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Abstract

Driven by the necessity to survive environmental pathogens, the human immune system

has evolved exceptional diversity and plasticity, to which several factors contribute including

inheritable structural polymorphism of the underlying genes. Characterizing this variation is

challenging due to the complexity of these loci, which contain extensive regions of paralogy,

segmental duplication and high copy-number repeats, but recent progress in long-read

sequencing and optical mapping techniques suggests this problem may now be tractable.

Here we assess this by using long-read sequencing platforms from PacBio and Oxford

Nanopore, supplemented with short-read sequencing and Bionano optical mapping, to

sequence DNA extracted from CD14+ monocytes and peripheral blood mononuclear cells

from a single European individual identified as HV31. We use this data to build a de novo

assembly of eight genomic regions encoding four key components of the immune system,

namely the human leukocyte antigen, immunoglobulins, T cell receptors, and killer-cell

immunoglobulin-like receptors. Validation of our assembly using k-mer based and alignment

approaches suggests that it has high accuracy, with estimated base-level error rates below

1 in 10 kb, although we identify a small number of remaining structural errors. We use the

assembly to identify heterozygous and homozygous structural variation in comparison to

GRCh38. Despite analyzing only a single individual, we find multiple large structural variants

affecting core genes at all three immunoglobulin regions and at two of the three T cell recep-

tor regions. Several of these variants are not accurately callable using current algorithms,

implying that further methodological improvements are needed. Our results demonstrate

that assessing haplotype variation in these regions is possible given sufficiently accurate

long-read and associated data. Continued reductions in the cost of these technologies will

enable application of these methods to larger samples and provide a broader catalogue of

germline structural variation at these loci, an important step toward making these regions

accessible to large-scale genetic association studies.
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Author summary

The human immune system is incredibly versatile underlying its capacity to defend the

body against thousands of pathogens. At a molecular level, it recognizes pathogens using

large libraries of antibodies and related protein receptors. These molecules are encoded by

gene families that are particularly difficult to analyze due to their unusually complex pat-

terns of similarities and differences between genes and individuals. To overcome this, we

applied several sequencing methods to DNA from a single individual and developed

methods to reconstruct the underlying sequence at eight of the immune-associated

regions. Importantly, we used DNA extracted from monocytes to avoid capturing the fur-

ther rearrangements that occur in active immune cells. We generated accurate assemblies

by integrating multiple complementary data types, although we noted a small subset of

locations that remain challenging. Moreover, we found that this individual contains mul-

tiple structural differences between the two inherited chromosomes and compared to pre-

viously analyzed genomes, affecting the copy number of immune system genes.

Application of these methods in larger numbers of individuals will clearly uncover much

more variation than is currently known, and might lead to new understanding of the effect

of genetic variation on the broad range of human diseases determined by the immune

response.

Introduction

The capability of the human immune system to respond to environmental pathogens results

from its substantial diversity and variability, both among individuals within a population and

among cells within a single host. Key components of the innate and adaptive immune system,

including the human leukocyte antigen (HLA), immunoglobulins (IG), T cell receptors (TCR)

and killer-cell immunoglobulin-like receptors (KIR), have evolved exceptional complexity in

their genomic loci, featuring numerous highly similar genes interspersed with pseudogenes

and repetitive elements. Variation in genes encoding some of these components have well-

established associations with infectious, immune-mediated, and other disease traits. The

major histocompatibility complex (MHC) encoding HLA is so far the best-studied example,

with hundreds of associations now known across multiple classes of disease [1,2] including

infections [3,4]. In some cases the underlying functional mechanisms have also been identified

[5,6]. However, despite the clearly important role of immunoglobulins (IG), TCR and KIR [7–

9], the underlying complexity of these genomic regions has so far prevented a full analysis of

their contribution to human disease.

Three challenges must be overcome to make these regions accessible to future studies. First,

key aspects of adaptive immunity are driven by somatic recombination and hypermutation of

TCR and IG genes in immune cells. Consequently, DNA from non-recombining cell popula-

tions is needed to access germline genetic variation in these regions; these are not targeted in

current surveys of haplotype variation based on lymphoblastoid cell lines or whole blood [10–

12]. Second, extensive paralogy makes these regions intractable to short-read sequencing

approaches [13], although analyses based on known immunogenetic sequences can be

achieved [14]. Approaches using more costly long-read sequencing must therefore be

employed [15,16], though even these methods are not always sufficient to solve the most com-

plex regions [17]. Third, even if these technical challenges can be dealt with, the high diversity

observed at these regions presents further difficulties for methods that identify, catalogue, and
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genotype the underlying variation. Solving these challenges would in principle enable the

development of large haplotype variation reference panels at these loci, complementing exist-

ing immunogenetic variation databases [18] and opening them to analysis in large disease

association studies.

Motivated by these challenges, here we utilize genomic data from a single individual

(HV31) to assemble eight regions that encode key components of the human adaptive and

innate immune response. To achieve this, we use DNA extracted from CD14+ monocytes,

which do not undergo systematic somatic recombination. We develop a pipeline that exploits

PacBio HiFi long-read sequencing, Bionano optical mapping, and short-read sequencing data

to produce high-quality de novo assemblies of these regions. We then use additional long-read

and short-read datasets to assess assembly accuracy and to call heterozygous variations using

computational approaches based on read alignment and the copy number distribution of short

k-mers (i.e. short DNA fragments of fixed length k). We find that HV31 carries substantial

structural differences between haplotypes and in comparison to the GRCh38 reference

sequence, including multiple large variants that affect core immune system genes but are not

accurately called by current methods, and we investigate several of these in detail. Lastly, we

analyze four gaps in the GRCh38 reference sequence at the immunoglobulin κ and T cell

receptor γ regions, that are fully or partially filled in our assembly.

Results

Immune system loci display a spectrum of complexity in the human

reference sequence

We focused on eight genome regions that encode components of the human immune system,

namely those encoding the HLA, immunoglobulins (IGH, IGL, IGK), T cell receptors (TRA,

TRB, TRD, TRG), and the killer-cell immunoglobulin-like receptors (KIR) (Table 1). Regions

were defined based on NCBI RefSeq locus definitions [19] (except HLA and KIR which were

based on previously published gene ranges [20,21]), plus an additional 1Mb flanking sequence

added to both sides (see Methods). In the IGK region we additionally expanded the range to

include a ~1 Mb heterochromatin gap present in GRCh38. The expanded regions range from

2–6 Mb in length and vary considerably in terms of repetitive structure and haplotype diversity

(Table 1). We noted the least reference sequence complexity in the T cell receptor α, δ and γ
regions (which contain < 2% repeat sequence and no listed alternate haplotypes), but greater

complexity in other regions. In particular, the regions encoding immunoglobulin subunits

contain the highest levels of duplication; previous analyses [22,23] have demonstrated signifi-

cant structural diversity among known haplotypes in these regions. GRCh38 also contains doz-

ens of alternative haplotype sequences at the HLA and KIR regions, and four gaps in the IGK

and TRB regions (Table 1). Comparison to the earlier GRCh37 assembly and the presence of

fix patches highlights that these regions are likely to be challenging to assemble.

Assembling immune system regions with long-read, short-read and optical

mapping data

We assessed whether the eight selected regions can be accurately assembled de novo using data

from a single individual identified here as HV31. HV31 was recruited as a healthy volunteer

and identified as having European ancestry. To facilitate accurate assembling of these complex

regions, we generated data from multiple complementary platforms. Specifically, we per-

formed PacBio Sequel II circular consensus sequencing (obtaining 12.3× genome coverage by

~12 kb HiFi reads), MGI short-read sequencing (56.8×) and Bionano Saphyr Direct Label and
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Stain (DLS) optical mapping (152.7× coverage by imaged molecules). In addition, long-read

and short-read sequencing data from PacBio continuous long read (CLR; 35×), Oxford Nano-

pore Technologies (ONT) PromethION (63×), 10x Genomics linked-reads (40.2×), Illumina

Novaseq PCR-free (44.2×), MGI single-tube long fragment read (stLFR) (51.3×) and MGI

CoolMPS (56.9×) platforms were also generated from the same blood sample (S1 Table). To

minimize the impact of cell-specific events including V(D)J recombination and somatic hyper-

mutation and enable accurate assembly of the germline genome, the long-read data used for

our assembly below were collected from CD14+ monocytes isolated from peripheral blood

mononuclear cells (PBMCs) with antibody-conjugated beads (see Methods). Bionano imaging

data, as well as several of our short-read datasets, were generated directly from PBMCs (S1

Table). We note that coverage by PBMC-derived reads drops significantly around T cell recep-

tor genes (S1 Fig), consistent with an effect of V(D)J recombination in T cells which are the

predominant cell type in PBMC. Datasets generated in this study are further detailed in S1

Table and have been deposited with the European Genome-Phenome Archive (Data

Availability).

To generate an accurate representation of the eight regions in the HV31 genome, we devel-

oped an assembly pipeline consisting of four stages (Fig 1A). This approach deals with hetero-

zygosity by producing a consensus assembly of each region, and a list of heterozygous

Table 1. Overview of eight selected immune system loci in GRCh38.

Name Acronym Coordinates and length # core

genes

%

repetitivea
% SDb #

Gapsc
# Alternate

haplotypes

% Novel to

GRCh38d
# Fix

patchese

Immunoglobulin heavy chain IGH chr14

104,586,437–107,043,718

(2.46Mb)

164 6.8 31.1

(0.5)

0 2 44.7 0

Immunoglobulin κ IGK chr2

87,857,361–91,902,511

(4.05Mb)

84 22.7 44.8

(22.7)

3 2 31.5 1

Immunoglobulin λ IGL chr22

21,026,076–23,922,913

(2.90Mb)

89 7.4 34.0

(15.3)

0 3 47.4 0

Human leukocyte antigen HLA chr6

28,602,238–34,409,896

(5.81Mb)

39 2.7 6.5 (1.1) 0 8 0 0

T cell receptor α and δ TRA chr14

20,621,904–23,552,132

(2.93Mb)

115 1.9 3.5 (0) 0 0 37.6 0

T cell receptor β TRB chr7

141,299,011–143,813,287

(2.51Mb)

78 5.3 19.5

(9.0)

1 2 34.2 1

T cell receptor γ TRG chr7

37,240,024–39,368,055

(2.13Mb)

22 1.3 3.1 (0) 0 0 0.2 0

Killer cell immunoglobulin-

like receptors

KIR chr19

53,724,447–55,867,209

(2.14Mb)

10 4.7 12.9 (0) 0 50 47.4 0

a The proportion of repetitive DNA calculated as the proportion of 31-mers that are repeated at least once.
b The percentage of the region that is annotated as lying in a segmental duplication or (in brackets) a highly identical (� 95%) segmental duplication.
c The number of gaps (sequences of ‘N’ bases) in GRCh38.
d The percentage length of contigs that are new to GRCh38, i.e. not carried forward from GRCh37.
e The number of fix patches intersecting the locus in GRCh38 patch release 13.

https://doi.org/10.1371/journal.pcbi.1009254.t001
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structural variants (SVs; Fig 1B and S1 Dataset) that jointly describe the HV31 genome. We

describe the steps of this assembly process and a comparison to other approaches below.

Initial assembly. We used the Canu assembler [25] applied to HiFi reads to produce a

draft whole-genome assembly. We aligned the resulting contigs to GRCh38 and extracted all

contigs that overlap with the predefined regions of interest, hereafter referred to as local con-

tigs, for further processing. Local contigs were highly fragmented (Figs 1C and S2), reflecting

the unusual genomic complexity in these regions. The assembly also contained multiple

shorter contigs (referred to as “haplotigs” below) aligning to the same location as longer con-

tigs in some regions, which either represent assembly errors or genuine differences between

haplotypes (S2 Fig).

Fig 1. Evaluation of HV31 de novo assemblies. (A) Diagram of de novo assembly workflow. Processes and datasets are represented by blocks with square and rounded

corners, respectively. (B) Overview of assembled scaffolds in 8 selected regions. Heterozygous SVs on the unassembled haplotype that are larger than 1 kb in size are

shown as orange diamonds or red triangles. Note that the assembled scaffolds (gray) are often larger than the originally selected immune system regions (blue) defined in

Table 1. (C) Contig/scaffold continuity (NG50, y axis) for local contigs (gray) and finished HV31 assembly scaffolds (red) in each region (x axis). NG50 is defined as the

length of the longest contig/scaffold that, along with longer contigs/scaffolds, covers 50% percent of each locus, as determined by alignment to GRCh38. The size of the

selected region on the GRCh38 reference is also shown. To ensure comparable results, for each contig/scaffold, only the length within region boundaries is taken into

NG50 calculation. (D) The estimated number of errors per megabase in each region, before and after assembly polishing. Error rates are estimated using a modified

version of the Merqury algorithm [24] as described in Methods.

https://doi.org/10.1371/journal.pcbi.1009254.g001
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Scaffolding. We next used the local contigs with Bionano optical imaging data to produce

longer continuous scaffolds. Imaged DNA molecules had an observed mean length of 149 kb,

substantially longer than reads from other datasets involved in this study (S3 Fig). We assem-

bled these molecules using the proprietary Bionano Access software. As expected, the resulting

contigs tended to be substantially longer than those in the draft whole-genome assembly (S4

Fig). We used the Bionano Solve algorithm to align the local contigs to the Bionano-assembled

contigs and implemented a modified version of the BiSCoT algorithm [26] (Methods) to order

and orient the local contigs accordingly. This process also removes or merges in haplotigs that

can be effectively aligned to the hybrid scaffolds. Finally, we confirmed that the remaining hap-

lotigs represented substantial duplication of scaffolded contigs using a k-mer based method

(Methods), and removed these from downstream analysis. The scaffolds generated by this pro-

cess fully covered six of the eight regions with a single scaffold, while the IGL and IGK regions

were assembled with two scaffolds each (Fig 1B and 1C).

Gap filling and polishing. We further improved the assembly quality by carrying out a

gap-closing step (which fills in nucleotide information for missing bases between adjacent con-

tigs in a scaffold) using TGS-GapCloser [27] applied to local HiFi reads, resulting in the closing

of seven gaps. We also implemented a polishing step using Pilon [28] applied to local HiFi and

MGI reads, correcting erroneous bases in the assembly that likely originate from sequencing

errors. To avoid bias due to read selection, for both processes we selected relevant reads using

a double-alignment process that first aligns all reads to the initial whole-genome assembly, and

then realigns the subset of reads mapping to local contigs to the fully scaffolded assembly

(referred to as locally aligned reads below; see Methods). This process left six gaps (i.e.

sequences of ‘N’ bases) in the HV31 scaffolds (Fig 1B); these lie outside regions aligning to

core immune system genes but could potentially be improved with additional processing.

Structural variant calling. We used the available long-read data to call heterozygous SVs

using the HV31 assembly as reference (Fig 1B). In brief, SVs were called separately from locally

aligned HiFi, CLR and ONT long reads using PBSV (for HiFi and CLR) and Sniffles (for HiFi,

CLR and ONT). A computational approach based on unique k-mers [29] was used to refine

read alignment before variant calling (see Methods). Across the eight regions, 1,366 SVs were

reported by PBSV or Sniffles, 491 of which were jointly supported by two or more dataset-soft-

ware combinations (S5 Fig and S1 Dataset; including 179 >100 bp and 23 >1 kb in length), as

reported by SVanalyzer [30], which analyzes the sequence information of each variant and

identifies groups of compatible variants. As these numbers indicate, we observed considerable

discrepancy between the individual SV calling approaches (S6 Fig), reflecting the difficulty of

aligning reads and calling SVs in paralogous regions. As a comparison point, we also created a

dataset of SV calls based on 10x Genomics linked-read sequencing data using the Long Ranger

pipeline (S2 Dataset). We compare these structural variant calling results with the HV31

assembly further below. We also note that six gaps remain in the HV31 assembly (Fig 1B),

which lie outside regions aligning to core immune system genes but could potentially be

improved with additional processing.

We refer to the polished assembly scaffolds and SV dataset generated by these steps as "the

HV31 assembly" hereafter; the assembly is summarized in Fig 1 and compared to the GRCh38

reference in Fig 2 and to other published assemblies in S7 Fig. Benchmarking information of

the assembly pipeline is available as S3 Dataset. As we describe below, the per-base error rate

of these assembled regions is on the order of 5–50 errors per Mb (Fig 1D), which is of a similar

magnitude to recently published whole-genome assemblies based on HiFi data [17,31],

although some structural errors do remain. The HV31 assembly is also comparable in coverage

and continuity to other assemblies (S7 Fig), including to recently published high-quality

assemblies of the homologous CHM13 cell line [29,32].
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Structural variation revealed by comparison to GRCh38

We used k-mer sharing plots (i.e. “dot plots” [33]; S8 Fig) to compare HV31 to the GRCh38

reference sequence (Fig 2). Each point in these plots represents a short sequence of length k

(here k = 50) that is shared by both the reference sequence and the HV31 assembly; the

observed pattern of points therefore provides a visualization of similarities and differences

between the two assemblies. This comparison further suggests that the HV31 assembly is rela-

tively complete for the eight regions, without apparent missing sequence (apart from the six

gaps mentioned above) or chimera sequences. HV31 contains two scaffold breaks at the IGK

and IGL loci; both are located near long (� 100 kb) SDs that are highly identical (� 99%) and

indicate that this type of SD remains challenging for current assembly methods. In contrast,

genomic loci with higher proportions of shorter, low-similarity SDs such as the HLA and KIR

were completely resolved in the HV31 assembly.

Close inspection of these plots (S4 Dataset) reveals many large (� 1 kb) SVs that differ

between GRCh38 and the HV31 primary assembly. To systematically characterize these SVs,

we aligned the assembly to GRCh38 and applied Assemblytics [34]. Assemblytics reported 145

SVs, 55 of which were� 1 kb in size (Fig 1B and S5 Dataset). The majority (65.5%) of the

reported SVs involved expansions or contractions of repeat elements, while the rest were inser-

tions or deletions of unique sequences. The KIR region harbors the highest number (29) of

SVs, followed by IGH (28) and IGK (24) regions.

Validation of assembly accuracy using unassembled sequencing reads

Given that HV31 differs structurally from GRCh38, an important question is how the structure

of our assembly of these regions can be confirmed (or conversely how any remaining errors

can be identified) without reliance on a reference sequence. Motivated by previous work

[24,35], we adopted an approach based on computing the multiplicity of each assembly k-mer

in a validation dataset, which we here take as the set of sequence reads including PacBio HiFi

reads and all short reads from MGI, 10x and Illumina platforms (S1 Table), which were chosen

due to their relatively low error rates (S9 Fig). This dataset has over 150× coverage of k-mers

appearing in both copies of the genome (Fig 3A), and is sufficiently high-coverage that hetero-

zygous k-mers, and k-mers in higher repeat numbers, can be separated from homozygous k-

mers (Fig 3A and 3B). Under the assumption that sequence reads are approximately uniform

across the genome, the multiplicity of each k-mer in the validation dataset should be propor-

tional to the its copy number in the HV31 assembly [36]; any discrepancies therefore indicate

heterozygous variation or assembly errors.

To leverage this, we plotted validation multiplicity in comparison to scaffold multiplicity

across all regions (S10 Fig; illustrated for part of the IGH region in Fig 3C and 3D). The assem-

bly and validation dataset are in generally good agreement at most informative k-mers, (i.e.

relatively few large regions show validation k-mer multiplicity systematically incompatible

with assembly multiplicity), including across several repetitive regions with assembly copy

number systematically greater than 1. We used a similar approach to estimate base-level errors,

which we identified as clusters of k-mers with validation multiplicity < 5 (using k = 22 as rec-

ommended previously [24]; this approach is similar to but more stringent in practice than the

previously published Merqury method [24]; S2 Table and Methods). These errors are relatively

sparse; on average across regions the error rate was 18.1 per 1 Mb sequence (based on

3.16×107 k-mers, of which 8786 (0.0278%) were deemed erroneous; Fig 1D; improved from

85.3 per Mb prior to polishing). However, a number of locations show larger discrepancies

between assembly and validation data (numbered regions in Panel B in S10 Fig; S3 Table). We

examined these in detail and found that many reflect heterozygous structural variants
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(illustrated in Panel A in S11 Fig for a heterozygous deletion, and in Fig 3D for a complex het-

erozygous duplication that we discuss further below) as well as the aforementioned assembly

gaps. However, a small subset of these locations indicate possible structural errors in our

assembly. These include a ~30 kb duplication in the HLA region that we confirmed is incor-

rectly assembled in a single copy (i.e. “collapsed”) in HV31 (Panel B in S11 Fig), as well as

three relatively extensive stretches of elevated multiplicity in the IGK and IGL regions where

we were unable to fully confirm the assembly structure using the k-mer approach (S10 Fig).

We also implemented a comparison to contigs de novo assembled from optical mapping data,

which suggested that several of these regions were correctly assembled (Methods). In general,

this analysis indicates that our assembly of HV31 is substantially accurate apart from three

repeat-rich segments in the IGK, IGL and HLA regions that may still contain errors.

Fig 2. Comparing the HV31 assembly with GRCh38. Main panels show dot plots indicating locations of shared k-mers (k = 50) on the GRCh38 reference (x axis) and

on the HV31 assembly (y axis) for each locus studied. Multiple scaffolds are separated with orange horizontal dashed lines. Plots are annotated as follows: Gene, core

genes of each locus. SegDup, segmental duplications defined as sequence fragments that are� 1 kb in length and� 90% identical to another fragment (segmental

duplications with identity� 99% are highlighted in orange; reference gaps are shown in gray). SV, structural variants detected in the HV31 assembly relative to GRCh38.

Structural variants larger than 1 kb are highlighted in dark red.

https://doi.org/10.1371/journal.pcbi.1009254.g002

PLOS COMPUTATIONAL BIOLOGY De novo assembly to identify structural variation of immune system genes

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009254 August 3, 2021 8 / 28

https://doi.org/10.1371/journal.pcbi.1009254.g002
https://doi.org/10.1371/journal.pcbi.1009254


We note two issues that impede validation by short k-mers. First, accurate measurement of

k-mer multiplicity in highly repetitive regions is challenging; in our assembly this is particu-

larly relevant to three relatively extensive stretches of elevated multiplicity in the IGK and IGL

regions where we were unable to fully confirm the assembly structure using the k-mer

approach (S10 Fig). Secondly, there is a trend towards a drop in coverage of the validation k-

mers in regions encoding T cell receptors (S10 Fig); as discussed above this is due to the use of

DNA from PBMCs for some platforms (S1 Fig). An alternative approach based on coverage of

Fig 3. Reference-free assembly validation based on k-mer multiplicity. (A, B) Histogram of k-mer multiplicity (k = 31) in unassembled reads in the validation dataset.

Vertical lines show locations of distribution peaks; text indicates interpretation of k-mers near these peaks (het., heterozygous; hom., homozygous; CN denotes assumed

true copy number of the k-mer in the diploid HV31 genome). (C) k-mer multiplicity (y axis) plotted against k-mer position for a repeat-rich sequence fragment in the

IGH region of the HV31 assembly. Green, blue and purple colors denote the k-mer copy number in the HV31 assembly scaffolds. Non-specific k-mers that are also

found outside the IGH region are colored gray. (D) validation k-mer multiplicity normalized against assembly copy number for the same sequence fragment as in (C).

To make the y axis center on 1, values are further normalized by dividing by the peak multiplicity of unique homozygous k-mers as shown in panel A. The region of

discrepancy indicates a complex heterozygous duplication around IGHV3-30 that we discuss further below. In (C) and (D), k-mers with multiplicity beyond the axis

limits are stacked at the top of the plots. Panel A and Panel B in S10 Fig show (C) and (D) extended to all eight regions, respectively.

https://doi.org/10.1371/journal.pcbi.1009254.g003
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locally aligned nanopore reads (Panel B in S10 Fig) does not show this drop and confirms the

structure of these regions.

HV31 contains diverse complex immune system structural variants

As detailed above, a nontrivial number of large structural variants exist between GRCh38 and

HV31 as well as between the two haplotypes of HV31. To assess the impact of these SVs on

core genes, we used an alignment process to identify the best-matching allelic variant of each

immunoglobulin and T cell receptor variable gene segment, and each HLA and KIR gene

within the relevant IMGT or IPD database (Fig 4). Relative to GRCh38, the HV31 scaffolds

contain both insertions and deletions of gene sequence in the IGH, IGK, IGL and TRB regions.

It also contains allelic variation in all regions except TRG. We also noted a small number of

genes that differ from the best matching IMGT allele, and may represent novel sequence. We

note that HV31 gene content also differs substantially from the GRCh37 assembly [22].

In interpreting these results, some care must be taken because of the consensus nature of

the HV31 scaffolds, which do not necessarily represent a single haplotype at each locus. To elu-

cidate underlying genetic variation, we investigated the genetic basis of the observed copy

number changes in detail, focusing on the IGH and TRB regions and described in the follow-

ing sections.

A tandem repeat within a 45kb CNV involving IGHV1-69 and IGHV2-70
Variation in the copy number of IGHV1-69 and IGHV2-70 genes has previously been reported

[22]. Both genes are present in two copies in GRCh38. In the HV31 scaffold, we found only

one copy of IGHV1-69 and IGHV2-70 remaining, as the result of a 45 kb copy number con-

traction relative to GRCh38 (Figs 4 and 5A; variant IGH_b_29 in S1 Dataset). The earlier

GRCh37 reference genome shared a similar haplotype in the IGH region, with only one copy

of IGHV1-69 and IGHV2-70 genes. This haplotype has been suggested to be more common

worldwide than the GRCh38 haplotype [14,22] and comparison to validation k-mers indicates

it is homozygous in HV31 (S10 Fig). We noted that this CNV appears to be effectively callable

by aligning reads to GRCh38, e. g. manifesting as a coverage gap in aligned PacBio HiFi reads

(Fig 5B); a co-located deletion was also called by the 10x pipeline, though the endpoints and

length appeared inaccurate (S2 Dataset).

Within this 45 kb CNV, we also noticed a 2.66 kb cluster of tandem repeats with a 59-mer

motif (Figs 5A and S12) that was not correctly assembled in either GRCh37 or GRCh38 (see

GenBank: AC245369.4). Similar repeat clusters have also been reported for CHM1 (from

which the GRCh38 sequence for IGH region was derived) and NA19240 samples, though the

copy numbers of the 59-mer motif varied [15].

A compound heterozygous CNV involving IGHV3-30
A second prominent feature of the IGH region is the loss of one copy of the IGHV3-30 gene.

GRCh38 carries two copies of the IGHV3-30 gene, namely IGHV3-30 and IGHV3-33 [14]. We

find that IGHV3-33 is removed in the HV31 assembly, together with IGHV4-31 (Fig 5C).

However, inspection of Bionano contigs covering this region revealed a further unusual feature

(Fig 5D): one of the two contigs covering this region contains a corresponding three-fold copy

number expansion. To confirm this, we inspected validation k-mer multiplicity in the sur-

rounding area, and observed elevated multiplicity compatible with a 3-fold expansion on the

unassembled haplotype (Fig 3D). As further confirmation we also searched for reads spanning

this region and observed a CLR read consistent with the expanded haplotype (S13 Fig). These

results therefore indicate that the unassembled haplotype carries three copies of the region
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Fig 4. HV31 assembly content of immunoglobulin and T cell receptor variable (V) genes compared with GRCh38. Pseudogenes are not shown. V genes in

each region are arranged according to their relative order on the positive-sense strand. Allelic variants refer to genes where the best-matching HV31 allele differs

from the GRCh38 allele. Insertions refer to genes in the HV31 assembly that cannot be matched to a GRCh38 gene. Alleles with identical sequences, such as

TRBV6-2�01 and TRBV6-3�01, are not distinguished. Alleles that carry additional SNPs compared to the best-matching reference allele are marked with stars. The

sequence fragment between IGK proximal and distal clusters that remains not fully resolved is denoted as a red line.

https://doi.org/10.1371/journal.pcbi.1009254.g004
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surrounding IGHV3-30, such that HV31 carries both a contraction and expansion of this

region, with an overall copy number change that would not be evident from coverage analysis

of reads aligned to the reference sequence. This observation is also compatible with previous

work [22] which reports this region as a hotspot for SVs, with the diploid copy number of

IGHV3-30 and related genes ranging from zero to six. This CNV was not called accurately by

any of the SV calling methods we employed (S1, S2 and S5 Datasets).

Fig 5. IGHV genes feature highly variable copy numbers. (A) Collapsed repeats (i.e. repeats incorrectly assembled in a single copy; red arrows) in GRCh38 were

resolved in the HV31 assembly inside a 45 kb copy number contraction (i.e. reduction in copy number of a repeat unit relative to GRCh38, shaded in grey). (B) Pileup of

HiFi reads aligned to GRCh38. The 45 kb CNV was evident from the uncovered central region. The resolved repeats were shown as alignment breakpoints (orange) or

insertions (purple) within the aligned segments (gray). Nearby short deletions (red) were also evident. (C) k-mer sharing plot (k = 50) showing complex structural

variations found between IGHV3-21 and IGHV3-43, including a 25 kb copy number contraction (i.e. reduction in copy number relative to GRCh38 of a repeat unit;

blue) and an 80 kb complex duplication event (orange). (D) Alignment patterns of HV31 assembly and two Bionano contigs covering the region shown in (C). The four

rows show the HV31 assembly (green horizontal bars) and two Bionano contigs (blue horizontal bars). Vertical/diagonal grey lines between HV31 and the Bionano

contigs show alignments of DLE-1 recognition markers; alignments are computed by the Bionano Solve algorithm based on inter-marker distances. The relevant marker

positions are indicated by vertical lines inside the contigs (colored dark blue for aligned markers and yellow for markers that were not aligned). The alignment patterns

indicate that Bionano contig 2 contains an expansion consistent with the triplication of the region highlighted in blue. Black numbers indicate the approximate repeat

units and relevant inter-marker distances are annotated above the contigs.

https://doi.org/10.1371/journal.pcbi.1009254.g005

PLOS COMPUTATIONAL BIOLOGY De novo assembly to identify structural variation of immune system genes

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009254 August 3, 2021 12 / 28

https://doi.org/10.1371/journal.pcbi.1009254.g005
https://doi.org/10.1371/journal.pcbi.1009254


An 80 kb complex duplication involving multiple IGHV genes

HV31 carries additional copies of IGHV1-38, IGHV3-43, IGHV4-38 and IGHV3-38 genes

compared to GRCh38, that are contained in a ~80 kb duplication with complex structure (Fig

4 and Fig 5C). Inspection of k-mer multiplicity data implies this duplication is homozygous

(S10 Fig). However, this duplication was not called by any of the methods we used to call SVs

(S1, S2 and S5 Datasets). We interpret this as resulting from difficulty in aligning the two

sequences; consistent with this, we observed that the HiFi reads in this region displayed suspi-

cious alignment patterns when mapped to GRCh38, which were improved when mapped to

the HV31 assembly (S14 Fig).

Large insertions incorporating novel TRBV genes

In the TRB region, we detected a ~11 kb homozygous insertion near TRBV6-2 and another

~19 kb insertion near TRBV5-7 (Fig 6A). Both are supported by Bionano contigs (Fig 6B), and

both insertions incorporated sequence fragments that are not found in GRCh38, with limited

homology to adjacent sequences (Fig 6A). Comparison to k-mer validation again implies both

insertions are homozygous. Assemblytics identified duplications at both locations but with

inaccurate length and sequence content (S5 Dataset). The HV31 scaffold was consistent with

an alternative contig for the TRB locus included in GRCh38 (RefSeq NG001333.2; S15 Fig). By

comparing NG001333.2 with GRCh38, we confirmed that the 11 kb insertion introduced

TRBV4-3 and TRBV6-2 genes and a TRBV3-2 pseudogene, while the 19 kb insertion intro-

duced the TRBV6-9, TRBV7-8 and TRBV5-8 genes (Figs 6 and S15).

Fig 6. Large insertions in the TRB region. (A) HV31 harbors a 11 kb insertion (blue) and another 19 kb insertion (green) relative to GRCh38. (B) A Bionano contig

(blue) aligned to GRCh38 (green), confirming the two insertions in (A).

https://doi.org/10.1371/journal.pcbi.1009254.g006

PLOS COMPUTATIONAL BIOLOGY De novo assembly to identify structural variation of immune system genes

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009254 August 3, 2021 13 / 28

https://doi.org/10.1371/journal.pcbi.1009254.g006
https://doi.org/10.1371/journal.pcbi.1009254


Reference gaps amidst complex segmental duplications resolved in the

HV31 assembly

In addition to the complexities engendered by structural variation, gaps in the reference

genome constitute another potential impediment to the analysis of genetic variation. Large

gaps typically arise due to highly repetitive sequence that is challenging to assemble (e.g. het-

erochromatin regions that often consist of megabase-scale tandem satellite repeats), and their

functional significance remains largely unexplored [37].

We were therefore interested to note that the HV31 assembly closes three large gaps in the

GRCh38 assembly, and partly closes a fourth. Three of these gaps lie in the IGK region (S16

Fig), while the fourth lies within a 400 kb region of high-identity segmental duplications [38]

~1Mb downstream of TRB genes (S17 Fig). We here focus on the largest such gap, a ~1 Mb

gap annotated as heterochromatin in GRCh38, located between the distal cluster of IGK genes

and the centromere of chromosome 2 (S18 Fig). Examination of this gap revealed a ~650 kb

sequence assembled as an array of approximately 115 imperfect tandem copies of 6 kb repeat

units (Panel A in S19 Fig). Most of the repeat units contain a 22-bp signature sequence

(TTCGATTCCATTTGATGATTCCAT), indicating that the heterochromatin sequence

belongs to the human satellite HSat2B family [37].

Notably, the assembled heterochromatin sequence also contains a nonrepetitive sequence

fragment within the assembled heterochromatin sequence (Panel B in S18 Fig). This 32 kb

fragment appears unique to the region, sharing no significant homology with either the rest of

the heterochromatin region nor any part of GRCh38. The heterochromatin sequence does not

contain the recognition motif of DLE-1 (CTTAAG) used in generating optical maps, and we

were therefore unable to directly confirm the arrangement using Bionano contigs, though a

marker corresponding to the 32 kb unique sequence could be identified (Panel C in S18 Fig).

We compared the HV31 assembly with the recently reported T2T CHM13 assembly [32]

(GenBank: GCA_009914755.2), where the IGK region is fully reconstructed in one contig. The

corresponding heterochromatin sequence in the T2T CHM13 assembly is consistent with the

HV31 assembly in terms of total length and repeat unit sequences, though the specific order

and orientation of these repeat units differ (S19 Fig). This is of interest because it potentially

reflects the structural variability in this heterochromatin region. A similar 32 kb unique

sequence is also found in the T2T CHM13 assembly, though at a different location (Panel B in

S19 Fig). In addition, we found this 32 kb fragment, along with 76.8 kb flanking sequences,

was over 90% identical to a 108.8 kb unplaced sequence (GenBank: AP023554.1; Panel D in

S18 Fig) assembled recently from individuals of Japanese ethnicity [39]. Similar ’islands’ of

unique sequence amid heterochromatin regions have previously been suggested for chromo-

some Y [40] and chromosome 21 [41].

Eleven heterochromatin gaps remain in GRCh38, with estimated sizes ranging from 20 kb

to 30 Mb, and only the largest heterochromatin gap in chromosome X has been resolved in the

form of a de novo assembly so far [29]. The resolved heterochromatin sequence for chromo-

some 2 in the HV31 assembly may provide insight into other problematic heterochromatin

regions.

Discussion

Genetic regions encoding the human immune response are among the most important for

medical science, harboring determinants of both infectious and immune-mediated diseases.

Despite this, the complex structure and diverse nature of many of these loci has hindered

assessment of their contribution to health in large-scale genetic studies. Resolving this will

likely require the creation of reference haplotype variation datasets linked to genome function.
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The greatest progress in this direction has been made for inference of HLA alleles [42–45] and

to a lesser extent KIR alleles [46] based on large databases of known gene sequences. More

recent approaches have used targeted long-read sequencing to characterize immunoglobulin

variation [15]. However, much functional genetic variation affecting core immune system

genes is still to be discovered and made accessible to larger studies. The decreasing cost and

improving performance of long-read sequencing technologies suggests a possible route to this

through the de novo assembly of representative individual genomes, although computational,

cost, and analytic challenges remain in practice.

In this study, we contribute to this program by assembling eight of the most complex

immune system regions in a single healthy European individual identified as HV31, who was

recruited as part of a larger study of genomic and transcriptomic variation in immune cell

types. To do this, we based our assembly on DNA extracted from CD14+ monocytes, allowing

us to assess the germline haplotype configurations in the immunoglobulin and T cell receptor

regions. We exploited accurate PacBio HiFi data for the initial assembly, and used optical map-

ping data to scaffold the assembled contigs, followed by additional gap closing and polishing

steps (Fig 1). Alongside this, we also developed a set of methods to validate assembly correct-

ness using available datasets. Although some structural errors do remain—and might be

resolvable with future work based on the breadth of data we have generated here–our results

suggest we have produced an essentially correct representation of the regions reported here,

with some caveats that we have noted. Our assembly thus adds to growing numbers of refer-

ence-quality assemblies that can be utilized in these regions [15,23,47,48] and to the catalogue

of known alleles at these loci. The sequencing data and finished assemblies generated in this

study have also been deposited at the European Genome-Phenome Archive (Data Availability)

for future use.

An ideal description of a diploid sample would involve two fully assembled contigs for

every somatic chromosome, each representing one of the two inherited haplotypes. This

approach is sought by several emerging experimental and computational approaches [48–51].

Generating a phased assembly inevitably involves a trade-off among cost, phasing accuracy

and assembly continuity, which is further complicated by the presence of large high-identity

duplications [51]. Given the limited depth of HiFi reads in our data (S1 Table), we instead

chose to represent the HV31 genome as a set of consensus (i.e. mixed-haplotype [52]) scaffolds

supplemented with a list of heterozygous variants (S1 Dataset). This is a pragmatic approach

which also simplifies downstream analysis as the assembly can be directly used in place of a

reference genome without additional preparation.

Fully assembling regions containing long, complex repeat structures from shotgun

sequencing remains a challenging problem; any approach must somehow distinguish reads

coming from different repeat copies but identify those that truly overlap–while allowing for

sequencing errors. Exemplifying this challenge, our assembly of the IGK region fills a hetero-

chromatin gap in GRCh38 that largely consists of high copy-number repeats but also contains

unique sequence (S18 Fig). Direct confirmation of the assembled structure of IGK is difficult

using our data and may require further experimental methods to achieve, but our assembly of

this region is compatible with other recently reported assemblies. The fact that most of the

repetitive regions within the loci studied here are correctly assembled is of interest in itself, as

it implies that the repeats are old enough (or divergent enough) to be effectively distinguished.

Given the high diversity observed in these regions it is unsurprising that HV31 carries

structural variants which make it differ from current genome builds and from other previously

reported samples. Some of the variation we have identified in HV31 has previously been asso-

ciated with phenotypes—for example, copy number polymorphism of IGHV1-69 is known to

strongly correlate with the prevalence of this gene in expressed antibody repertoires, which is
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preferentially used in antibodies against certain influenza strains and the HIV-1 virus [7].

However, we have also highlighted extensive variant haplotypes that have not previously been

reported. The degree of variation observed in this single sample indicates that much haplotype

variation of immunoglobulins and T cell receptor regions remains to be discovered. It is also

notable that many of the more complex variants we have identified are not accurately called by

the variant calling methods we employed (S1, S2 and S5 Datasets). but this is also an area of

active development [17,30,53]. The costs associated with current long-read platforms remain

high, but if this can be overcome (e.g. through further improvements in throughput or targeted

sequencing approaches [15]) then these methods will become applicable to larger samples,

enabling a full catalogue of haplotype variation in these important regions to be generated.

Methods

Ethics statement

HV31 was recruited as a healthy volunteer under approval by the Oxfordshire Research Ethics

Committee (COREC reference 06/Q1605/55). The donor provided written informed consent

for the use of their blood in research.

Software

Bioinformatics software and algorithms used in this study are summarized in S4 Table.

DNA extraction, sequencing and optical mapping

Blood sample of a healthy female donor of European ancestry identified as HV31 was used in

this study. For PacBio HiFi and CLR sequencing, Oxford Nanopore sequencing, 10x linked-

read sequencing and MGI stLFR linked-read sequencing, the DNA was extracted from CD14+

monocytes isolated from PBMC using CD14 antibody-conjugated beads (Miltenyi Biotec).

DNA extraction was performed with QIAGEN MagAttract HMW DNA kit following manu-

facturer’s instructions, with slight adaptations. In brief, 220 μl Buffer ATL and 20 μl Proteinase

K were added to a suspension of 1×106 CD14+ monocytes. The mixture was incubated over-

night at 56˚C, shaking at 900 rpm to lyse the cells. The lysate was then processed according to

manufacturer’s instructions for the purification of high-molecular-weight genomic DNA from

tissue.

For MGI standard short-read, MGI coolMPS and Illumina PCR-free sequencing, the DNA

was extracted from PBMC with NEB Monarch Genomic DNA Purification Kit (T3010) follow-

ing manufacturer’s instructions. Library preparation, sequencing and optical mapping were

performed following the instructions of the respective platform providers.

Region definition

Eight genomic regions encoding key components of the human immune system, including

HLA, IG, TCR and KIR were selected for investigation (Table 1). Each region was defined as a

core range in GRCh38 that contained genes related to immune system components, with addi-

tional flanking sequences added to both sides. The core range were typically selected based on

the respective reference sequences in the NCBI RefSeq database [19]. As exceptions, the core

range of the HLA region was defined as the genomic range from GABBR1 to KIFC1 genes

[20], and the KIR region was defined as the genomic range from KIR3DL3 to KIR3DL2 genes

[21]. The flanking sequence was typically 1 Mb on either side. As exceptions, the telomeric

flanking sequence in the IGH region was limited to 164 kb by the length of chromosome 14. In

PLOS COMPUTATIONAL BIOLOGY De novo assembly to identify structural variation of immune system genes

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009254 August 3, 2021 16 / 28

https://doi.org/10.1371/journal.pcbi.1009254


addition, we expanded the centromeric flanking sequence in the IGK region by 0.67 Mb to

bridge a 1 Mb heterochromatin gap present in GRCh38.

GRCh38 annotations

The GRCh38 segmental duplication, alternative haplotypes and fix patches annotations were

downloaded from the UCSC Table Brower [54] based on the genomicSuperDups, altSeqLiftO-

verPsl and fixSeqLiftOverPsl datasets, respectively.

Whole-genome de novo assembly

Canu v1.9 [25] was used to perform whole-genome de novo assembly for HV31 based on Pac-

Bio HiFi reads, with the following parameters: -pacbio-hifi <FASTQ> genome-

Size = 3235000000 -minInputCoverage = 1 -stopOnLowCoverage = 1. The resulting contigs

were mapped to GRCh38 using minimap2 [55] with the following parameters: -ax asm5—

secondary = no. Contigs that mapped to the 8 loci of interest were extracted as local contigs.

For comparison, Peregrine [56] was also used to generate a whole-genome de novo assembly

for HV31 based on PacBio HiFi reads, with the following parameters: python

<peregrine_script> asm<FASTQ_list_file> 16 16 16 16 16 16 16 16 16—with-consensus.

Hybrid scaffolding and haplotig removal

Hybrid scaffolding was performed using Bionano Solve, a proprietary software provided by

Bionano Genomics (https://bionanogenomics.com/), with default parameters. We used a cus-

tom script based on BiSCoT [26] to improve the contiguity and quality of the resulting scaf-

folds. Specifically, we merged adjacent contigs in a scaffold if they overlap with each other, as

inferred from shared enzymatic labelling sites or sequence alignment. If the two adjacent con-

tigs were expected to be non-overlapping, they were joined with a gap (i.e. a sequence of “N”

bases) between them, the size of which was estimated based on the distance of nearest labelling

sites. In addition, we incorporated shorter contigs into longer ones if the shorter contig repre-

sented a subsequence of the longer contig, and aligned better with the Bionano genome maps.

After scaffolding, we removed duplicated contigs or scaffolds that presumably represent

alternative haplotypes (’haplotigs’) using a custom k-mer based method. In brief, we listed all

unique 22-mers for each contig or scaffold and compare these sets of 22-mers in a pairwise

manner. If a shorter contig had more than 80% of unique 22-mers shared with a longer contig,

then the former was considered as a haplotig and removed from the assembly.

Read mapping

Sequencing reads from each locus of interest were required for various purposes including gap

closing, polishing, error rate estimation and assembly validation based on alignment coverage

and patterns. In order minimize reference bias, we first mapped the reads from each sequenc-

ing dataset using minimap2, and then extracted reads that mapped to contigs that represent

each locus of interest [48]. The extracted reads were again mapped with minimap2 to the scaf-

folded or finalized assembly as appropriate for specific applications.

A unique k-mer anchoring method [29] was used to improve the mapping of long reads in

repetitive regions. In brief, given a set of locus-specific reads and a corresponding reference

sequence, we first defined a set of anchoring k-mers for each locus of interest. Only k-mers

that appeared to be unique in both short read sequencing datasets (31�multiplicity� 231)

and the reference sequence (copy number = 1; no occurrence outside the locus) were selected

as anchoring k-mers. Then, we mapped the reads to the reference with minimap2 using
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parameters -n 50 -r 10000, which enabled the output of up to 50 alignments for each read, with

gap sizes up to 10 kb in each alignment. An optimal alignment for each read were was then

selected based on the number of bases shared with the reference that were part of an anchoring

k-mer. These selected alignments were pooled into a new BAM file, after filtering out align-

ments that were shorter than 5 kb. The resulting BAM file were used for polishing and refer-

ence-free alignment validation.

Gap closing and polishing

Gap closing was performed using TGS-GapCloser v1.0.1 [27] with PacBio HiFi reads.

Sequencing reads were first mapped to the whole genome assembly produced by Canu, which

enabled locus-specific read extraction. The extracted reads were used as input for TGS-Gap-

Closer, which was executed using the following parameters: -ne—tgstype pb—g_check. Polish-

ing was performed using Pilon [28] with HiFi reads and MGI paired-end short reads extracted

in a similar manner. The default parameters were used. For clarity, the finalized scaffolds were

displayed and coordinated based on the relative order and orientations of the corresponding

sequence in GRCh38 in visualization steps.

Error rate estimation and reference-free assembly validation

Jellyfish [57] was used to count the multiplicity of each k-mer (k = 22 or 31) from a pooled

FASTQ dataset of PacBio HiFi, MGI standard short-read, MGI CoolMPS, MGI stLFR linked

read, 10x Linked-Read and Illumina PCR-free sequencing platforms (S1 Table), with the fol-

lowing parameters: jellyfish count -m<k> -s 30G —min-qual-char "?" -C. The accumulated

sequencing depth of the pooled FASTQ dataset was 262×. In each read, k-mers that include

bases with base quality < 20 were excluded. For error rate estimation, k-mers (k = 22) in the

HV31 assembly with multiplicity < 5 were classified as erroneous k-mers, and clustered by

their positions in the assembly, allowing a maximum of k—1 correct k-mers between two adja-

cent erroneous k-mers in each cluster. The number of erroneous k-mer clusters per Mb assem-

bled sequence was used as an indicator of the error rate of the HV31 assembly.

For reference-free assembly validation, we define the normalized multiplicity (N) of each k-

mer (k = 31) in the HV31 assembly as N = M / (C × D), where M is the multiplicity of that k-

mer in the validation dataset, C is the copy number of that k-mer in the HV31 assembly, and

D is the mode multiplicity of unique homozygous k-mers in the validation dataset, as esti-

mated from the k-mer multiplicity histogram (Fig 3A). The normalized k-mer coverage was

visualized against the position of the k-mer, along with the normalized coverage of ONT reads

aligned to the assembly using the k-mer anchoring method. Regions where the normalized k-

mer coverage or normalized ONT coverage deviated from 1 were labelled and inspected for

potential assembly errors (S3 Table).

Variant calling

PBSV (https://github.com/PacificBiosciences/pbsv), a subprogram of SMRT tools was used to

call heterozygous SVs from HiFi and CLR reads with default parameters. Sniffles [58] was used

to call heterozygous SVs from HiFi and CLR and ONT reads with the following parameters: -s

3 -q 20—ccs_reads—min_het_af 0.2 (HiFi), -s 8 -q 20—min_het_af 0.2 (CLR), or -s 15 -q 20—

min_het_af 0.2 (ONT). Unique k-mer anchoring was applied prior to SV calling. SVmerge, a

subprogram of SVanalyzer [30] was used to cluster and merge SV records from output VCF

files of PBSV and Sniffles, with default parameters. SV calling from 10x data was performed

using Long Ranger (https://support.10xgenomics.com/genome-exome/software/pipelines/

latest/what-is-long-ranger) and GATK [59], with the following parameters: longranger wgs—
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id<sample_id>—fastqs<FASTQ_directory>—reference<GRCh38_path>—localcores = 24

—localmem = 383 –vcmode<GATK_path>—disable-ui.

Allelic variant detection

Reference variant sequences of IGHV, IGKV, IGLV, TRAV, TRDV, TRBG and TRGV genes

were downloaded from the IMGT reference directory [60] (http://www.imgt.org/download/

V-QUEST/IMGTV-QUESTreference_directory.zip). Reference variant sequences of HLA

genes were downloaded from the IPD-IMGT/HLA database [61] (ftp://ftp.ebi.ac.uk/pub/

databases/ipd/imgt/hla/fasta/hla_gen.fasta). Reference variant sequences of KIR genes were

downloaded from the IPD-KIR database [62] (ftp://ftp.ebi.ac.uk/pub/databases/ipd/kir/fasta/

KIR_gen.fasta). The reference gene variant sequences were mapped to GRCh38 or the HV31

assembly using minimap2 with the following parameters: -a -w1 -f1e-9. We extracted subse-

quences in regions where at least one reference gene was mapped, with 20 bp flanking

sequence at either side. These query sequence fragments were submitted to NCBI IgBLAST

[63] (for IGHV, IGKV, IGLV, TRAV, TRDV, TRBV and TRGV genes) or NCBI BLAST+ [64]

(for HLA and KIR genes) to search for matching sequences in the relevant databases, with

default parameters. The top hit variant with the highest match score returned by NCBI

IgBLAST or NCBI BLAST+ were assigned to each query fragment. Query fragments shorter

than the top hit variant were considered to represent partial alignment and discarded.

Supporting information

S1 Fig. Depth of coverage of sequencing reads across platforms and regions. For each

sequencing platform (colored lines, with platforms as in S1 Table), the plot shows the depth of

coverage of reads aligned to GRCh38 across the eight selected regions (Table 1). Depths are

normalized by the average depth across each region for each dataset. Areas with apparent sys-

tematic lower depth in the TRA, TRB and TRG regions are highlighted with black triangles.

Datasets generated with DNA from CD14+ monocyte and PMBC are denoted with solid and

dashed lines, respectively. Decrease of sequencing depths is not identified in immunoglobulin

regions, presumably due to the relatively low fraction (5–15%) of B cells in PBMC. Despite

γδ T cells being rarer than α/β T cells, the coverage drop around T cell receptor γ genes can be

explained by the fact that the γ locus is known to undergo rearrangement in most α/β T cells

[65], and the drop around T cell receptor δ genes can be explained by the fact that any rear-

rangement at the α locus leads to the loss of the δ locus.[66]

(PNG)

S2 Fig. Whole-genome assembly contigs aligned to GRCh38 in each of the 8 selected loci.

Each row represents one local contig extracted from the draft whole-genome assembly (Fig

1A) by alignment to GRCh38 using minimap2 (Methods). The x axis reflects GRCh38 coordi-

nates across each of the selected regions (Table 1).

(PNG)

S3 Fig. Read/molecule length distribution of PacBio HiFi, PacBio CLR, ONT and Bionano

optical mapping datasets involved in this study. Red and grey vertical lines denote the N50

(i.e. the maximal length such that reads/molecules longer than this length cumulatively

account for at least 50% of the total length of reads/molecules in the dataset) and mean read/

molecule length for each dataset, respectively.

(PNG)

S4 Fig. Comparison of contig lengths and counts of Bionano DLE-1 markers. (A,B) Num-

ber of DLE-1 labels (y axis) plotted against contig length (x axis) for draft whole-genome
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assembly contigs (panel A) and Bionano contigs (panel B). For reference, gray vertical and

horizontal lines in panel A denote 50 kb length and 10 DLE-1 labels, respectively. (C) Cumula-

tive length of contigs (y axis) containing at least the given number of DLE-1 labels (x axis) is

shown for whole-genome assembly contigs (orange) and Bionano contigs (blue). For refer-

ence, the gray vertical line denotes 10 DLE-1 labels.

(PNG)

S5 Fig. Comparison of insertions and deletions identified by alignment-based structural

variant calling methods. Bars show the number of insertions (blue) and number of deletions

(red) identified by each combination of method and sequencing data (x axis) after aligning

reads to the HV31 assembly as described in main text and Methods. SVs are classified as inser-

tions or deletions according to whether the alternative haplotype is longer or shorter than the

HV31 haplotype. For comparison, the number of SVs called by multiple methods, as identified

by SVanalyzer, is indicated by shading.

(PNG)

S6 Fig. Concordance of structural variants called by various methods. Each row shows

the fraction of variants called by the corresponding method (y axis), that are also called by

the method in the relevant column (x axis). Concordance of SVs is as determined by SVanaly-

zer.

(PNG)

S7 Fig. Comparison of published assemblies and alternative assembly methods in the eight

selected regions. Each row visualizes the alignment pattern of the corresponding assembly

with GRCh38 as the reference. Duplicate contigs (i.e. shorter contigs that align within the span

of a longer contig) and contig breaks (identified as endpoints of non-duplicate contigs) are

shown in cyan and orange respectively, with regions of the GRCh38 reference that are not cov-

ered by the aligned assembly contigs denoted by red lines, according to the legend. Each

assembly is labeled in the following order: publication, sample, key algorithms, key technology

(with OM denoting optical mapping and Hi-C denoting the Hi-C chromosome conformation

capture approach) and haplotype (N, not haplotype-resolved; M, maternal haplotype; P, pater-

nal haplotype; H1, haplotype 1; H2, haplotype 2; CHM, complete hydatidiform mole). Rele-

vant publications are: T2T 2021 [32], Chin 2016 [49], Koren 2018 [67], Nurk 2020 [31], Miga

2020 [29], Shafin 2020 [68], Kolmogorov [69], Garg 2021 [16], Ebert 2021 [17]. Genes and seg-

mental duplications are annotated above as in Fig 2.

(PNG)

S8 Fig. Schematic examples of sequence duplications and structural variations demon-

strated with k-mer sharing plots. Each panel shows a schematic of the expected pattern visu-

alized on the k-mer sharing plots, given the pattern of sequence duplication or structural

variant indicated by the panel label. For clarity, specific sequences are labelled as follows: X, Y

and Z denote sequence fragments that are different from each other, and Y’ denotes the reverse

complement of Y. In each panel, the reference sequence is depicted on the x axis and the alter-

nate sequence is depicted on the Y axis. The size of each structural variant can be estimated

from the distance between relevant breakpoints on the plot.

(PNG)

S9 Fig. Error rate estimation of PacBio HiFi and various short read datasets involved in

this study using GenomeScope. The histogram of k-mer (k = 22) multiplicity in each dataset

is shown, after scaling multiplicity values (x axis) and k-mer numbers (y axis) so that the peak

of unique homozygous k-mers in each dataset overlap at x = 1, y = 1. Numbers in brackets
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show the estimated per-base error rate of each dataset as estimated using GenomeScope [35].

(PNG)

S10 Fig. Assembly validation based on k-mer multiplicity. (A) For each k-mer (k = 31) that

appears in the HV31 assembly, the multiplicity of that k-mer in the validation dataset (y axis)

is plotted against the position of that k-mer (x axis), colored by the copy number of that k-mer

in the HV31 assembly as shown in the legend. (B) the normalized k-mer multiplicity (y axis),

defined as ratio of validation k-mer multiplicity to assembly k-mer multiplicity computed

using the values shown in (A), plotted against the position of that k-mer (x axis). Values are

further normalized by dividing by the peak multiplicity of unique homozygous k-mers as

shown in Fig 3A, such that these kmers are expected to lie near y = 1. k-mers that found both

inside and outside the given regions are considered noninformative and are shown in gray.

Orange lines show ONT read coverage depth normalized to the genome-wide average cover-

age depth (63×).

(PNG)

S11 Fig. Detecting heterozygous SVs and assembly errors from k-mer multiplicity and cov-

erage depth patterns. (A) A 63.9 kb heterozygous deletion in the HLA locus is revealed by

reduced ONT coverage depth (orange) and validation k-mer multiplicity (k = 31; blue) appear-

ing at normalized multiplicity close to 0.5. (B) A collapsed duplication in the HLA locus is

revealed by elevated ONT coverage depth (orange) and validation k-mer multiplicity (blue)

appearing at normalized multiplicity close to 2. k-mers that found both inside and outside the

IGH region are considered noninformative and are shown in gray. In (A) and (B), k-mers with

multiplicity beyond the axis limits are stacked at the top of the plots.

(PNG)

S12 Fig. GRCh38 and GRCh37 represent different IGH haplotypes. (A) k-mer sharing plot

(k = 50) comparing GRCh37 and GRCh38 in the IGH region. Similar to HV31, GRCh37 has

only one copy of IGHV1-69 and IGHV2-70 genes. The unresolved repeats are highlighted

with red arrows. Gray shade marks the position of the 45 kb CNV in HV31 relative to GRCh38

(see Fig 3A). (B) Schematic representation of GRCh38, GRCh37 and HV31 near IGHV1-69
and IGHV2-70 genes. Fragment R denotes the unresolved duplication which was assembled in

HV31.

(PNG)

S13 Fig. A compound heterozygous CNV involving IGHV3-30. k-mer sharing plot (k = 20)

comparing the CLR read with ID 92801871/034335 (y axis) with the HV31 assembly (x axis).

The read is consistent with the presence of a three-copy unassembled haplotype as described

in main text and Fig 5D. Each copy of the repeat unit is annotated with a number and an

arrow for clarity.

(PNG)

S14 Fig. Misalignment resulting from large structural rearrangements in the IGH locus.

(A) k-mer sharing plot (k = 50) comparing the HV31 assembly (y axis) with GRCh38 (x axis),

detailing the 80 kb insertion between IGHV3-37 and IGHV7-40 highlighted in orange in Fig

5C. The insertion introduces extra copies of several gene fragments as annotated above. The

region further inspected in panels (B) and (C) is highlighted in blue. (B) Alignment patterns of

HiFi reads (rows) to GRCh38 (x axis) in the region highlighted in panel A. Grey bars denote

aligned segments, with deletions and insertions denoted in red and purple respectively. Orange

vertical lines indicate alignment breakpoints (i.e. alignments are clipped or split at these

points). (C) Alignments of HiFi reads (rows) to HV31 (x axis) in the same region. The complex
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pattern of insertions, deletions and read clipping in panel (B) arise from between-copy mis-

alignments that are largely resolved when aligning to HV31.

(PNG)

S15 Fig. The HV31 assembly is consistent with NCBI RefSeq NG_001333.2. k-mer sharing

plot (k = 50) comparing the HV31 assembly (y axis) with the NG_001333.2 contig from NCBI

RefSeq (x axis). TRBV genes not included in GRCh38 are highlighted in green.

(PNG)

S16 Fig. Three gaps flanked by high-identity repeats were filled in the HV31 assembly. (A)

k-mer sharing plot (k = 50) comparing GRCh38 (x axis) with the HV31 assembly (y axis). The

2.56 Mb scaffold and the 1.97 Mb scaffold in the HV31 assembly are shown in blue and green,

respectively. Coverage of ONT reads aligned to GRCh38 is displayed above, and the proximal

and distal clusters are annotated. Gaps in GRCh38 are shaded in gray. Novel sequence junc-

tions in the HV31 assembly are annotated with red arrows. Sequence fragments of which extra

copies were introduced in the HV31 assembly to fill in the gaps between IGK proximal and

distal gene clusters in GRCh38 are highlighted in yellow; corresponding read coverage peaks

confirm increased genome multiplicity of these fragments. (B) Alignment of Bionano contigs

(blue) to the 2.56 Mb scaffold in the HV31 assembly (green). DLE-1 labels and their align-

ments are denoted by colored lines within and between scaffolds) as described in Fig 5D leg-

end; note that all gray alignment lines connect the HV31 scaffold to each of the Bionano

contigs (no between-Bionano alignments are shown). The approximate sequence region that

maps to the GRCh38 gaps between IGK proximal and distal gene clusters is shaded in gray.

For clarity, corresponding positions in the HV31 assembly in panels (A) and (B) are labelled

with red arrows. (C) Alignment of BioNano contigs (blue) to the 1.97 Mb scaffold in the HV31

assembly (green). Approximate sequence region that maps to the GRCh38 heterochromatin

gap is shaded in gray.

(PNG)

S17 Fig. A 50 kb GRCh38 gap flanked by segmental duplications closed in the HV31

assembly. (A) k-mer sharing plot (k = 50) comparing the chr7_KZ208912v1_fix patch

sequence (y axis) with GRCh38 (x axis), highlighting the genomic position corresponding to

the 140 kb inversion in the HV31 assembly (green region) and a 50 kb gap in GRCh38 (gray

region) which is closed in the HV31 assembly. (B) The HV31 assembly (x axis) is consistent

with chr7_KZ208912v1_fix sequence (y axis) except for the 21.9 kb gap (brown) and the 140

kb inversion (green).

(PNG)

S18 Fig. The heterochromatin gap in the IGK locus was filled with 650 kb complex repeat

sequence. (A) k-mer sharing plot (k = 50) comparing the HV31 assembly with itself in the

IGK heterochromatin region. Purple lines show the occurrence of a 22 bp HSat2B repeat sig-

nature sequence (TTCGATTCCATTTGATGATTCCAT). A 32 kb unique sequence fragment

is highlighted in blue. (B) Details of k-mer sharing plot in panel (A), zoomed to reveal details

of the unique sequence fragment and repeat structure. (C) Comparison of HV31 contigs and

Bionano contigs as in panel C in S16 Fig, zoomed in to show that the 32 kb unique fragment

(blue shaded region) contains a DLE-1 recognition label that was confirmed by Bionano con-

tigs. (D) k-mer sharing plot (k = 50) comparing the HV31 assembly (y axis) with the GenBank

AP023554.1 contig (x axis). For reference, the orange box in panels A, B and D denote approx-

imately the same region.

(PNG)
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S19 Fig. Comparison of the HV31 and the T2T CHM13 assemblies in the IGK region. (A)

k-mer sharing plot (k = 50) comparing the HV31 assembly (y axis) with the T2T CHM13

assembly (x axis) in the IGK region. The 2.56 Mb scaffold and the 1.97 Mb scaffold in the

HV31 assembly are shown in blue and green, respectively. (B) k-mer sharing plot as in panel

(A), zoomed in to show details of the heterochromatin region. The assemblies contain similar

sequence in the heterochromatin region, but with some differences including in the position

of the unique sequence (highlighted with a red arrow) as noted in main text.

(PNG)

S1 Table. Summary of sequencing and genome mapping datasets. Table shows the name,

cell type, genome coverage estimated by alignments to GRCh38, and read length statistics for

each dataset generated in this study.

(PDF)

S2 Table. Comparison of original and modified Merqury error rate estimation results.

Table shows per-base error rate estimates for local scaffolds and the finished HV31 assembly

(Fig 1A) using the Merqury algorithm, and the modified algorithm described in Methods and

Fig 1D legend. As described in Methods, the key difference is that we estimate based on clus-

ters of kmers with low validation coverage and this produces slightly higher estimates in prac-

tice than the Merqury method.

(PDF)

S3 Table. Potentially problematic regions in the HV31 assembly as identified from k-mer mul-

tiplicity. Table shows details of locations where validation k-mers show discrepancy from expecta-

tion (as numbered in S10 Fig) and our conclusion about the region. For each region, the table lists

the relevant assembled region (Table 1), number as shown in S10 Fig, type of evidence we have

inspected to provide additional evidence, and our conclusion about the cause of discrepancy.

(PDF)

S4 Table. Detail of bioinformatics tools used in this study.

(PDF)

S1 Dataset. List of structural variants reported by SVanalyzer. Table shows structural vari-

ants detected by applying pbsv and sniffles to the long-read sequence reads aligned to the

HV31 assembly, as output by SVanalyzer and described in main text and methods. Columns

reflect the region, scaffold, position and identifier of the SV, the assembly and alternate alleles,

and the genotypes assigned by each combination of long-read dataset and SV calling method.

(TSV)

S2 Dataset. Structural variants detected by the 10x Genomics Long Ranger pipeline.

Table reflects SVs identified by 10× Long Range pipelines applied to 10× reads aligned to the

GRCh38 reference sequence in the eight selected regions (Table 1). Columns show the region,

GRCh38 chromosome, position and identifier of the SV, followed by the GRCh38 allele and

the alternate allele. The last column reflects detailed information including SV type (deletion

or insertion) and length, as output by the Long Ranger pipeline.

(TSV)

S3 Dataset. Benchmarking information of the assembly pipeline. Table provides a summary

of computational resources used for each step in our assembly pipeline (Fig 1A). Columns

reflect an identifier for the pipeline step, bioinformatics tool used, the total number of pro-

cesses run, the average time taken per job, the number of cores allocated to each job and the
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average memory used per job (computed as the maximum over the lifetime of the job).

(XLSX)

S4 Dataset. k-mer sharing plots (k = 50) comparing the HV31 assembly with GRCh38 in

each of the eight regions of interest. Plots provide further detail of regional k-mer sharing

plots shown in Fig 2, with details as described in Fig 2 legend and main text. In the IGK and

IGL regions, colors reflect the distinct HV31 scaffolds.

(ZIP)

S5 Dataset. Structural variants between GRCh38 and the HV31 assembly detected by

Assemblytics. Table shows the output of Assemblytics applied to GRCh38 and HV31 in each

region as described in main text and Methods. Columns show the region, chromosome and

position in GRCh38, SV identifier, the identified type of the SV, details of the SV length and

the matching coordinates in HV31.

(TSV)
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