 16.7

(14.0-18.0)

Daily use of

cannabis;

duration use:

NP

50 (72%) 16.8

(14.0-18.0)

0 Juvenile

Justice

Involved

TLFB, past 90

days

NP Alcohol Use 3.0T 6.9 Clusterwise

extent

correction: t

> 2.3, F >

3.0

Group-level analysis There was

no significant difference in any

brain region between cannabis

users and controls.

A In Cousijn et al. (40), CU participants were heavy CU young adults defined as using cannabis 10 or more days in the month prior to assessment (i.e. > two times per week) and using cannabis on > 240 days over the 2 years prior to

assessment. B In Gilman et al. (39) – CU participants were defined as weekly or more frequent CU who did not meet DSM-IV criteria for cannabis dependence. C In Jarvis et al. (42), all participants were diagnosed with Bipolar Disorder

(BP) with CU participants also meeting criteria for DSM-IV diagnosis of current cannabis use disorder (CUD) based upon psychiatric interview (SU module of SCID, DSM-IV). D In Orr et al. (12), CU participants were low-frequency users

defined as using cannabis on 1 or 2 instances in their lifetime based upon the ESPAD. E In Thayer et al. (41) cannabis use was characterized as days of use in past 30 days from the TLFB with days use examined as a predictor of VBM

outcomes in a combined sample of CU and non-using youth and in a sample restricted to participants using cannabis weekly or more frequently over the past 30 days. F In Weiland et al. (11), CU participants were adolescents who

used cannabis on a daily basis over the past 90 days.

ND-CU, Nondependent cannabis users; CU, cannabis users; BP, CUD Bipolar Disorder and CUD comorbidity; SCID (DSM-IV), Substance Use Disorder module of Structural Clinical Interview for Diagnostic and Statistical Manual Mental

Disorders, 4th edition; ASI, Addictions Severity Index; ESPAD, European School Survey Project on Alcohol and Drugs; CUDIT, Cannabis Use Disorder Identification Test; TLFB, Timeline Follow Back; TU, Tobacco Users; OTU, Occasional

Tobacco User; DTU, Daily Tobacco Users; NP, Not provided.
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depicting the search process is presented in Figure 1 and results
from the qualitative analysis (Supplementary Results S1 and
Supplementary Table S1) are presented in the supplement.

Study and Sample Characteristics
Six eligible whole-brain VBM studies (11, 12, 39–42) that
involved a direct comparison of GMV between CU youth [n =

357; mean (SD) age = 16.68 (1.28); age range 14-25 years] and
TD youth [n= 403; mean (SD) age= 16.77 (1.36); age range 14-
25 years] were included in the SDMmeta-analysis (Table 1). One
hundred and five (29.4%) of the 357 CU youth and 151 (37.5%)
of the 403 TD youth from the six eligible studies were female. In
the meta-analytic sample, the mean ages (t= 0.01, p = 0.99) and
proportion of participants whowere of female sex (t=−0.05, p=
0.96) did not significantly differ across CU and TD groups. One
study (42) examined GMV differences between CUD and non-
CUD participants with bipolar disorder (BP). All analyses were
run with and without this study. Four of six studies controlled
for alcohol use in their main analyses and five of six controlled
for tobacco use (Supplementary Table S2).

Meta-Analysis: Regional GMV Differences
in CU vs. TD Youth
The primary SDM meta-analysis (not investigating age or
sex) identified no regions showing significant GMV differences
between youth with CU compared to TD youth. This null finding
remainedwhen analyses were rerun after from a restricted sample
excluding the Jarvis et al. study of BP-CUD youth.

Meta-Regression Analysis: Age-Related
GMV Effects
Results from the SDM meta-regression examining the effect
of age at time of scan on GMV differences between CU
and TD youth are shown in Figure 2. The age-related meta-
regression showed that increasing mean age across adolescence
was associated with a relative decrease in GMV in youth with
CU vs. age-matched TD youth in the left superior temporal
gyrus (L-STG: 85 voxel cluster; MNI peak coordinate: x = −54,
y = −4, z = −12; SDM Zmap = −3.168, p = 0.0008). This
finding remained significant after repeating the main analysis
following the removal of a single study in which both CU and
TD participants had BP (42).

Meta-Regression Analysis: Sex-Related
GMV Effects
Results from the SDMmeta-regression examining sex-dependent
effects on GMV differences between CU and TD youth are
shown in Figure 3. The sex-related meta-regression showed
that increasing proportion of female participants in studies was
associated with a relative increase in GMV in youth with CU
compared to sex-matched TD youth in the right middle occipital
gyrus (R-MOG: 162 voxel cluster; MNI peak coordinate: x = 36,
y=−80, z= 28; SDM Zmap= 3.953, p= 0.00004). This finding
was no longer significant following the removal of the Jarvis et al.
study but remained significant after repeating the main analysis
following the removal of each other study.

Supplemental Analyses
As too few whole-brain VBM studies were identified for
properly powered subgroup analyses, our planned a priori
subgroup analyses were not conducted. Based upon the
results from the main analysis which identified a significant
age-related and sex-related GMV effects, we chose to still
conduct our planned a priori supplemental meta-regression
analyses examining the effect of other variables (recent CU
frequency, duration of CU, and age range of studies) on
GMV. These supplemental analyses are underpowered and
should be interpreted as exploratory only. In supplemental
meta-regression analyses, increasing duration of CU was
associated with a relative decrease in GMV in the L-STG
in CU vs. TD youth (Supplementary Figure S1: 145 voxel
cluster; MNI peak coordinate: x = −52, y = −4, z =

−14; SDM Zmap = −3.542, p = 0.0002). None of the
other assessed variables were significantly associated with GMV
differences between CU and TD youth in supplemental meta-
regression analyses.

Reliability Analysis
Jackknife sensitivity analysis of the primary meta-analytic
results identified no additional significant clusters when
studies were sequentially removed from the analysis.
Jackknife sensitivity analyses of the meta-regression results
(Supplementary Tables S4, S5) showed that age-related and
sex-related GMV effects were largely preserved through most
study combinations. Age-related GMV effects in the L-STG
were preserved in four out of six study combinations and the
sex-related GMV effects in R-MOG were preserved in five out
of six study combinations. The L-STG cluster identified in the
supplemental analyses showing GMV differences as a function
of duration of CU was observed in four of the six studies
(Supplementary Table S6).

DISCUSSION

The present meta-analysis investigated age-related and sex-
related GMVdifferences between CU and TD youth to determine
the influence of age and sex on reported cannabis-brain
morphology relationships across adolescence. To our knowledge
this is the first imaging-based meta-analysis of VBM studies
of GMV to examine differences between CU and TD youth to
specifically investigate for age-related and sex-related effects. The
main findings were that CU youth (compared to TD youth)
showed GMV differences in temporal and occipital regions
that varied as a function of age and sex, respectively. When
GMV differences were investigated without examining age or sex
effects, no differences were observed between CU and TD youth.
Across the six VBM studies included in the meta-analysis, there
was significant heterogeneity noted in sample characteristics,
comorbidity, and how CU was measured. Implications of these
findings are discussed below.

Partially consistent with our hypotheses, we found evidence
for age-related GMV differences between CU and TD youth in
the L-STG but did not observe differences in other brain regions.
This finding suggests that an age/developmental gradient effect
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FIGURE 2 | Meta-regression results showing associations between age at scan with gray matter differences between cannabis using and typically developing youth.

Age-related meta-regression results. (A) Meta-regression results (CU > TD youth) showing associations between Age at Scan and gray matter differences between

CU and TD youth shown in red. All results thresholded at p < 0.005. (B) Associations between age and gray matter differences in the left superior temporal cortex (85

voxels, SDM-Z = −3.168) (shown in red). Effect sizes (SDM-estimates) used to create the meta-regression plots were extracted from the peak of maximum slope

significance. The meta-regression SDM-estimate value is derived from the proportion of studies that reported gray matter changes near the voxel so it is expected that

some values are at 0 or near +/– 1. Each included study is represented as a numbered dot, with the dot size reflecting relative total sample size of each specific study

in comparison to the average total sample size of all six studies included in the regression. Study key: 1 = Gilman et al. (39); 2 = Thayer et al. (41); 3 = Weiland et al.

(11); 4 = Orr et al. (12); 5 = Cousijn et al. (40); 6 = Jarvis et al. (42).

of cannabis exposure across adolescence may exist. If true, an
age gradient effect could explain some of the divergent results
observed across studies. That age-related GMV differences in
temporal regions are present in CU youth and decrease as a
function of age is consistent with preclinical studies showing
non-linear morphologic changes in CB1 receptor enriched brain
regions following adolescent cannabis exposure (9, 10). Our
results parallel prior human imaging studies showing increased
volume and thickness in temporal regions of early-adolescent
cannabis users and decreased volumes and thickness in temporal
regions of late-adolescent and young adult cannabis users (12, 43,
44). In supplemental analyses, we also identifiedGMVdifferences
in a L-STG cluster that varied as a function of duration of CU
and showed significant overlap with the L-STG cluster identified
in our age-related meta-regression analysis. Age and duration of
use may be conflated in our analyses, especially as increasing age
is associated with increased duration of CU among CU youth. As
such, future studies with longitudinal prospective designs, such
as the Adolescent Brain Cognitive Development (ABCD) study,
are needed to disentangle the relative impact of changes in age

and cannabis exposure effects on brain morphology. Our GMV
results are consistent with a previous study showing that CUD
status influences cortical maturation of the L-STG in adolescents
with and without early-onset psychosis (EOP) who were initially
scanned at age 16 and then again 18-months later (45). Cannabis
exposure starting early and persisting throughout the middle-to-
late adolescent periods is associated with greater cortical thinning
in PFC regions by young adulthood (46). Moreover, greater
duration of CU and higher cumulative cannabis exposure is
associated with smaller volumes and thinner cortices in temporal
and frontal regions of chronic CU adults who started using in
early adolescence (15, 19, 20, 27).

Our findings should be considered within a developmental
framework. Adolescence is a critical age range during which
extensive cortical thinning and GM reductions occur (47).
These morphologic changes are believed to represent normal
maturational processes related to synaptic pruning (48). Given
this, the age gradient effect hinted at by our results suggests
the possibility that divergent structural abnormalities may result
from cannabis exposure at different ages (e.g., early adolescence

Frontiers in Psychiatry | www.frontiersin.org 9 December 2021 | Volume 12 | Article 745193

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Allick et al. Age- and Sex-Related GMV Differences

FIGURE 3 | Meta-regression results showing associations between proportion of females in studies with gray matter differences between cannabis using and typically

developing youth. Sex-related meta-regression results. (A) Meta-regression results (CU > TD youth) showing associations between proportion of females in studies

and gray matter differences between CU and TD youth shown in green. All results thresholded at p < 0.005. (B) Associations between sex and gray matter

differences in the right middle occipital gyrus (162 voxels, SDM-Z = 3.953) (shown in green). Effect sizes (SDM-estimates) used to create the meta-regression plots

were extracted from the peak of maximum slope significance. The meta-regression SDM-estimate value is derived from the proportion of studies that reported gray

matter changes near the voxel so it is expected that some values are at 0 or near +/– 1. Each included study is represented as a numbered dot, with the dot size

reflecting relative total sample size of each specific study in comparison to the average total sample size of all six studies included in the regression. Study key: 1 =

Gilman et al. (39); 2 = Thayer et al. (41); 3 = Weiland et al. (11); 4 = Orr et al. (12); 5 = Cousijn et al. (40); 6 = Jarvis et al. (42).

vs. young adulthood), and that cumulative cannabinoid exposure
may also play a role in cannabis-brain morphology relationships.
Further, this gradient could emerge as result of two distinct
cannabis-related neuroadaptive/neurotoxic processes that shape
cortical morphology in opposing ways at different times during
development. For example, in early adolescence, a relative
increase in L-STG volume in CU compared TD youth could
reflect a disruption in synaptic pruning resulting in the
preservation of synapses that would normally be eliminated
during refinement of neural circuits (49). In contrast, during
late adolescence/young adulthood a relative decrease in L-STG
volume in CU compared to TD youth could reflect increased
apoptotic mechanisms in specific neuronal cell bodies as a result
of cannabis-induced neurotoxicity that occurs when cumulative
cannabis exposure has exceeded a certain threshold (9). These
developmental hypotheses require additional testing.

Of note, GMV effects related to age and duration of CU
from our meta-regressions were both specific to the L-STG, a
temporal region involved in auditory, speech, language, face, and
emotion processing (50, 51). Temporal brain regions (such as
the STG) have increased CB1 receptor expression compared to
other cortical regions and thus may be more sensitive to cannabis

exposure (33). Our findings are consistent with prior behavioral
and functional MRI studies showing evidence of impairments in
sensory gating and emotional face processing tasks and altered
fMRI blood-oxygen-level-dependent (BOLD) response in the L-
STG in CU youth (52–55). The finding also shows relevant
overlap with sMRI studies in EOP and schizophrenia (SZD),
where reduced gray matter in the L-STG has been observed
among individuals with EOP and SZD compared to controls
and is associated with increased severity of hallucinations
and delusions (56, 57). This may carry clinical significance,
especially given the growing literature showing that adolescent
CU, especially with high 1-9-THC potency chemotypes, is
associated with increased risk for developing psychotic and
affective disorders (58). As such, structural abnormalities in L-
STG related to cannabis exposure could lead to impairments in
social-cognitive processing, which, in turn could increase the risk
for psychotic and affective symptoms in CU youth. Based upon
our results, additional research is warranted to investigate the
potential role that L-STG abnormalities play in psychosis and
negative emotionality of CU youth, as this workmay improve our
understanding of cannabis’s contribution to neurodevelopmental
risk factors for psychotic and affective disorders in young people.
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One of the main objectives of this study was to investigate
the influence of sex distribution on GMV differences between
CU and TD youth to determine if any GMV effects are sex-
dependent. We identified an occipital cluster centered in the
R-MOG that varied between CU and TD youth as a function
of sex distribution showing increased GMV in CU compared
to TD youth in studies that had a higher proportion of female
participants and the opposite relationship (decreased GMV)
in studies that had a higher proportion of male participants.
This suggests that sex may moderate the relationship between
cannabis exposure and occipital morphology during adolescence.
Our results regarding sex-related GMV effects are consistent
with prior studies in CU adolescents and adults that have shown
differences in GMV, cortical thickness, and gyrification in women
that are directionally opposition from those found in men (26,
34, 35, 59, 60). A number of possible factors could explain
this result. Sex differences in the effect of adolescent cannabis
exposure on occipital morphology could result from sexual
dimorphism of endocannabinoid system (eCB) tonic signaling
(61), CNS signaling pathways (62), hormonal influences (63),
or pharmacokinetics (64). Additionally, they could reflect sex
differences in brain age at time of cannabis exposure, given
that adolescent girls brains are at a more advanced stage of
maturation compared to age-matched boys (47). Based upon
this, increased R-MOG volume in CU girls relative to sex-
matched controls could be related to disruptions in synaptic
pruning (49) and decreased R-MOG volume in CU boys could
reflect increased sensitivity to cannabis-related neurotoxicity
via apoptotic-mechanisms (9). Alternatively, this finding could
reflect general neurodevelopmental differences between boys and
girls, although this is less likely as sex differences in adolescent
brain morphology are less pronounced in occipital regions (65,
66). The sex-related GMV effect could also be the result of
differences in cannabis-related behavioral phenotypes between
boys and girls who use cannabis. Adolescent boys initiate
cannabis earlier than girls, and adolescent girls who use cannabis
may havemore cannabis-related problems and higher rates of co-
occurring/comorbid affective symptoms and disorders, with all of
these factors potentially impacting brain morphology (28).

The MOG is involved in visual information processing,
attention, and affective and cognitive bias processing (67), which
may be dysfunctional in CU individuals (68). Thus, our findings
showing sex-related structural abnormalities in the MOG might
underlie impairment in these neurocognitive processes and
relate to the expression of increased cannabis-related problems
and comorbid affective disorders in CU adolescent girls. This
interpretation is supported by evidence from previous fMRI
studies showing altered BOLD fMRI response in the R-MOG
of CU adolescents and adults during visuospatial memory and
attentional tasks (69–71) and a previous sMRI study showing
cannabis-related changes cortical thickness in the occipital lobe
of patients with EOP (56). The result also fits well with fMRI
studies reporting alterations in BOLD fMRI response in the
MOG and functional connectivity (FC) between the MOG and
the thalamus, PFC, and hippocampus in adults with obsessive
compulsive disorder (72) and women with depression (73).
Moreover, the latter of these two findings points to possible

sex differences in relation to MOG activity and connectivity in
depressed women. This line of research warrants further study.

Regarding our main findings, it is important to note that
our age- and sex-related GMV results showed modest effect
sizes and were not replicated in the primary GMV meta-
analysis. Given this, it is important to interpret these results
cautiously. The age- and sex-related GMV findings could reflect
true but subtle differences between CU and TD youth, or
alternately could index individual differences in morphology that
approximate the range of normal variability which is higher
during development (11). Subtle morphological differences
related to cannabis exposure, if present, could be obfuscated
in studies that are underpowered or have a broad age-range
or skewed sex distribution. Problematically, studies in the
extant literature without these limitations are rare. Multiple
genetic and environmental factors may contribute variance to
neuroanatomical abnormalities observed in CU youth. Age-
and sex-related GMV differences between CU and TD youth
could predate cannabis exposure and be attributed to common
predispositional factors, or alternatively could emerge following
exposure as a result of cannabis-induced neuroadaptive changes.
These explanations are not mutually exclusive. In fact, recent
evidence has emerged that partially supports both models
[e.g., shared genetic factors (74); premorbid OPFC volumes
predicting cannabis initiation in adolescence (75); and cannabis-
induced neuroadaptive changes (44, 46)] suggesting complex
bidirectional relationships. The ongoing ABCD study should
aid in clarifying the nature, directionality, and mediators
and moderators of cannabis-brain morphology relationships
emerging during adolescence. In addition to the ABCD study,
other imaging-treatment studies should also be conducted to
address more focal questions about the predictive capacity of
neurobehavioral variables on CUD treatment outcomes and
the moderating role of sex, age, and other clinical variables
(comorbidity, polydrug use) as these types of studies may
inform the development of sex-specific treatments and treatment
matching algorithms in the future.

This meta-analytic report has a number of important
limitations. As the study was a meta-analysis, it was reliant on
the study methodology, analytic approaches, and assessments
done in each of the VBM studies, few of which were designed
or powered to answer specific research questions about age- and
sex-related differences in brain morphometry. Based upon study
heterogeneity, lack of sufficient information on experimental
design and analyses reported by some studies, and the large
number of studies using ROI-based analyses, we were limited
to making inferences from published coordinates and the
number of eligible studies for inclusion in the primary meta-
analysis and meta-regressions was small (n = 6 studies). As
such, our main analyses may have been under powered to
detect subtle neuroanatomical differences with small effect sizes
and there were insufficient number of studies to conduct
appropriately powered subgroup analyses. We sought to address
these issues by contacting authors and examining repositories for
unthresholded statistical maps with the goal of expanding the
number of included studies, but were unsuccessful. Changes in
datamanagement and reporting practices, including expectations
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for sharing of unthresholded statistical maps or full datasets
in online repositories, are needed to support meta-analytic
inquiry in this still emerging field. The limited number of
studies identified for our meta-analysis also limited our ability
to conduct planned sensitivity analyses controlling for alcohol
and tobacco co-use. This is problematic, as many CU youth
co-use alcohol and tobacco products and recent studies suggest
that co-use of cannabis, alcohol, and tobacco may interact and
produce unique neuroanatomic and functional abnormalities in
poly-users compared to mono-users of these drugs (76, 77). As
such, future neuroimaging studies should seek to include poly-
and mono-users to dissociate distinct and overlapping effects
cannabis, alcohol, and tobacco on brain development in youth.
Given the focus on VBM studies, our results are inherently linked
to the limitations of this sMRI analytic technique, including its
weakness in detecting spatially complex group-level differences
such as gyrification and microstructure. Still, it should be noted
that our findings overlap with the results from sMRI studies in
CU youth and adults measuring cortical thickness, surface area,
and microstructural variation (39, 44, 78). Recent studies suggest
divergent effects of youth CU on brain and health outcomes as
a function of age of cannabis initiation (5, 20). As such, our
decision to set the age window broadly (12-21 years) and to
include studies with young adult samples could also be viewed
as a limitation, although a necessary one, given the small number
of whole-brain GMV studies identified for inclusion in the meta-
analysis. As observable from Figure 2, including youth through
age 21 years added variance to the GMV results. This may have
obfuscated a main effect of cannabis exposure on GMV, if one
was present, but also enabled the examination of GMV effects
related to CU as a function of age, sex, and other demographic
and clinical variables (which were heterogenous across samples),
resulting in the identification of novel age-related and sex-
related GMV effects in CU vs. TD youth. Future population-
based longitudinal studies should investigate cannabis exposure
effects between subjects across narrow age bands (12-14 years,
15-17 years, 18-19 years, 20-21 years) and within subjects over
time to identify critical periods of vulnerability to cannabis
exposure and to characterize the impact of cannabis exposure
across adolescence on brain growth trajectories. Another major
limitation is the lack of biochemical quantification of cannabis
exposure, and specifically of 1-9-THC and cannabidiol (CBD)
levels, in studies included in this meta-analysis. This limited our
ability to investigate this relevant domain. Given preliminary
data showing divergent and at times opposing effects of 1-9-
THC and CBD on brain structure and function in adults (79),
future studies shouldmeasure1-9-THC andCBD exposure from
cannabis product use and relate these exposures to brain changes
in CU youth. Lastly, the majority of studies used in the present
meta-analytic report used cross-sectional designs precluding the
ability to assign causal determinations. As the field grows and
more studies are published using standardized neuroimaging
methods and longitudinal designs, quantitative meta-analyses of
these studies looking for convergent findings will further inform
our understanding of the neurobiological effects of adolescent
cannabis exposure. Despite these limitations, the study also has
notable strengths. It is one of the first meta-analytic studies to

examine neurobiological correlates of adolescent CU. As such,
it identifies key targets to guide future research and theory
development. Additional strengths include its use of SDM meta-
analytic/meta-regression techniques and focus on quantitative
assessment of the relationships between age, sex, cannabis
exposure, and brain morphology in a developmental sample.

CONCLUSIONS

In conclusion, the results of this meta-analysis suggest that
CU youth have significantly reduced GMV in the L-STG and
increased GMV in the R-MOG that vary as a function of
age and sex, respectively. Duration of cannabis exposure was
also associated with reduced L-STG GMV. These findings help
to build a more coherent picture of structural alterations in
CU youth and how factors such as age and sex influence
the presentation of GMV alterations in this population.
Our results lend further support to the hypothesis that
adolescent cannabis exposure alters brain growth trajectories
in subtle ways, and highlights the need for large-scale
prospective longitudinal studies to further probe cannabis-brain
morphology relationships.
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