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Abstract

Background: Fasciola hepatica, along with Fasciola gigantica, is the causative agent of fasciolosis, a foodborne zoonotic
disease affecting grazing animals and humans worldwide. Pathology is directly related to the release of parasite proteins
that facilitate establishment within the host. The dominant components of these excretory-secretory (ES) products are also
the most promising vaccine candidates, the cathepsin L (Cat L) protease family.

Methodology/Principal Findings: The sub-proteome of Cat L proteases from adult F. hepatica ES products derived from in
vitro culture and in vivo from ovine host bile were compared by 2-DE. The individual Cat L proteases were identified by
tandem mass spectrometry with the support of an in-house translated liver fluke EST database. The study reveals plasticity
within the CL1 clade of Cat L proteases; highlighted by the identification of a novel isoform and CL1 sub-clade, resulting in a
new Cat L phylogenetic analysis including representatives from other adult Cat L phylogenetic clades. Additionally, for the
first time, mass spectrometry was shown to be sufficiently sensitive to reveal single amino acid polymorphisms in a resolved
2-DE protein spot derived from pooled population samples.

Conclusions/Significance: We have investigated the sub-proteome at the population level of a vaccine target family using
the Cat L proteases from F. hepatica as a case study. We have confirmed that F. hepatica exhibits more plasticity in the
expression of the secreted CL1 clade of Cat L proteases at the protein level than previously realised. We recommend that
superfamily based vaccine discovery programmes should screen parasite populations from different host populations and, if
required, different host species via sub-proteomic assay in order to confirm the relative expression at the protein level prior
to the vaccine development phase.
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Introduction

The trematode liver fluke, Fasciola hepatica, along with Fasciola

gigantica are the causative agent of fasciolosis, a foodborne zoonotic

disease affecting grazing animals and humans worldwide. The

infective metacercariae are ingested by the definitive host where

they subsequently excyst in the duodenum. The juvenile fluke

migrate to the liver to mature before entering the host bile ducts

[1]. Fascioliasis, liver fluke disease, causes annual losses of more

than US$3000 million to livestock production worldwide through

livestock mortality and by decreased productivity via reduction of

milk, wool and meat yields [2]. F. gigantica is one of the most

important helminth infections of ruminants in Asia and Africa and

is most prominent in poorer regions impacting on individual and

small farming communities; it inflicts significant losses in cattle,

buffaloes, goats and sheep and in India, infection levels can reach

55% in isolated regions [2]. Fasciolosis is a particularly heavy

burden in the agricultural based economy of the developing world

including India.

F. hepatica is also a re-emerging worldwide zoonosis, with

estimates of between 2.4 and 17 million people infected worldwide

and a further 180 million at risk [3,4,5,6]. Climate changes,

altered land use, socio-economic factors and livestock movements

provide the opportunity for the increased spread and introduction

of pathogenic isolates to humans. The World Health Organisation

(WHO) have added fasciolosis to their preventative chemotherapy

concept [7] supported by Novartis Pharma AG, with the ultimate

aim to implement large scale drug distributions where fasciolosis is

a public health concern [8].

Thus, in the absence of commercial vaccines, control of

fascioliosis in livestock is based on the use of anthelmintic drugs.

The current drug of choice for treatment of fasciolosis is

triclabendazole, a benzimidazole-derivative, which shows activity

against both juvenile and mature flukes. However, recent reports
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of triclabendazole resistance have emerged suggesting control of

this infection in livestock may become compromised [9,10,11,12].

In addition, consumers worldwide are concerned about drug

residues in the environment and food leading to an increased

demand for non-chemical based treatments [13]. Research which

is directed towards robustly identifying, characterising and

validating vaccine candidates is therefore timely.

The pathology associated with fasciolosis is related to the release

of proteins from F. hepatica directly into the host via specific

secretory and non-specific passive processes [14]. The predomi-

nant excretory-secretory (ES) products from in vitro studies are the

cathepsin L (Cat L) proteases [14,15]. Furthermore, the secreted

Cat L proteases from F. hepatica appear to have pivotal roles in

parasite survival, including immune evasion, nutrition and

migration [16]. Additionally, the Cat L proteases are expressed

in both juvenile [17,18] and adult fluke, although the degree of

expression, and the isoform expressed, may vary with ontogenic

stage [16].

Cat L proteases are found in all liver fluke life stages with many

forms expressed and secreted, likely reflecting different biological

functions. Unfortunately, singleton sequence deposits in the public

domain have caused confusion. F. hepatica Cat L public database

entries have been deposited with relatively high degrees of

sequence similarity between them. For example, according to

Tort [19], the Cat L sequences described by Wijffels et al. [20] and

Roche et al. [21] share sequence similarities with Fcp6, described

by Heussler and Dobbelaere [22], of greater than 94%.

Additionally, an isolated Cat L2 (CL2) clone [21] shows 97%

sequence similarity to Fcp1, which was also isolated by Heussler

and Dobbelaere [22]. However, phylogenetics can delineate

between members of the Cat L protease family, and shows that

this is a large family which has expanded within Fasciola via gene

duplications, leaving a monophyletic group with distinct clade

structures [23,24].

Variable protection rates have been reported using Cat L

protease isoforms in vaccine formulations in both field and

laboratory trials. A limited understanding of the Cat L protease

sub-proteome may be hindering development of this vaccine

candidate protein family [25]. A key consideration for vaccine

development is to target functional components that are required

for the survival of the parasite [26]. To this end, Cat L proteases

from F. hepatica have been validated as targets. However, an

effective broad spectrum commercial vaccine must also overcome

the problems of antigenic diversity [27]. Challenge based

vaccination trials with a Cat L protease variant derived from a

limited liver fluke population analysis may produce variable

protection rates as a partial consequence of altered antibody

responses [28]. It is clear there will be more Cat L antigen

variability within natural liver fluke populations, highlighting that

robust vaccine development requires robust population level

vaccine discovery with sensitive assay tools.

Therefore, an unbiased global assay of the Cat L proteases,

produced in vivo, will untangle the complexity of a problematic

analysis of individual Cat L proteases in different laboratories.

Detailed proteomic experimentation into the Cat L protease

family has been performed in vitro [24]. Robinson et al. [24]

identified members of the Cat L protease family from clades 1A

(CL1A) and B (CL1B), 2 (CL2) and 5 (CL5), but not from those

originating from the newly excysted juvenile (clades 3 and 4) or F.

gigantica (clades 1C, 3 and 4). However, there are clear

discrepancies between ex-host and in vivo based studies [14], it is

vital to confirm what complement of Cat L proteases are actually

expressed in the host environment if vaccines are to be developed

on this target. An in vivo analysis that avoids the additional non-

biologically relevant consequences of ex-host studies will produce

more robust datasets for vaccine discovery. Therefore, we

incorporate sub-proteomics to delineate the Cat L protease family

that are secreted by adult F. hepatica, comparing for the first time in

vitro and in vivo Cat L profiles using 2-DE, mass spectrometry,

bioinformatics and phylogenetics.

We demonstrate that population level variations in a key

parasite vaccine candidate can be revealed by sensitive proteomic

level assays. This Fasciola case study provides a general strategy to

accelerate the pace of vaccine discovery and subsequently vaccine

development.

Materials and Methods

ES Product Collection and Preparation for 2-DE
Live adult F. hepatica were cultured for 4 h and prepared as

previously described [14] in order to collect in vitro ES products.

Gall bladders from naturally infected sheep livers were collected

immediately post-slaughter, from a local abattoir, and bile

extracted and prepared as previously described in order to obtain

in vivo ES protein products [14]. Samples prepared for 2-DE SDS-

PAGE were re-solubilised in buffer containing 8 M urea, 2%

CHAPS w/v, 33 mM DTT, 0.5% carrier ampholytes (pH 3–10,

4.9–5.7 or 5.5–6.7) v/v and protease inhibitors (CompleteMini,

Roche, U.K.) for in vitro ES products or buffer containing 6 M

urea, 1.5 M thiourea, 3% w/v CHAPS, 66 mM DTT, 0.5% v/v

carrier ampholytes (pH 3–10, 4.9–5.7 or 5.5–6.7) and protease

inhibitors (MiniComplete, Roche, U.K.) for in vivo ES products.

2-D Electrophoresis
A total of 300 ml of ES product samples were used to actively

rehydrate and focus 17 cm linear pH 4–7, 4.9–5.7 or 5.5–6.7 IPG

strips (Biorad, U.K.) at 20uC for separation in the first dimension.

All IPG strips were focussed between 40,000 and 60,000 Vh using

the Ettan IPGphor system (Amersham Biosciences, U.K.). Each

IPG strip was equilibrated for 15 minutes in 5 ml of equilibration

buffer (containing 50 mM Tris-HCl pH 8.8, 6 M Urea, 30% v/v

Glycerol and 2% w/v SDS [29]) with the addition of DTT

Author Summary

Vaccines for neglected parasitic diseases are of paramount
importance. An understanding of the basic biology
underpinning target expression within parasite popula-
tions is one of the pre-requisites for vaccine discovery and
development. Fasciola hepatica causes global disease in
humans and their livestock. The pathology of the disease is
associated with the release of cathepsin L (Cat L) proteases
from the parasite into the host. The Cat L proteases are the
leading vaccine candidates and are split into 5 clades with
different functions. The CL1 clade has undergone signif-
icant divergence resulting in the formation of sub-clades.
We have studied this vaccine candidate family at the
population level with proteomic based assays using F.
hepatica as a case study. We have identified differences in
Cat L protein expression profiles between in vitro culture
compared to in vivo host bile, with CL1 members showing
greater expression plasticity. Selection pressure exerted by
the host driving the divergence of the CL1 clade is
revealed by single amino acid polymorphisms. This case
study highlights that high resolution population based
proteomic assays at the vaccine discovery stage will
support the successful development of broad population
based commercial vaccines based on defined antigens and
their families.
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(Melford, U.K.) at 10 mg/ml. The equilibration buffer containing

DTT was removed and replaced with equilibration buffer

containing IAA (Sigma, U.K.) at 25 mg/ml again for 15 mins.

The IPG strips were separated in the second dimension on the

Protean II system (Biorad, U.K.) using 11% polyacrylamide gels

and run at 40 mA for approximately 1 h until through the

stacking gel followed by 60 mA through the resolving gel until

completion.

Gels were Coomassie blue stained (PhastGel Blue R, Amersham

Biosciences, U.K.) over night in 10% v/v acetic acid and 30% v/v

methanol. The background of coomassie stained gels was removed

using 10% v/v acetic acid and 30% v/v methanol leaving visibly

stained protein spots. All coomassie stained gels were imaged with

a GS-800 calibrated densitometer (Biorad, U.K.) set for coomassie

stained gels at 400 dpi. Imaged 2-DE gels were analysed using

Progenesis PG220 v.2006. Analysis was performed using the

Progenesis ‘Mode of non-spot’ background subtraction method on

average gels created from a minimum of three biological

replicates. Normalised spot volumes were calculated using the

Progenesis ‘Total spot volume multiplied by total area’ method

and were used to determine the degree of up and/or down

regulation between in vitro/in vivo comparisons (with significance set

at +/22 fold change). Significance of fold changes was confirmed

by a one way ANOVA using LOG10 transformation, where

appropriate, following a Kolmogorov-Smirnov test for normally

distributed spot volumes. Unmatched protein spots were also

detected between gel comparisons.

Key protein spots of interest were excised and tryptically

digested (Modified trypsin sequencing grade, Roche, U.K.).

Briefly, protein spots were destained in 50% v/v acetonitrile and

50% v/v 50 mM ammonium bicarbonate at 37uC until clear.

Destained spots were dehydrated in 100% acetonitrile at 37uC for

30 mins followed by rehydration with 50 mM ammonium

bicarbonate containing trypsin at 10 ng/ml at 4uC for 45 mins.

This was followed by overnight incubation at 37uC. Protein tryptic

fragments were then eluted according to Shevchenko et al. [30].

Samples were re-suspended in 10 ml of 1% v/v formic acid and

0.5% v/v acetonitrile for tandem mass spectrometry (MSMS).

Mass Spectrometric Analysis
Samples for MSMS were loaded into gold coated nanovials

(Waters, U.K.) and sprayed at 800–900 V at atmospheric pressure

using a QToF 1.5 ESI MS (Waters, U.K.). Selected peptides were

isolated and fragmented by collision induced dissociation using

Argon as the collision gas. Fragmentation spectra were interpreted

directly using the Peptide Sequencing programme (MassLynx v

3.5, Waters. U.K.) following spectrum smoothing (26smooths,

Savitzky Golay+/25 channels), background subtraction (polyno-

mial order 15, 10% below the curve) and processing with

Maximum Entropy (MaxEnt) 3 deconvolution software (All

MassLynx v 3.5, Waters. U.K.). Sequence interpretation using

the Peptide Sequencing programme was conducted automatically

with an intensity threshold set at 1 and a fragment ion tolerance set

at 0.1 Da. Carbamidomethylation of cysteines, acrylamide

modified cysteines and oxidised methionines were taken into

account and trypsin specified as the enzyme used to generate

peptides. A minimum mass standard deviation was set at 0.025

and the sequence display threshold (% Prob) set at 1. Samples that

did not show significant scores and probability when using

automated sequence prediction were also interpreted manually

to generate sequence tags rather than full peptide sequence

information. In these circumstances, the MassLynx program

Peptide sequencing was again used with the parameters described

above.

Database Searches and Analysis
Peptide sequences and sequence tags from MSMS were used

separately to search the Genbank protein database (www.ncbi.

nlm.nih.gov/) using BLAST adjusted for short nearly exact

matches [31]. Consequently, all protein accession numbers

reported here relate to Genbank. Only peptides with E values of

less than 0.1 were used to assign an identity or a clade to a protein

(see Table S3 for all E values). In some cases peptides produce E

values greater than 0.1 despite 100% sequence matching. As

stated, these peptides were not included for Cat L clade

assignment but added confidence to the identifications. To identify

any novel Cat L isoforms, all sequences that did not show 100%

sequence identity to Genbank entries were subjected to a local

BLAST analysis using BioEdit Version 7.0.5.3 (10/28/05) [32]

searching an in house translated database of F. hepatica ESTs

(available by anonymous FTP from the Wellcome Trust Sanger

Institute ftp://ftp.sanger.ac.uk/pub/pathogens/Fasciola/). Again,

only matches with E values less than 0.1 were used to assign a Cat

L clade.

EST Analysis
Peptides sequenced during MSMS analysis in conjunction with

the F. hepatica EST database yielded a novel Cat L protease

sequence. Several of the EST sequences were found to be only

partial sequences. Of these matching ESTs the two longest

(Fhep22e06 and Fhep21e10) were selected for further sequence

confirmation to obtain a more complete sequence. Stratagene

BlueScript SK(+) plasmids containing F. hepatica inserts

(Fhep22e06 and Fhep21e10) were provided by Dr Elizabeth Hoey

(Queens University Belfast) were transformed into competent

Escherichia coli cells (strain DH5a). Fresh plasmid was prepared

from 24-hour cultures of transformed single colonies using a

Promega (U.K.) Wizard SV Plus MiniPrep DNA purification

system according to the manufactures instructions. Forward and

reverse DNA sequencing using standard T7 and T3 primers (59

TAATACGACTCACTATAGGG 39 T7 primer; 59 AT-

TAACCCTCACTAAAGGGA 39 T3 primer) was performed at

the commercial DNA sequencing service of Lark Technologies,

Inc. (Essex, U.K.). Nucleotide sequences corresponding to the

correct reading frame and similarity were aligned, using BioEdit

Version 7.0.5.3 (10/28/05) [32] to establish overlapping regions

and facilitate construction of two full-length sequences. For signal

peptide prediction the SignalP 3.0 Server [33], available at http://

www.cbs.dtu.dk/services/SignalP/, was used. SignalP was set for

eukaryotes using both neural networks and hidden Markov

models. For epitope prediction, a Kolaskar and Tongaonkar

Antigenicity prediction method [34], available at http://tools.

immuneepitope.org/tools/bcell/iedb_input, was used.

Phylogenetics
Alignments of Fasciola (F. hepatica and F. gigantica) Cat L protease

nucleotide and amino acid sequences were constructed using

ClustalX [35]. The Cat L protease sequences used were taken

from the Genbank database (www.ncbi.nlm.nih.gov/) and also

included Cat L proteases from this study (EU835857 and

EU835858), identified from BLAST analysis searching with novel

peptides. Both C-terminal and N-terminal nucleotide sequences

were removed where sequence information was limited for many

sequences. To construct the nucleotide phylogenetic tree the

alignment was exported into Molecular Evolutionary Genetics

Analysis (MEGA) software version 4.0 [36]. The phylogenetic tree

was generated using a bootstrapped, 1000-replicate, neighbour-

joining method. The data were codon based modified using Nei-

Gojobori/Jukes-Cantor calculation as a distance based method.

Delineating the F. hepatica Cathepsin L Proteases
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Following alignment of amino acid data, amino acid phylogenetic

trees were again constructed using MEGA v 4.0. Analysis was

performed using a neighbour-joining method, 1000-replicate,

bootstrapped tree. The amino acid data was corrected for a

gamma distribution (level set at 1.0) and with a Poisson correction.

Results

2-DE Mapping of F. hepatica ES
The F. hepatica ES proteins prepared from in vitro culture and in

vivo from host bile were analysed by 2D electrophoresis using

methods well developed in our lab. ES protein arrays produced

from in vitro ES products were highly reproducible, with the

average percentage matching between replicates at 91%, and good

matching for in vivo bile analysis at 75.7%. These 2D arrays of the

ES protein revealed a group of protein spots migrating to just

below the 30 kDa protein marker and ranging in pI from 4.6–6.6

(in vitro: pI 4.60–6.62. in vivo: pI 4.65–6.52). This group consisted of

32 protein spots from in vitro samples and 20 protein spots from in

vivo samples (Figure 1). ES samples were also analysed using micro

range IPG strips in order to check for potential overlapping or co-

migrating protein spots. When using a micro range from pH 4.9 to

5.7, spot 18, previously resolved as one spot (Figure 2A), migrated

to produce three distinct spots (Figure 2B). When using IPG strips

ranging from pH 5.5 to 6.7, no overlapping protein spots were

seen (Figure 2C). All of the fore mentioned protein spots were

excised for MSMS analysis to identify the ES Cat L proteases, in

total 34 from in vitro samples and 22 from in vivo samples.

Following MSMS analysis, 30 protein spots from in vitro samples

and 19 from in vivo samples were identified as F. hepatica Cat L

Figure 1. Representative 2-DE protein arrays of in vitro and in vivo ES Cat L proteases. Proteins were separated across a linear pH range of
4–7 using IEF in the first dimension and 11% SDS-PAGE in the second dimension and Coomassie blue stained. A) & C) 100 mg of F. hepatica ES Cat L
proteases from in vitro culture. B) & D) 250 mg of Fasciola ES Cat L proteases from in vivo host bile analysis. In both C and D numbered and circled
protein spots correspond to putative identifications located in Table 1.
doi:10.1371/journal.pntd.0000937.g001
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proteases (Table 1). To assign a Cat L protease to a clade,

according to the classification of Robinson et al. [24], clade specific

peptides were identified (Clade 1: VTGYYTVHSGSEVELK and

NSWGLSWGER; Clade 2: VTGYYTVHSGDEIELK, LTHAV-

LAVGYGSQDGTDYWIVK and HNGLETESYYPYQAVE-

GPCQYDGR; Clade 5: PDRIDWR and FGLETESSYPYR

together with TSISFSEQQLVDCSR). From identifying clade

specific peptides, 14 different isoforms of F. hepatica Cat L protease

isoforms were identified representing the adult CL1, CL2 and CL5

Cat L protease clades. No matches were made to the juvenile

clades CL3 and CL4 or from the F. gigantica CL1C sub-clade.

Despite classifying all the identified Cat L proteases to a Cat L

protease clade, the specific isoform or sub-clade could not be

assigned, suggesting the specific number of isoforms identified may

be under represented. Where possible, MSMS was used to provide

sequence information for at least three peptides per spot to

definitively identify Cat L proteases. However, in our hands, seven

identifications based on single peptides were still able to place a

Cat L protease to a single Clade (CL1, CL2 or CL5) although not

to a single sub-clade such as CL1A or CL1B. These Cat L protease

isoforms were often labelled as ‘NFD’ (not fully designated) to a

specific Cat L protease clade. The inability to identify a sub-clade

was highlighted from members of the CL1A and 1B clades.

Only two Cat L protease isoforms were identified as single

protein spots in the in vitro ES and in vivo bile 2DE arrays. These

were identified as a CL1B isoform (Accession number CAC12806)

and a CL2 isoform (Accession number AAC47721). Both of these

enzymes account for a vast proportion of the secreted Cat L

proteases (CAC12806: 9–15%; AAC47721: 8–9%).

Several peptides from spots 22, 27, 30 (both in vitro and in vivo)

and 31 (in vitro only) did not appear in any entries in the public

domain. Consequently, these peptides were used to locally BLAST a

F. hepatica EST database (ftp://ftp.sanger.ac.uk/pub/pathogens/

Fasciola/). As a result from local searches, identical matches were

made with twenty three EST sequences, prior to EST assembly.

One specific sequence identified, corresponded to a novel amino

acid chain; VTGYYTLHSGNEAGLK (Figure 3A) and led to the

identification of a new Cat L protease isoform representing a

resembling a CL1 clade member (See section 3.4).

ES Product Comparison; In Vitro versus In Vivo
Progenesis PG220 v.2006 gel analysis software was used to

identify Cat L proteases with altered expression levels from in vitro

culture and from in vivo samples and Cat L proteases absent or

present in either sample. The two samples, in vivo ES Cat L

proteases (twenty spots) and in vitro ES Cat L proteases (thirty two

Figure 2. Further resolving the Cat L protease sub-proteome using micro range IPG strips. Representative micro range 2-DE protein
arrays of in vitro ES Cat L proteases. All 2-DE maps were run with 11% SDS-PAGE in the second dimension and (A) pH 4–7 (B) pH 4.9–5.7 (C) pH 5.5–
6.7 in the first dimension. Numbered and circled protein spots correspond to putative identifications located in Table 1.
doi:10.1371/journal.pntd.0000937.g002
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Table 1. Identification of Cat L proteases from ES preparations by MSMS.

ES Preparationd)

Spot
Identifier MS/MS Derived Peptidesa),b) Putitative Identity

Genbank Accession
Numberc) In Vitro In Vivo Clade

1 - Not Identified Not Identified 2 + N/A

2 1- NSWGTWWGEAYTIR Cathepsin L-like CAA80445/6 N (5.20) N (6.29) CL2

2- GNMCGIASLASVPMVAR

3- YVGNYGCGGGYFEDAYEYLK

4- VLAVGYGSQDGTDYWIVK*

5- TESYYPYQAVEGP*

3 1- QDGSGIASLASVPMVAR Secreted Cathepsin L2 ACC47721 N (9.24) N (8.78) CL2

2- ASASFDTQQLVDCTR

3- YVGNYGCGGGYMENAYEYLK

4- LTHAVLAVGYGSQDGTDYWIVK

5- NQGQCGSCADAFSTTGAVEGQFR

6- LGKDHTESYYPYQAVEGPCQYDGR

4 - Not Identified Not Identified N N/A

5 1- ASASFSEQQLVD* Cathepsin L-like CAA80445/6 N (4.70) CL2

2- YMENAYEYLK*

3- QAVEGPCQYDGR*

6 1- FGLETESSYPYR Cathepsin L-like/Cathepsin L CAA80447 or AAF76330 N (2.25) N (3.77) CL5

2- FSEQQLVDCSR*

7 1- ASASFSEQQLVDCTR* Cathepsin L-like CAA80445/6 N (1.46) CL2

2- GNMCGIASLASVQSGAAR

3- VTGYYTVHSGDEIELK*

4- GLQDHTESYYPYQAVEGQEQYDGR

5- PYQAVEGPCQYDGR*

8 1- FGLETESSYPYR Cathepsin L-like/Cathepsin L CAA80447 or AAF76330 N (2.36) N (1.84) CL5

2- TSISFSEQQLVDCSR

3- TSISFSEQQLVGSMSR

4- DAPAFMASLASVPMVAQFP

9 - Not Identified Not Identified N N/A

10 1- FGLETESSYPYR Cathepsin L-like/Cathepsin L CAA80447 or AAF76330 N (0.91) CL5

2- TSISFSEQQLVDCSR*

1- YPYTAVEGQCR* Cathepsin L/Cathepsin L-like NFD CL1

11 1- NSWGSYWGER Cathepsin L and Cathepsin
L/Cathepsin L-like

NFD N (2.87) N (3.61) CL1A

2- GYYTVHSGSEVELK*

3- TGYYTVHSGSEVELK*

4- VTGYYTVHSATTVELK

5- IASLASLPMVAR*

6- QFGLETESSYPYTAVEGEGEE

7- YPYTAVEGQCR*

12 1- YPYTAVEGQCR* Cathepsin L (Numerous Types) NFD 2 (0.32) + (1.00) CL1

13 1- QFGLETESSYPYR* Cathepsin L (Numerous Types) NFD N (0.23) CL1

14 1- QFGLETESSYP* Cathepsin L (Numerous Types) NFD N (1.55) N (4.07) CL1

15 1- GNFCGIASLASLPFVAR Cathepsin L AAR99518 N (3.03) N (5.25) CL1A

2- QFGLETESSYPYTAVEGQGCR

3- ARVGSEGPAAVAVDVESPGCYNGAR

16 1- VTGYYTVHSGSEVELK Cathepsin L AAM11647 N (6.61) N (6.46) CL1A

2- GNFCGIASLASLPFVAR

3- QFGLETESSYPYTAVEGQCR
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ES Preparationd)

Spot
Identifier MS/MS Derived Peptidesa),b) Putitative Identity

Genbank Accession
Numberc) In Vitro In Vivo Clade

4- GSCWAFSTTG*

5- NSWGSYWGER

17 1- QFGLETESSYPYR Cathepsin L/Cathepsin L-like/Cathepsin L1 NFD N (1.85) N (2.18) CL1A/B

2- VTGYYTVHSGSEVELK

3- GNFCGIASLASLPFVAR

4- ETESSYPYTAVEGQCR*

18A 1- NSWGLSWGER Cathepsin L1 CAC12806 N (9.21) N (14.81) CL1B

2- VTGYYTVHSGSEAELK

3- VTGYYTVHSGSEVELK

4- LSAPWCIASLASLPMVAR

5- GNCGSCWAFSTTGTMEGQYMKNEK*

18B 1- VTGYYTVHSGSVELK Cathepsin L AAR99518 OR AAA29136 N (3.23) N (5.21) CL1A

2- QFGLETESSYPYTAVEGQCR

3- GPAAVAVDVESDF*

4- NCGSCWAFSTTGTMEGQYMKNER*

18C 1- GNMCGIASLASLSAQGAR Cathepsin L (Numerous types) NFD N (1.57) N (2.17) CL1A/B

2- ETESSYPYTAVEGQCR*

3- NCGSCWAFSTTGTMEGQYMKNER*

19 1- NSWGLSWGER Cathepsin L AAM11647 N (4.20) CL1A

2- NSWGSYWGER

3- TGYYTVHSGSEVELK*

4- VTGYYTVHSTATVELK

5- GNMCGIASLASLPMVAR

6- QFGLETESSYPYTAVLCAQTN

20 1- QFGLETESSYPYR Cathepsin L/Cathepsin L-like/Cathepsin L1 NFD N (1.27) CL1A/B

2- TGYYTVHSGSEVEL*

3- GNMCGIASLASLKTGGAR

4- GNRTFTQSSYPYTAVEGTELT

21 1- FGLETESSYPYT* Cathepsin L (Numerous Types) NFD 2 (1.24) + (3.46) CL1A/1B

22 1- GYYTLHSGNEAGLK Cathepsin L-like ACJ12893/4 N (1.72) N (2.55) CL1D

2- QFGLETESSYPYR*

3- TGYYTLHSGNEAGLK

4- VTGYYTLHSGNEAGLK*

5- IASLASLPMVAR*

6- GNMCGIASLASL*

23 1- NSWGSYWGER Cathepsin L/Cysteine Protease AAM11647, AAR99518 or
AAB30089

N (13.85) N (12.51) CL1A

2- MCGIASLASLPMVAR*

3- ETESSYPYTAVEGQCR*

4- QFGLETESSYGYSQPEGQCR

5- GYGTQGGTDYWIVK*

24 1- QFGLETESSYPYR* Cathepsin L (Numerous types) NFD N (0.47) CL1

2- GFCNGIASLASLPMVAR

25 1- QFGLETESSYPYR* Cathepsin L (Numerous types) NFD N (0.28) CL1

26 - Not Identified Not Identified N N/A

27 1- GYYTLHSGNEAGLK Cathepsin L-like ACJ12893/4 N (6.35) N (6.01) CL1D

2- QFGLEGVGLQLPYR

3- VTGYYTLHSDANAGLK

Table 1. Cont.

Delineating the F. hepatica Cathepsin L Proteases

www.plosntds.org 7 January 2011 | Volume 5 | Issue 1 | e937



spots), were matched to one another using Progenesis PG220 v. 2006

to give a percentage matching between both of 51.4% matching

comparing in vitro to in vivo and 90% comparing in vivo to in vitro.

Having matched in vitro and in vivo preparations to one another,

an assessment of the relative quantification of the Cat L proteases

could be made. This analysis was conducted using ‘normalised’

spot volumes, which facilitates a relative quantitative assessment

despite different protein quantities loaded onto each array (100 mg

of in vitro ES Cat L proteases versus 250 mg of in vivo ES Cat L

proteases). From this analysis, five Cat L proteases from in vivo

preparations show altered expression levels when compared to in

vitro Cat L proteases (Table 1). Three of which show an increase in

relative expression and the remaining two showing decreases

(reversed for in vitro compared to in vivo Cat L proteases). However,

following ANOVA with LOG10 transformed data, only one

change was confirmed as significant; Spot 12 increased in vivo

(F1,5 = 25.90 P = 0.015*) and identified as a CL1 protease. An

additional spot approached significance; Spot 1 increased in vivo

(F1,5 = 5.77 P = 0.074) but remaining unidentified. The remaining

protein fold changes, Spots 21, 28 and 30, all identified as CL1

members, proved not significant due to a high variance exhibited

between replicates. To fully confirm these differential levels of

expression (.2 fold) statistically, further sampling would be

required.

Four Cat L protease spots were clearly identified in vitro and not

in vivo. These protein spots, 5, 7, 19 and 20, were highly abundant

in the in vitro samples and absent in bile preparations. All four of

these protein spots (5, 7, 19 and 20) had also been identified

elsewhere in the ES Cat L profile (in both in vitro and in vivo

samples), spots 5 and 7 (a CL2 member) were previously identified

in spot 2, spot 19 (a CL1A member) was previously identified in

spot 16, and spot 20, a CL1A/1B member potentially identified in

spot 17. A further 7 protein spots identified only in vitro samples

(10, 13, 24, 25, 29, 31 and 32) were of lower abundance and so

cannot been completely regarded as absent from in vivo samples. In

all cases these 7 proteins were identified as CL1 members with spot

10 also containing a CL5 member.

Identification of Single Nucleotide Polymorphisms
The MSMS tryptic fragments strategy was designed to delineate

the Cat L protease superfamily but also identified two non-

synonymous single-nucleotide polymorphisms (nsSNPs) that ulti-

ES Preparationd)

Spot
Identifier MS/MS Derived Peptidesa),b) Putitative Identity

Genbank Accession
Numberc) In Vitro In Vivo Clade

4- NMCGIASLASLPMVAR*

5- GDKSGIASLASLPFVAR

28 1- SGIYQSQTCSPLR Cathepsin (Precursor) AAA29136 + (8.08) 2 (2.94) CL1A

2- GNESGIASLASLPFVAR

3- QFGLETESSYPYTAVEGGASTQ

29 1- VTGYYTVHSGSEVELK Cathepsin L/Cathepsin L-like NFD N (1.14) CL1A/B

30 1- GYYTLHSGNEAGLK Cathepsin L-like ACJ12893/4 + (1.32) 2 (0.55) CL1D

2- QFGLETESSYPYR

3- TGYYTLHSGNEAGLK

4- VTGYYTLHSGNEAGLK

5- GNMCGIASLASLPMVAR

31 1- GYYTLHSGNEAGLK Cathepsin L-like ACJ12893/4 N (0.95) CL1D

2- QFGLETESSYPYR

3- TGYYTLHSGNEAGLK

4- VTGYYTLHSGNEAGLK

5- VTGYYTLHSGNEAGLK

32 1- SGIYQSQTCSPLR Secreted Cathepsin L1/Cathepsin L/
Cathepsin

AAB41670, AAP49831,
AAM11647, AAA29136

N (0.34) CL1A

33 - Not Identified Not Identified N N/A

34 - Not Identified Not Identified N N/A

Peptide sequences were used to search against Genbank or a translated EST library for the identification of specific Cat L proteases. Single amino acids in bold type in
MSMS sequences indicate proteomic identification of single amino acid polymorphisms (SAAP) deviating from published sequences and revealed though a translated
EST database. Spots with accession numbers as NFD relate to spots where too few peptides were sequenced preventing isoform and sub-clade identification and were
consequently not fully designated (NFD), although the clade could be defined. All data for protein identification, such as percentage coverage and search scores, can be
seen in Tables S2 and S3.
a)Sequences derived from MSMS analysis were interpreted either, automated or manually (where manually interpreted using Masslynx version 3.5 sequences are

denoted by a *). Sequenced amino acids that match exactly with those found in the Genbank database or translated EST database are underlined.
b)For MSMS spectra from peptides specific to each Cat L isoform see Figures S6, S7, S8, S9, S10, S11.
c)Protein accession numbers correspond to those from Genbank.
d)If protein spots were identified in vitro or in vivo they are denoted by N, if they are up or down regulated when compared with the other they are denoted with + or 2

respectively. The percentage contribution of each identified Cat L protease spot compared to the total Cat L proteases calculated using densitometry are in
parentheses below the appropriate symbol (N,+ or 2).

doi:10.1371/journal.pntd.0000937.t001
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mately gave rise to single amino acid polymorphisms (SAAPs)

(Figure 4). Firstly, the peptide sequence characteristic of CL1 Cat

L proteases, VTGYYTVHSGSEVELK (Figure 4 sequence A),

was observed in spot 18A, identified as CL1B (CAC12806), as well

as the alternate sequence VTGYYTVHSGSEAELK (Figure 4

sequence B) within the same spot (replicated in spot 29, see Table

S3). This nsSNP shows a nucleotide switch from a thymine to a

cytosine, creating a conservative amino acid switch, from a valine

residue to an alanine. Sequence A was identified on eleven

occasions (including twice in spot 19 and three times in spot 11)

where as sequence B was only located in three spots. Analysis of

ESTs within our in house translated database of F. hepatica ESTs

(available at ftp://ftp.sanger.ac.uk/pub/pathogens/Fasciola/) re-

vealed a total of 125 matching sequences equivalent to sequence

A. In contrast, for sequence B, only eight matching EST sequences

were identified. As a result, sequence B has an estimated minor

allele frequency of 6.4%, based on the entries currently within the

EST database.

A second potential nsSNP was identified showing an amino acid

switch from a polar threonine residue to a basically charged

arginine residue creating a tryptic cleavage site (Figures 3B and 4).

Underlying this amino acid switch was a nucleotide substitution

from a cytosine to a guanine. Analysing the in house database, a

total of 118 ESTs were found to match QFGLETESSYPYTA-

VEGQCR (Figure 4 sequence C) and 30 ESTs that match to the

sequence QFGLETESSYPYR (Figure 4 sequence D). Therefore,

this amino acid change, producing sequence D, has an estimated

minor allele frequency of 25.4%. Both sequences, C and D, were

found in spots 13, 17 and 20. Interestingly, wherever the novel

sequence VTGYYTLHSGNEAGLK was located, the peptide

QFGLETESSYPYR resulting from a nsSNP creating the arginine

residue, was always present. However, the reverse was not seen.

EST Cathepsin L Protease
Two, full length, Cat L protease contigs were constructed from

the matching ESTs to further characterise the novel peptides

Figure 3. MSMS evidence of novel sequence and SAAP. MSMS spectra from (A) the analysis of a peptide (VTGYYTLHSGNEAGLK) sequenced
from spots 22, 27, 30 and 31, belonging to a novel CL1D isoform (B) the analysis of a SAAP variant peptide (QFGLETESSYPYR) sequenced from many
protein spots including the novel CL1D isoform. Sequencing was performed both automated and manually (in these cases automated) using
MassLynx v 3.5.
doi:10.1371/journal.pntd.0000937.g003
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identified during MSMS analysis (Figure 5). This gave rise to two

sequences 99.0% similar in nucleotide sequence (see Figure S2)

and 98.5% similar in amino acid sequence. This corresponded to

10 nucleotide changes with only 5 of these resulting in amino acid

substitutions. One of these substitutions occurred within the signal

peptide but was still confirmed as a predicted signal peptide. The

other four changes found, occurred within the pro-peptide

segment, with the highly conserved auto-activation motif

GXNXFXD unaltered. Both sequences, when compared at the

amino acid level, showed 78.2% sequence identity (87%

comparing nucleotides) to the previously described secreted

cathepsin L2 (AAC47721). However, minor variations were

observed when compared to secreted cathepsin L1 (AAB41670,

clade CL1A), showing 92.9% (EU835857, 95% using nucleotides)

and 94.5% (EU835858, 96% using nucleotides) sequence

similarity.

The new sequences share 100% identity with CL1B members

from analysis of the S2 subsite residues determined by Turk et al.

[37], namely amino acid residues 67, 68, 133, 157, 158, 160 and

205 (Papain numbering). However, there is variation in 3 of the 5

mutation hotspots defined by Irving et al. [23] of which the

majority are in hotspots I and II. Residues 156(263), 158(265) and

159(266) in hotspot I, residues 66(173), 79(186) and 91(198) in hotspot

II and residue 173(280) in hotspot III (Fasciola numbering [Numbers

in superscript correspond to their position in Figure 5]) share no

homology with CL1B members. However, many show homology

to CL1A members including all three residues from mutation

hotspot II and the solitary residue in hotspot III.

The novel sequences were passed through a Kolaskar and

Tongaonkar Antigenicity prediction method [34] to identify

potential antibody epitopes. Interestingly, an epitope identified

in CL1A and CL1B members (Figure 5: residues 199 to 236) was

now split into two smaller epitopes spanning residues 199–222 and

229–236 as a result of a maximum of 3 sequence variations

(Figure 5: residues 225, 227 and 228).

Phylogenetic Analysis
The objective of a phylogenetic analysis was to identify the

origins of our newly identified Cat L protease sequences and to

assess the overall clade structure of the Fasciola Cat L protease sub-

family. Phylogenetic trees were constructed using nucleotide and

amino acid data separately in order to delineate the phylogenetic

relationship of the Fasciola Cat L proteases. This strategy produced

trees of high similarity (Figures 6A, S3 and S4) providing high

levels of confidence when assessing the overall Fasciola Cat L

protease relationship.

As with previous studies our Trees divided the Cat L proteases

into 5 distinct clades [23,38]. The NEJ specific CL3 proteases and

the adult CL2 and CL5 proteases formed three of these five clades

with strong bootstrap support. The public entry AY428949 from F.

gigantica juveniles, did not cluster with any other Cat L protease in

our analyses and forms a second juvenile clade termed CL4 [24].

The fifth clade encompasses the CL1 proteases where extensive sub-

division has previously been identified; in our study, CL1 being split

into 4 sub-clades. The F. hepatica Cat L1 proteases have undergone

much expansion, as would also be expected in F. gigantica, and as a

result of the greater number of deposited cDNAs in the public

domain three of the 4 sub-clades consist entirely of F. hepatica entries;

namely CL1A, CL1B and a new sub-clade CL1D. The novel

polymorphs identified in the present study clustered together along

with AY573569, previously classified as CL1A, forming the new

CL1D clade. The remaining CL1 clade, CL1C, contains F. gigantica

entries only, although one Japanese entry, classified as F. hepatica, is

also included; however this is most likely to be a hybrid species [38].

There was much variation with the positioning of AB010924, which

may indicate a possible sixth clade. However, further entries may be

required or genomic sequencing to confirm this finding.

Analysis of the Cat L protease amino acid sequences produced

trees that were closely similar to one another and to those

produced using nucleotides, providing a further level of confidence

in the trees produced (Figures 6B, S5 and S6). As with nucleotide

data, the Cat L proteases could be divided into 5 distinct clades.

The NEJ CL3 and CL4 clades and adult CL2 and CL5 clades

were resolved as previous, providing a high degree of certainty.

The CL1 clades clustered together, as prior analyses, yielding

CL1A, CL1B, CL1C and the novel CL1D. CL1D contains the

new isoforms outlined in the present study but without the CL1

protease ATT76664 (Nucleotide AY573569) supported with

strong bootstrap support (77% Minimum Evolution, 76%

Neighbour Joining and 78% Maximum Parsimony).

Figure 4. Evidence for SAAPs and non-synonymous single nucleotide polymorphisms (nsSNPs). Amino acid residues and their
corresponding nucleotide codons outlined in grey locate the nsSNPs seen between two polymorph sequences, between A and B and between C and
D. Nucleotides outlined in bold are those responsible for the amino acid substitution. Fhep numbers seen to the left of the nucleotide sequences
correspond to individual qlk numbers used to distinguish between ESTs in the F. hepatica EST database. The three chosen qlk numbers for each
sequence presented here are from the top three hits identified when locally BLASTing the F. hepatica EST database yet are representative of all
sequences matching each peptide amino acid sequence.
doi:10.1371/journal.pntd.0000937.g004
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Both our phylogenetic and proteomic studies supported one

another regarding the clade structure of the Cat L protease family

in Fasciola. As with Robinson et al. [38] only members of adult F.

hepatica Cat L protease clades could be identified during 2-DE

analysis, namely CL1A, CL1B, CL2, CL5 and the new CL1D.

Supporting the in vitro study of Robinson et al. [38], the ES Cat L

proteases were predominantly made up of CL1 proteases (71.68%

in vitro and 72.78% in vivo from this clade). ES Cat L proteases from

the novel CL1D sub-clade appeared to be expressed at levels

similar to the CL1B sub-clade constituting 10.34% and 9.11% of

the overall protease content in vitro and in vivo respectively (Table

S1). Previously, the CL1B clade constituted 32.09% in vitro [24],

Figure 5. Novel CL1D protease sequences. Boxed and shaded in light grey are the predicted signal peptides using SignalP 3.0. Boxed and
shaded in dark grey is the conserved GXNXFXD motif for autoactivation. Arrowed are the five amino acid substitutions varying between both contigs
with the associated nucleotide substitutions above each. Individual boxed amino acids correspond to the active site residues with the exception of
one, labelled with a *. This corresponds to the leucine at position 69 (papain numbering) dictating substrate specificity [61,62]. The dashed line
indicates the start of the N-terminus of the mature enzyme. A primary consensus sequence (Prim.cons.) is also included. Alignment was performed
using ClustalW [63].
doi:10.1371/journal.pntd.0000937.g005
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which approximates to the combined CL1B and CL1D clades

along with those NFD (29.47% in vitro and 36.80% in vivo). The

remaining Cat L proteases originate from the CL2 clade (21.51%

in vitro and 15.07% in vivo) and the CL5 clade (5.52% in vitro and

5.61% in vivo).

Discussion

The evolutionary success of Fasciola hepatica is, in part, due to its

adaptability to successfully invade and establish in different

mammalian hosts [23]. The invasion of multiple host species is

supported by the secretion of the multifunctional and multi-family

member Cat L proteases within the host environment. Cat L

proteases, stored as inactive zymogens [39], are released in

relatively large quantities [0.5–1 mg/adult/hour: 40] in order to

facilitate obligate blood feeding [41]; often degrading 1.56108 red

blood cells h21 worm21 [41].

The present study demonstrates that comprehensive high

resolution 2-DE mapping of these ES Cat L proteases using

narrow and micro range IPG strips and large format SDS-PAGE

resolves many issues derived from reductionist based experiments.

In support of previous studies [24] we have 1) identified 3 of the 5

Cat L clades (CL1, CL2 and CL5) in Fasciola species from adult

liver fluke, of which the CL1 and CL2 clades are the major

constituents 2) failed to identify F. _igantic CL1 representatives and

3) failed to identify CL3 and CL4 representatives, juvenile specific

and enhancing the belief that they are important in gut invasion

[42]. No other proteases were identified during this study

highlighting the sole reliance of F. Hepatica on these proteases to

provide nutrition.

In addition, the current study has also revealed differences in

the Cat L protease complement from the artificial in vitro biology

platform of liver fluke ex-host, and liver fluke within the natural

host, in vivo. A novel Cat L CL1 clade isoform has also been

identified along with the first report of single amino acid

polymorphism (SAAP) identified via experimental non-model

organism proteomic investigations.

Previous proteomic studies have encountered difficulties in Cat

L protease identification in the non-genome sequenced F. Hepatica

using PMF [14,15]. MSMS peptide sequencing allowed for a

more robust analysis of the Cat L proteases [the present study

and 38]. However, although all sequences were confirmed as Cat

L proteases and assigned to the appropriate clade, not all

sequences could be firmly linked to a specific sub-clade or

database entry. This is directly related to the large degree of

allelic diversity observed between Cat L proteases produced by F.

Hepatica [43], especially with the onset of triploidy in Fasciolids

[44]. The full extent of Cat L protease diversity will require a

significant high-throughput sequencing effort of natural popula-

tions of liver fluke.

Figure 6. Phylogenetic analysis of the Fasciola Cat L family. Phylogenetic trees constructed using F. hepatica and F. gigantica Cat L protease
nucleotide and amino acid sequences. All reported accession numbers are from Genbank with the suffix Fhep for F. hepatica and Fgig for F. gigantica.
The origin of each Cat L sequence are reported in parentheses (ARG – Argentina, AUS – Australia, CHN – China, IDO – Indonesia, IRE – Ireland, JPN –
Japan, NED – The Netherlands, PER – Peru, POL – Poland, POR – Portugal, SWI – Switzerland, THA – Thailand, TUK – Turkey and U.K. – United
Kingdom). A) A neighbour-joining tree using nucleotide data constructed through MEGA v 4.0 with 1000 trial bootstrapped support using a Nei-
Gojobori/Jukes-Cantor calculation. B) Neighbour-joining phylogenetic tree constructed using amino acid sequences through MEGA v 4.0 with 1000
bootstrapped support and a Poisson correction.
doi:10.1371/journal.pntd.0000937.g006
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Thus, with new confidence in assigning Cat L proteases to a

specific clade (CL1, CL2 or CL5) the Cat L protease expression

profiles from both in vitro and in vivo preparations could be robustly

assessed. The assays revealed there were differences between the

two preparations with respect to the presence or absence of protein

spots and the regulation of protein spots. Key changes between in

vitro and in vivo Cat L proteases included the addition of four

abundant protein spots (Spots 5 and 7 – CL2, Spots 19 and 20 –

CL1A or B) within the in vitro profile (and a further 7 CL1 lower

abundant proteins). All four of these proteins were identified in

other locations within the in vitro ES proteome profile, which

suggests they are post translationally modified (PTM).

The most likely PTM seen on Cat L proteases will be related to

mannose 6-phosphate phosphorylation, signalling transport to the

lysosomes. The residues important for lysosomal targeting, via

phosphorylation, in human Cat L proteases are partially conserved

in Fasciola sp. [45] suggesting PTM of Fasciola Cat L proteases via

phosphorylation is a likely candidate. As these parasites are

cultured ex-host, post translational phosphorylation may indicate

an increase in Cat L protease secretion in response to a poor

nutritional environment or may represent modification related to

the chemical environment. While the overall biochemical activity

of the cat L proteases secreted in vitro and in vivo may be similar

with model and calculated natural substrates (see Table S1), the

potential finding of additional PTM in the ex-host preparations

warrants further investigation to reveal their influence on both

masking enzymatic activity and future Cat L/protein interactions.

However, PTM identification might be a reflection of plasticity of

the host-parasite in changing host environments.

A significant increase in the abundance of Cat L protease from

the CL1 clade was observed in preparations derived from in vivo

treatments (Protein Spot 12). All the remaining changes in

expression between in vitro and in vivo samples, although not

confirmed significant (further sampling required), were also

identified as CL1 members. Within the host, F. Hepatica is

involved in interactions between both host and parasite which are

clearly absent ex-host in vitro culture. Therefore, it is possible that

the variability in expression of these CL1 clade Cat L proteases

may represent a specific response of the parasite to the host

environment, such as immune evasion and nutrient acquisition

[41,46]. The selection pressure exerted by the host on the CL1 Cat

L proteases and the plasticity of CL1 expression in F. Hepatica has

most likely led to the divergence seen in the CL1 clade producing

the repertoire of sub-clades seen in the present study. The main

challenge faced by F. Hepatica in vitro culture and within the host

bile ducts is nutrient acquisition. As the CL1 clade is most likely

responsible for the degradation of host haemoglobin for nutritional

requirements [47], the variation in CL1 expression seen in the

present study will be in response to nutritional acquisition. With

lower risks of host immune attack in bile [48,49] and the reduced

need to migrate through the interstitial matrices the requirement

to vary the regulation of CL2 and CL5 clade Cat L proteases in

these 2 systems (in vitro and in vivo) may have become less

important.

The selection pressure exerted on the CL1 clade by the host is

highlighted by two further aspects of this study, namely the

discovery of a new sub-clade CL1D and the discovery of SAAPs in

the CL1 clade. Using contig sequences derived from the novel Cat

L EST sequences, a 92.9–94.5% amino acid sequence identity to

CL1A was shown (78.2% to CL2 84–85% to CL5), suggesting

these novel Cat L sequences are CL1 members. In addition, they

appear not to be the potentially novel Cat L protease sequences

described by Robinson et al. [42]. Following phylogenetics it

appears the new Cat L protease sequences constitute a novel CL1

sub-clade, CL1D. This clade appears to have initially diverged

with the rest of the CL1 members following the division of the

CL5 clade. The separation of this clade also seems to be an early

divergence post-division of F. Hepatica and F. Gigantic CL1

members. Additionally, it appears this clade has branched from

the CL1B clade, highlighted by the clustering of a previously

classified CL1B (AY573569) with the two CL1D sequences at the

nucleotide level but not at the protein level, suggesting they are

now functionally different.

A comparative analysis of the S2 active site residues in the

substrate binding region [50] predicts that the new CL1D would

be biochemically identical to CL1B, and thus not support the

phylogenetic analysis of a new sub-clade. However, due to

significant variations in 2 of the 5 mutation hotspots identified

by Irving et al. [23] (mutation hotspots I and II, one on either side

of the active site cleft) relative biochemical activity would need to

be confirmed. Three amino acids under positive selection pressure

in each of the two mutation hotspots vary between CL1B members

and CL1D members. Both hotspots are suggested to be involved in

interactions with substrates or other proteins outside of the normal

binding regions [23]. In addition, amino acids 156 and 159

(Fasciola numbering) in hotspot I are suggested to be involved in S2

sub-site interactions [37] and may well influence biochemical

activity.

An additional variation between CL1B and CL1D members

can be found in mutation hotspot III, the hotspot found on the

edge of the R-domain of the cat L proteases [23]. The exact

function of hotspot III, and IV and V, are unclear but suggested to

be involved in proteolytic interactions with globular proteins [23].

It appears that CL1D members have an intermediary biochemical

activity between CL1A and CL1B members as they share

similarities with both clades. Therefore, until confirmation of the

biochemical activity of CL1D members, and additionally CL1B

members, has been confirmed in relation to CL1A members, it

seems warranted to keep the CL1D members in a separate sub-

clade of the CL1 proteases.

The second aspect of variation seen in the CL1 clade relates to

the discovery of two nsSNPs, including one variant in the newly

identified CL1D sub-clade. This is the first report of single amino

acid polymorphism (SAAP) identified via experimental non-model

organism proteomic investigation as population genetics and

genomic discovery approaches are the usual methods for SAAP

identification [51]. This finding highlights the power of gel based

proteomics to reveal differences at the amino acid substitution

level.

The first SAAP, position 120 (Fasciola numbering), involved a

conservative amino acid switch, from a valine residue to a alanine

residue, both non-polar. This SAAP had a low estimated minor

allele frequency of 6.4% and therefore, was only located in three

Cat L proteases spots (18A, 28 and 29, all CL1 members).

However, the second SAAP was a switch from a small, polar

threonine residue to a large polar, positively charged, arginine

residue. This second switch was shown by Irving et al. [23] to be an

amino acid residue (position 91 Fasciola numbering) under positive

selection pressure increasing the frequency of this substitution and,

accordingly, had an approximate minor allele frequency of 25%.

This particular SAAP was located in eight protein spots, all CL1

members, and demonstrates the increased frequency when

compared to SAAPs not subjected to selection pressures. Only

one variant of this T91R SAAP was located to the novel cat L1D

protease identified in this study, further suggesting divergence

from the CL1B clade.

Although outside of the extended Cat L protease active site the

T91R substitution could have potential effects on the function of

Delineating the F. hepatica Cathepsin L Proteases

www.plosntds.org 13 January 2011 | Volume 5 | Issue 1 | e937



these enzymes. This particular SAAP site (site 91 Fasciola

numbering) is located in a mutation hot spot (II) and forms one

side of the active site cleft. As mentioned, this region may be

involved in interactions with substrates outside of the normal

binding regions [23] and may therefore have implications in the

specificity of higher order interactions in the enzymes that carry

this SAAP. However, this will need to be confirmed.

Both SAAPs observed in expressed Cat L proteases in the

present study may confer structural alterations that could affect

recognisable epitopes and, if used as a chemotherapeutic target,

drug binding sites [52]. Therefore, these SAAPs provide an

opportunity to study antigenic variants which may be useful for

future development of control measures. Additionally, they lend

themselves to modelling based studies to ascertain any conforma-

tional alterations such as solvent exposure and interactions.

The plasticity revealed in the CL1 clade of Cat L proteases may

impact on the future development of vaccines based on this target.

Will a vaccine targeted towards a CL1 member effectively

overcome the antigenic diversity seen in this clade? It has been

postulated that significant economic benefit would arise from

vaccination resulting in a reduction of worm burden of .50%

[53,54]. Other vaccine trials would favour formulating vaccines

based on CL2, CL3 or CL5 members. Although direct

comparisons between vaccine trials are difficult to perform there

appears strong evidence that trials with Cat L protease from CL2,

CL3 and CL5 clades, individually and in combination with other

antigens, are more promising in relation to worm burdens than

CL1 trials. Recent trials with the NEJ clade CL3 have produced

early success reaching reductions of 52% after vaccination with

only this Cat L protease [55]. Successful early trials with the CL5

clade have also been performed providing a 51.4% reduction

using the Cat L protease alone and a substantial 83% reduction

when used in combination with Cat B [56]. CL2 trials have been

more extensive than with CL3, CL4 or CL5 members and

reported protection ranges from 33–60% using CL2 alone [57]

but in conjunction with fluke haemoglobin have reached 72.4%

[58]. Trials involving CL1 have been by far the most studied with

protection beginning at 0% and reaching a maximum of 69.5%

[58], with the majority consistently below the recommended 50%

reduction.

The plasticity within the CL1 clade may be underpinning the

observed variability in previous vaccine trials using CL1 proteases.

Others have shown that SAAPs can have a profound effect on the

antigenicity of pathogenic organisms [59]. Patterns of excessive

polymorphisms in parasitic antigens are consistent with high

selection pressure and are suggested to function in immune

evasion [28]. Furthermore, Irving et al. [23] identified excessive

polymorphism in 5 mutation hotspots (previously discussed) which

may be affecting interactions with immune effector molecules

[23,59]. The expansion of the F. Hepatica CL1 clade into 3 sub-

clades (1A, 1B and 1D) could be a direct effect of immune

selection. Indeed, the novel CL1D isoforms identified in this study

show altered predicted epitopes from CL1A and CL1B members

as a result of three SAAPs splitting a large epitope into 2 of smaller

size. However, it has been shown that a single SAAP can be

responsible for altering the immune recognition of parasitic

antigens [28]. The evidence presented in the current study,

showing further expansion of the CL1 clade, in addition to SAAPs

only identified in CL1 members enhances the possibility that this

plasticity underpins the variability of protection seen in vaccine

trials. CL1 trials have already shown potent anti-embryonation

effects and significant reductions in fecundity [58]. This raises the

possibility of formulating improved combinations of Cat L

proteases to significantly reduce worm burden and fecundity/

embryonation in tandem by robust population proteomics assays

[60].

This study has also raised the possibility of a sixth Cat L

protease clade. The Cat L protease (Accession number AB010924)

was always placed singularly and did not cluster with any other

members. In prior analyses this entry has been classified as a CL2

member. In the present study, AB010924 clustered in varying

positions between CL5 and CL1, off the CL1 clade or near CL2

and CL5. Further investigation or enhanced genomic information

will be needed to confirm this finding.

To summarise, comparison of the ES product sub-proteomes

has highlighted variations in the Cat L protease profile between

ex-host artificial platforms and direct in vivo assays most likely

related to PTM. Therefore, in vitro studies on the Cat L proteases

from Fasciolids may increase the understanding of host-parasite

relationships by revealing potential plasticity of an important

vaccine target superfamily. In this case study, the plasticity of Cat

L protease expression has been shown to be limited to the CL1

clade, leading to the discovery of a new CL1 sub-clade revealed

through proteomic-EST sequencing-phylogenetic studies. For the

first time, this study has identified experimentally single amino

acid polymorphisms (SAAP) in a key immunotherapeutic parasite

target. Gel based proteomics of pooled samples from populations

should be considered for SAAP based biomarker discovery. To

effectively formulate a vaccine based on the Cat L proteases we

suggest that discovery programmes focus on an alternate Cat L

protease clade, such as CL5 where promising early results have

been shown [56].

Supporting Information

Figure S1 Sequence alignment of six F. hepatica cathepsin L1

protease sequences from the CL1A and CL1B sub-clades

commonly hit during MSMS analysis and designated as NFD.

Boxed sequence indicate amino acid variation between these six

sequences in the mature enzyme only. Boxed shaded regions

indicate peptides commonly sequenced via MSMS including the

N-terminal peptide AVPDKIDWR. The dotted boxed region

indicates a peptide sequenced only on two occasions during

MSMS. The amino acids labelled with a * locate the site of a

SAAP identified using MSMS and a translated EST database.

Found at: doi:10.1371/journal.pntd.0000937.s001 (2.24 MB TIF)

Figure S2 Nucleotide contigs of two clones of a novel cathepsin

L protease from the CL1D sub-clade identified in the present

study. Variations between the two contigs are in bold red type.

Found at: doi:10.1371/journal.pntd.0000937.s002 (2.31 MB TIF)

Figure S3 A) Phylogenetic tree constructed using F. hepatica and

F. gigantica cat L protease nucleotide sequences. A maximum

parsimony tree using nucleotide data constructed through MEGA

v 4.0 with 1000 trial bootstrapped support. All reported accession

numbers are from Genbank B) Phylogenetic tree constructed using

F. hepatica and F. gigantica cat L protease nucleotide sequences. A

minimum evolution tree using nucleotide data constructed

through MEGA v 4.0 with 1000 trial bootstrapped support using

a Kimura 2-parameter model. All reported accession numbers are

from Genbank.

Found at: doi:10.1371/journal.pntd.0000937.s003 (0.66 MB TIF)

Figure S4 A) Phylogenetic tree constructed using F. hepatica and

F. gigantica cat L protease amino acid sequences. A maximum

parsimony tree using amino acid data constructed through MEGA

v 4.0 with 1000 trial bootstrapped support. All reported accession

numbers are from Genbank B) Phylogenetic tree constructed using

F. hepatica and F. gigantica cat L protease amino acid sequences. A
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minimum evolution tree using amino acid data constructed

through MEGA v 4.0 with 1000 trial bootstrapped support using

a Kimura 2-parameter model. All reported accession numbers are

from Genbank.

Found at: doi:10.1371/journal.pntd.0000937.s004 (1.31 MB TIF)

Figure S5 A) Full size, un-cropped, representative 2-DE protein

arrays of in vitro ES Cat L proteases as seen in the main

manuscript. The dotted region indicates the area shown within the

main manuscript. B) Full size, un-cropped, representative 2-DE

protein arrays of in vivo ES Cat L proteases as seen in the main

manuscript. Protein spots from around the 30 kDa marker were

taken for MSMS analysis based on previous work and identifica-

tions within our laboratory (Morphew et al. 2007 MCP 6 963–972)

indicating the only addition of F. hepatica protein to host bile was

located in this region. The dotted region indicates the area shown

within the main manuscript.

Found at: doi:10.1371/journal.pntd.0000937.s005 (1.78 MB TIF)

Figure S6 A) MSMS sequence analysis using peptide sequencer

(MassLynx v. 5.0, Micromass, UK) from the fragmentation of a

precursor ion m/z 1224.63 (2+) representative of cathepsin L clade

2. Interpretation of the y and b ion series provided the peptide

sequence NQGQCGSCADAFSTTGAVEGQFR. B) MSMS

sequence analysis using peptide sequencer (MassLynx v. 5.0,

Micromass, UK) from the fragmentation of a precursor ion m/z

849.86 (2+) representative of cathepsin L clade 2. Interpretation of

the y and b ion series provided the peptide sequence ASASF-

SEQQLVDCTR.

Found at: doi:10.1371/journal.pntd.0000937.s006 (0.81 MB TIF)

Figure S7 A) MSMS sequence analysis using peptide sequencer

(MassLynx v. 5.0, Micromass, UK) from the fragmentation of a

precursor ion m/z 991.42 (2+) representative of cathepsin L clade

5. Interpretation of the y and b ion series provided the peptide

sequence DAPAFMASLASVPMVAQFP. B) MSMS sequence

analysis using peptide sequencer (MassLynx v. 5.0, Micromass,

UK) from the fragmentation of a precursor ion m/z 724.85 (2+)

representative of cathepsin L clade 5. Interpretation of the y and b

ion series provided the peptide sequence FGLETESSYPYR.

Found at: doi:10.1371/journal.pntd.0000937.s007 (0.77 MB TIF)

Figure S8 A) MSMS sequence analysis using peptide sequencer

(MassLynx v. 5.0, Micromass, UK) from the fragmentation of a

precursor ion m/z 590.28 (3+) representative of cathepsin L clade

1. Interpretation of the y and b ion series provided the peptide

sequence VTGYYTVHSGSEVELK. B) MSMS sequence analysis

using peptide sequencer (MassLynx v. 5.0, Micromass, UK) from

the fragmentation of a precursor ion m/z 580.90 (3+) represen-

tative of cathepsin L clade 1. Interpretation of the y and b ion

series provided the peptide sequence VTGYYTVHSGSEAELK

including a single amino acids polymorphism (italicised).

Found at: doi:10.1371/journal.pntd.0000937.s008 (0.91 MB TIF)

Figure S9 A) MSMS sequence analysis using peptide sequencer

(MassLynx v. 5.0, Micromass, UK) from the fragmentation of a

precursor ion m/z 596.27 (2+) representative of cathepsin L clade

1. Interpretation of the y and b ion series provided the peptide

sequence NSWGLSWGER. B) MSMS sequence analysis using

peptide sequencer (MassLynx v. 5.0, Micromass, UK) from the

fragmentation of a precursor ion m/z 550.29 (2+) representative of

cathepsin L clade 1. Interpretation of the y and b ion series

provided the N-terminal peptide of the mature enzyme sequenced

as AVPDKIDWR.

Found at: doi:10.1371/journal.pntd.0000937.s009 (0.66 MB TIF)

Figure S10 A) MSMS sequence analysis using peptide sequenc-

er (MassLynx v. 5.0, Micromass, UK) from the fragmentation of a

precursor ion m/z 1007.06 (3+) representative of cathepsin L clade

1B. Interpretation of the y and b ion series provided the peptide

sequence GNCGSCWAFSTTGTMEGQYMKNEK. B) MSMS

sequence analysis using peptide sequencer (MassLynx v. 5.0,

Micromass, UK) from the fragmentation of a precursor ion m/z

774.68 (3+) providing the identification of spot 12. Interpretation

of the y and b ion series provided the peptide sequence

YPYTAVEGQCR.

Found at: doi:10.1371/journal.pntd.0000937.s010 (0.95 MB TIF)

Figure S11 MSMS sequence analysis using peptide sequencer

(MassLynx v. 5.0, Micromass, UK) from the fragmentation of a

precursor ion m/z 748.86 (2+) providing the identification of spot

32. Interpretation of the y and b ion series provided the peptide

sequence SGIYQSQTCSPLR.

Found at: doi:10.1371/journal.pntd.0000937.s011 (0.43 MB TIF)

Table S1

Found at: doi:10.1371/journal.pntd.0000937.s012 (0.01 MB PDF)

Table S2

Found at: doi:10.1371/journal.pntd.0000937.s013 (0.05 MB PDF)

Table S3

Found at: doi:10.1371/journal.pntd.0000937.s014 (0.13 MB PDF)
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