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Modular fluorescence complementation sensors
for live cell detection of epigenetic signals at
endogenous genomic sites

Cristiana Lungu’, Sabine Pinter!, Julian Broche', Philipp Rathert! & Albert Jeltsch® '

Investigation of the fundamental role of epigenetic processes requires methods for the
locus-specific detection of epigenetic modifications in living cells. Here, we address this
urgent demand by developing four modular fluorescence complementation-based epigenetic
biosensors for live-cell microscopy applications. These tools combine engineered
DNA-binding proteins with domains recognizing defined epigenetic marks, both fused to
non-fluorescent fragments of a fluorescent protein. The presence of the epigenetic mark at
the target DNA sequence leads to the reconstitution of a functional fluorophore. With this
approach, we could for the first time directly detect DNA methylation and histone 3 lysine
9 trimethylation at endogenous genomic sites in live cells and follow dynamic changes in
these marks upon drug treatment, induction of epigenetic enzymes and during the cell cycle.
We anticipate that this versatile technology will improve our understanding of how specific
epigenetic signatures are set, erased and maintained during embryonic development or
disease onset.
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pigenetic modifications such as DNA methylation and post-

translational modifications of histone proteins are critical

contributors to the reprogramming and maintenance
of cellular states during development or disease. Although they
do not alter the primary DNA sequence, epigenetic marks
regulate chromatin functions including gene expression, in a
dynamic and genomic context-specific manner! ™. Centromeric
mouse major satellites and human o-satellites are archetypical
spots of constitutive heterochromatin where DNA cytosine-C5
methylation (5mC) and tri-methylation of lysine 9 on histone H3
(H3K9me3) are enriched’. In diseases such as cancer repetitive
sequences including heterochromatic DNA repeats, dispersed
retrotransposons, and endogenous retroviral elements, become
frequently hypomethylated, while CpG islands of tumor
suppressor genes often gain DNA methylation® 7. Hence, a
deeper understanding of the molecular functions and biological
roles of epigenetic marks requires the sequence-specific investi-
gation of these signals. Furthermore, since the epigenetic land-
scape is highly dynamic during cellular differentiation and
pathological development, a meaningful interpretation of
epigenetic signaling cascades can only be obtained by combining
the static information on the locus-specific status of epigenetic
marks with a real-time readout of their changes.

A comprehensive understanding of epigenetic signaling
cascades is hindered by the lack of methods that enable a dynamic
and targeted readout of epigenetic modifications in living cells at
the level of endogenous loci. Affinity-based enrichment methods
are frequently employed to map the genome-wide distributions of
5mC and histone modifications® ° but these procedures require
cell lysis, thereby providing only a snapshot of the dynamic
epigenetic landscape and obstructing information on cellular
physiology. In histological sections, locus specific readout of
histone marks has been addressed in a proximity ligation assay by
combining antibody detection of the epigenetic mark with

fluorescence in situ hybridization (FISH) for locus resolution!.
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Alternatively, 5mC readout was achieved by coupling FISH with
5mC-specific crosslinking of the probe with osmium tetroxide!!.
Nevertheless, both of these methods provide only a static
snapshot of the epigenetic state and require harsh chemical
treatment, which makes them incompatible with live-cell
applications. To assess the status of epigenetic marks in live
cells, fluorophore-coupled affinity probes for real-time tracking of
epigenetic modifications were used'>"1>. However, all
these microscopic tools are currently restricted to imaging
only global changes of the targeted epigenetic modification and
have no DNA sequence resolution.

To overcome these methodological limitations, we engineered an
epigenetic detection method for dynamic and direct readout
of locus-specific epigenetic signals in live mammalian cells
using modular fluorescence complementation-based BiAD (Bimo-
lecular Anchor Detector) sensors consisting of anchor modules for
programmable sequence-specific  DNA binding and detector
domains for chromatin mark recognition. Readout of the signal was
based on bimolecular fluorescence complementation (BiFC)1®.

With this approach, we could for the first time to the best
of our knowledge, directly detect locus-specific changes of
pericentromeric 5mC and H3K9me3 levels in living cells. The
BiAD sensors are specific, modular and robust, and can be used
in various combinations and different cell types. We anticipate
that these versatile tools will set the basis for a better under-
standing of epigenetic signaling cascades that occur during cel-
lular development, re-programming, response to drugs or
pathological changes.

Results

Sensor design. To achieve a specific readout of target epigenetic
modifications with genomic locus resolution, we designed a set of
modular BiFC-based sensors (Fig. 1). These consist of an anchor
module, for DNA sequence-specific recognition, and a detector
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Fig. 1 Design concept and experimental validation strategy of the BiAD sensors. a An anchor domain (shown in orange) is used to recognize a specific
genomic locus (shown as orange line) and a detector domain (shown in purple) is employed for the recognition of a target epigenetic modification

(shown as lolly pop). Both proteins are fused to the non-fluorescent VenN and VenC parts of mVenus. The position of the chromophore is schematically
indicated with a star within the VenN part. When the targeted DNA sequence is methylated, the two domains will bind in close spatial proximity, leading to
the reconstitution of a functional mVenus fluorophore. This can be visualized by fluorescence microscopy. b If the detector module is deactivated by a
mutation in the 5mC-binding pocket, or the sensor is expressed in cells with reduced 5mC levels, no fluorescence complementation signal is observed.

c Overview of the sensors designed during the course of this study
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Fig. 2 Development and validation of the BiAD sensor 1. a Representative fluorescence microscopy image of the BiFC signal (yellow channel) generated
upon transfection of the BiAD sensor 1in iIMEF cells. A plasmid encoding NLS-mRuby2 was used to identify transfected cells (red channel). b Representative
fluorescence microscopy images documenting co-localization of the BiFC signal with DAPI stained major satellite DNA (upper panel) and 5mC marks
detected by co-transfection of the sensor modules with MBD-Cerulean (lower panel). ¢ Representative fluorescence microscopy images documenting
the 5mC specificity of the BIAD sensor. The BiFC signal was lost with the MBD R44Q 5mC-binding pocket mutant (left) and in cells with globally reduced
DNA methylation levels (right). A plasmid encoding NLS-mRuby2 was used to identify transfected cells (red channel). The transfection, imaging and
display settings of the images shown in panels a, ¢ are identical. d Quantification of the experiments representatively shown in panels a-c. The error bars
represent the s.e.m. for two biological repeats (for details cf. Methods and Supplementary Tables 1, 6, and 7). All cells were fixed at 48 h after transfection.

Scale bar for all images is 10 um

module, which specifically binds to defined chromatin
modifications. Previously validated Zinc-finger, TAL effector and
CRISPR-dCas9 systems were employed as anchor modules with
high-sequence specificity!’?" and the MBD of MBDI1?!' and
chromodomain of HP1??> were used as detector modules for
5mC and H3K9me3. Both the anchor and detector modules were
fused to the non-fluorescent N- and C-terminal fragments of
monomeric Venus®> 24, If the target locus carries the epigenetic
modification of interest, binding of the anchor and detector
modules in close spatial proximity leads to the reconstitution of a
functional Venus fluorophore, which emits a stable fluorescent
signal that can be microscopically tracked (Fig. 1a). The depen-
dence of the different biosensors generated here on their target
chromatin modifications was tested by employing binding pocket
mutations in the detector module, as well as cell lines with
globally reduced levels of the investigated epigenetic marks. In
both control settings, the stable docking of the detector module
on chromatin was expected to be impaired, and efficient fluor-
ophore reconstitution should be strongly reduced (Fig. 1b). An
overview of the sensors developed in this work is provided in
Fig. Ic.

BiAD 1 specifically reads 5mC at major satellites. To
establish the BiAD sensor system, we initially focused on the
detection of 5mC at mouse major satellite repeats®>. These
pericentromeric loci are archetypical sites of 5mC enrichment
and form highly abundant tandem repeat arrays that localize into
distinguishable 4',6-diamidino-2-phenylindole (DAPI)-dense foci
(Supplementary Fig. 1a). We adapted a zinc finger (ZF) protein
that was previously used to visualize the 5'-GGCGAGGAA-3’
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motif within mouse major satellite repeat sequences!”> 26 27,

Upon transfection into NIH3T3 cells, the ZF-Venus fusion
showed complete overlap with DAPI staining (Supplementary
Fig. 1a). This localization pattern is in agreement with previous
reports and confirms the sequence specificity of the anchor
module!”> 7. To detect the 5mC mark, the fluorophore-fused
MBD of MBD1 was used. This protein was previously employed
for specific tracing of methylated DNA in cultured cells and for
generating a 5mC mouse reporter model'? 28 It has been
documented to show a high 5mC specificity both in vitro and
in vivo, combined with minimum cellular toxicity'> 2732,
Moreover, biochemical work indicated that the protein is able to
bind double stranded methylated DNA in different sequence
contexts>>. As expected, in pilot experiments with Venus fused
MBD we observed an accumulation of the fusion protein at
DAPI-dense heterochromatic foci in transfected mouse fibroblats
(Supplementary Fig. 1b). Furthermore, in co-transfection
experiments, a clear co-localization between the anchor and the
detector module (each fused to a full fluorophore) was observed
(Supplementary Fig. 1c). This indicates that compacted hetero-
chromatin can be accessed by both proteins and there is no
evident competition of the two modules for binding sites.

For BiAD sensor 1, the anchor and detector modules were
fused with non-fluorescent complementary fragments of Venus to
set up a BiFC system where detectable fluorescence can occur if
both parts approach each other at intermolecular distances as low
as 10 nm®*, This dramatically improves the resolution with which
the epigenetic mark can be detected. After ensuring that fusion to
the split Venus fragments did not negatively affect the
localization, and thus the specificity, of the anchor and detector
modules (Supplementary Fig. 2a, b), we co-transfected both
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Fig. 3 Development and validation of the BIAD sensor 2. a Representative fluorescence microscopy image showing that BiAD sensor 2 gives rise to distinct
BiFC signals in HEK293 cells. NLS-mRuby2 was used as transfection control. b Co-localization of the BiFC signal with the TALE protein fused to mRuby2
documents the high-DNA specificity of the BiAD sensor. ¢ Loss of the BiFC signal when the R44Q MBD variant was used as a detector module confirms the
5mC specificity of the BIAD sensor. d Quantification of the experiments representatively shown in panels a-c. The error bars represent the s.e.m.

for two biological repeats (for details cf. Methods and Supplementary Tables 2, 6, and 7). All cells were fixed at 48 h after transfection. Scale bar for

all images is 10 um

domains in mouse cells. We observed strong BiFC with a high
signal to background ratio in both live and fixed cells indicating
that the sensor has an excellent reconstitution yield (Fig. 2a and
Supplementary Figs. 2, 3, and 4). Overall, we robustly detected
strong BiFC signals in around 90% of the transfected cells
(Fig. 2d). Since we did not observe a negative effect of cellular
fixation on the BiFC signal (Fig. 2a vs. Supplementary Fig. 3a), we
moved on with analyzing the performance of the BiAD sensor in
fixed cells.

Co-localization of the BiFC signal with DAPI foci validated the
DNA sequence specificity of the sensor (Fig. 2b, upper panel). To
prove the 5mC specificity of the tool, we have co-transfected the
BiAD detector modules with MBD-Cerulean as a marker for
5mC. We observed that the BiFC signal was formed only at sites
also bound by MBD-Cerulean (Fig. 2b, lower panel). Altogether,
these results show that the sensor can be used for direct
imagining of 5mC on the targeted DNA sequence in live as well
as fixed cells.

To further confirm the 5mC specificity of the complementation
signal, we have next inactivated the methyl-binding pocket in the
MBD detector module by exchanging the conserved R44 residue
in the 5mC-binding hydrophobic patch to Q, which prevents
5mC binding®. In contrast to the WT construct, the R44Q
variant showed a predominantly diffuse nuclear localization with
no enrichment at DAPI foci, in line with its loss of 5mC binding
(Supplementary Fig. 5a). This pattern was maintained upon
fusion of the detector module with the Venus C-terminal
fragment (Supplementary Fig. 5b, c¢). When the MBD R44Q
variant detector domain was used in the BiFC assay, we observed
a dramatic reduction in the intensity of the reconstituted
fluorescence signal in live as well as fixed mouse fibroblasts
(Fig. 2¢, d and Supplementary Figs. 3b, 6). Importantly, this was
not due to the altered stability of the MBD R44Q variant, as both
the wild-type and the mutant displayed comparable expression
levels (Supplementary Fig. 5¢). These results indicate that a fully
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functional MBD domain is essential for productive fluorescence
reconstitution in the context of the BiAD sensor. Furthermore,
they clearly document that the formation of BiFC signals depends
on the stable and specific docking of both BiAD modules to
chromatin and it is not caused by random associations between
the diffusing detector modules and the chromatin bound anchor
modules.

As a last validation for the specificity of the BiAD sensor
we employed Dnmtl”~ iMEF cells, which have a stronglgr
reduced DNA methylation at the targeted genomic sites
Indeed, transfection of MBD-Venus into this cell line gave rise
to a predominantly diffuse localization pattern, although
pericentromeric heterochromatin foci where intact as indicated
by DAPI staining (Supplementary Fig. 7a). This change in
localization was a direct effect of the 5mC reduction and not of
chromatin reorganization (Supplementary Fig. 7b). In line
with this, transfection of the BiAD sensor into Dnmt1”~ iMEFs
led to low levels of fluorescence reconstitution, while normal
BiFC levels were observed in Suv39DKO cells. The drop of
the BiFC signal observed in the Dnmtl”~ iMEFs was similar
to what was obtained when the 5mC-binding deficient MBD
R44Q variant was used as a detector module (Fig. 2¢, d and
Supplementary Figs. 3b, 8, 9). Altogether, these results indicate
that the BiAD sensor 1 can be used to directly visualize the status
of 5mC at repetitive sequences in murine cells.

BiAD 2 specifically reads 5mC at human a-satellites. To study
the chromatin of human cells we developed BiAD sensor 2
detecting 5mC at centromeric alpha-satellite sequences>®.
By taking advantage of the modularity of the BiAD sensor, we
could integrate the validated 5mC detector module into the
human sensor (Supplementary Fig. 10). As anchor module, we
used a TALE protein already demonstrated to specifically
recognize the pan-centromere target sequence 5-TAGACA-
GAAGCATTCTCAGA-3"18. The localization of the split-
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Fig. 4 Visualization of DNA methylation changes using BiAD sensor 2. a Representative fluorescence microscopy images documenting that strong BiFC signals
are formed upon transfection of the BIAD sensor 2 into HCT116 WT cells (top). In contrast, very low fluorescence reconstitution was observed in DNMT1
hypomorphic HTC116 cells that have globally reduced methylation levels (bottom). A plasmid encoding for NLS-mRuby2 was used to identify transfected cells.
b The BiFC signals were rescued in the DNMT1 hypomorphic HTC116 cells by the exogenous expression of active DNMT1 (top) but not of catalytically inactive
DNMT1 (bottom). € Quantification of the experiments representatively shown in panels a, b. d Time course of DNA demethylation by treatment of HEK293 cells
with 5-aza-dC and recovery. In each sample, the BiAD sensor was transfected 2 days before the cells were fixed for imaging. e Quantification of the experiments
representatively shown in panel d. Error bars in all images represent the s.e.m. for two biological replicates (for details cf. Supplementary Tables 2, 6, and 7). Scale
bar for all images is 10 um. The imaging and display setting of the BiFC images shown in panels a, b, and d are identical. In panel d the contrast of the mRuby2
channel was increased to enhance the visibility of transfected cells. This was done with the same settings for all time points

fluorophore fused TALE protein was identical to the pattern
obtained for TALE-Venus (Supplementary Fig. 11b). This indi-
cates that the split-fluorophore does not change the DNA
sequence specificity of the anchor device and that the extensive
validation of this DNA-binding protein'® can be extrapolated to
the split Venus fusion used in BiAD sensor 2 (Supplementary
Fig. 1la). No BiFC signal was detectable when the split
fluorophore-fused anchor module was transfected alone in
HEK293 cells (Supplementary Fig. 11c). Unlike in mouse cells,
the pericentromeric heterochromatin of human cells is not
organized in DAPI-dense structures’’. Accordingly, the 5mC
detector module displayed a fine granular pattern in HEK293
cells. This was independent of whether the MBD was expressed as
a full-fluorophore or a split-Venus fusion (Supplementary
Fig. 10a vs. b) and it is comparable with the patterns previously
observed after 5mC antibody staining in this cell line®®. The
localization of the MBD R44Q variant was diffuse with occasional
enrichment in nucleoli (Supplementary Fig. 10).

Since the efficiency of the BiFC signal was shown to be sensitive
to local steric hindrances'®, several variants of the sensor were
designed with the VenN and VenC fragments fused at either the
N- or C- terminus of the MBD and TALE and with a longer linker
separating the TALE from the fluorophore. Transfection of these
variants in HEK293 cells resulted in BiFC signals with strikingly
different yields (Supplementary Fig. 12). In general, a fluorescent
signal was only obtained when the detector module was fused with
the C- terminus of Venus (Supplementary Fig. 12¢ vs. d). The lack
of BiFC signal formation of the VenN-MBD fusions could not be
attributed to mis-folding or delocalization, as immunofluorescence
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images showed a granular nuclear localization of all split-
fluorophore fusions similar as with the full fluorophore-fused
domain (Supplementary Figs. 12a, 10). Based on its high signal-to-
noise ratio, the TALE-VenN and MBD-VenC pair was selected for
all further experiments (Fig. 3a). Remarkably, this optimized BiAD
sensor 2 resulted in strong Venus reconstitution in circa 75% of
the transfected cells (Fig. 3d). The punctuate and virtually
background-free BiFC signal observed in HEK293 cells upon co-
transfection of the anchor/detector modules highlights the
advantage of the BiAD approach over co-localization methods
such as immunofluorescence-FISH (Supplementary Fig. 13a vs. b).

We next co-transfected the BiAD sensor together with TALE-
mRuby2 and observed a strong correlation of the BiFC and red
fluorescence signals (Fig. 3b) validating the DNA sequence
specificity of the BiAD sensor. To evaluate the 5mC-dependence
of the reconstituted fluorescence signal, we used the MBD R44Q-
binding pocket mutant and observed a fivefold reduction in the
number of transfected cells that showed a BiFC signal (Fig. 3¢, d
and Supplementary Fig. 14). These results demonstrate that the
newly developed BiAD sensor 2 is specific for the detection of the
5mC mark at alpha satellites in human cells.

BiAD 2 detects locus-specific changes in 5mC levels. To
investigate dynamic changes in 5mC level with the BiAD 2 sensor
the HCT116 DNMT1 hypomorphic cells were used, which
contain a truncated DNMT1 with reduced activity and were
shown to have a 20% decrease in the global levels of DNA
methylation®*~#!, Target bisulfite amplicon-based next generation
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Fig. 5 Development and validation of the BiAD sensor 3. a Representative fluorescence microscopy image showing strong and sequence-specific BiFC
signal obtained with BIAD sensor 3. The locus-specificity of the BiFC signal was validated by co-transfecting the BIAD modules with a red fluorophore-
tagged dCas9. b Loss of BIFC signal in the absence of the cognate sgRNA. ¢ Loss of BiFC signal with the R44Q MBD mutant. d Quantification of the
experiments representatively shown in panels a-c. e Representative fluorescence microscopy images documenting the changes in the intensity of the BiFC
signal after a three-day 5-aza-dC treatment of sensor-transfected HEK293 cells. f Quantification of the experiments representatively shown in panel e.
Error bars in all images represent the s.e.m. for two biological replicates (for details cf. Supplementary Tables 3, 6, and 7). All cells were fixed at 48 h after
transfection. Scale bar for all images is 10 um. The imaging and display settings of the images shown in panels a-c and within e are identical

sequencing revealed a 40% reduction in the levels of DNA
methylation near the TALE-binding site in the HCT116 DNMT1
hypomorphic cell line, clearly indicating that this cell line is a
suitable model system for testing the sensitivity of the BiAD
sensor 2 (Supplementary Fig. 15). Similar to HEK293 cells, strong
and specific BiFC signals were observed in HCT116 WT cells
carrying an intact DNMT]1 protein (Fig. 4a, c). This was in stark
contrast to the fourfold reduction in the number of cells showing
a strong and spotty BiFC signal in the hypomorphic cell line
(Fig. 4a, c). This result confirms the direct dependence of the
BiAD sensor on the presence of the 5mC mark and its response to
changes within a physiological range.

Next, we co-transfected catalytically active DNMT1 together
with the BiAD 2 modules into the DNMT1 hypomorphic cells
(Fig. 4b). Expression of all proteins and methylation recovery was
allowed to proceed for 2 days before the cells were imaged. Under
these conditions, a threefold increase in the number of cells
showing a strong spotty BiFC signal was observed (Fig. 4c).
Importantly, no signal increase was observed when the catalyti-
cally inactive DNMT1 C1226A variant was used (Fig. 4b, c).

6
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We next aimed to monitor changes of 5mC levels at the target
loci upon drug treatment. To this end, HEK293 cells were treated
with 5-aza-2'-deoxycytidine (5-aza-dC), an established inhibitor
of DNA methylation (Supplementary Fig. 16a)*2. No obvious
localization differences of the TALE-Venus anchor module were
observed in mock or 3-day 5-aza-dC-treated cells (Supplementary
Fig. 16b). As expected, the localization of the MBD WT and R44Q
variant did not detectably change in human cells upon 5-aza-dC
treatment (Supplementary Fig. 16c). We next co-transfected the
BiAD modules in mock and drug-treated HEK293 cells and
traced the recovery of DNA methylation for 2 weeks after
removing the inhibitor by performing serial transfections with the
detector modules (Fig. 4d, e). A strong decrease in the BiFC signal
was observed after 3 days 5-aza-dC treatment, which was still
detectable 2 days after drug removal (Fig. 4e). However, 7 days
after drug removal increasing levels of methylation were
visualized with the BiAD sensor followed by a further increase
after 2 weeks of recovery (Fig. 4e). A comparable re-methylation
kinetics was previously observed for Alu-repeats*’, Further
control experiments showed that the signal changes observed
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with the BiAD sensor were independent of changes in chromatin
organization caused by the 5-aza-dC treatment (Supplementary
Fig. 17). This observation indicates that the fluorescent signal
produced by the BiAD sensor 2 arises through the binding of the
BiAD modules next to each other on chromatin and it is not
caused by three-dimensional (3D) reconstitution events, which
would be strongly affected by the global chromatin structure.

BiAD 3 detects changes in 5mC levels at Chr9 o-satellites. To
further increase the locus specific resolution of our detection
system we wused the programmable Sp-dCas9 protein,
together with a single guide (sg) RNA previously employed for
specific targeting of a pericentromeric sequence located only on
human chromosome 9'°. Upon transfecting the dCas9-Venus
fusion together with the sgRNA in HEK293 cells, we consistently
observed 2-4 bright foci in each cell nucleus (Supplementary
Fig. 18), which is in line with the polyploidy of these cells**. Next,
the dCas9 protein was fused to VenN and used as anchor domain,
together with the MBD-VenC detector module (BiAD sensor 3).
Co-transfecting these BiAD modules gave rise to bright BiFC
signals that fully co-localized with red fluorescent foci observed
after triple cotransfection with dCas9 fused to three copies of
mCherry (dCas9-3*mCherry) (Fig. 5a). The BiFC signal was
completely dependent on the presence of the sgRNA (Fig. 5b).
The 5mC-specificity of the novel sensor was validated using the
MBD R44Q mutant detector module. With the MBD mutant we
observed a 15-fold decrease in the number of cells forming strong
and spotty fluorescent signals (Fig. 5c, d and Supplementary
Fig. 19). To evaluate the dynamic range of the novel BiAD sensor
3, we used 5-aza-dC to induce global DNA demethylation in the
HEK293 cells. After 3 days of drug treatment, we observed a
ten-fold decrease in the number of strong BiFC-positive
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cells (Fig. 5e, f). Importantly, this decrease in fluorescence
reconstitution was not due to mis-targeting of the dCas9
upon drug treatment, as the localization of the co-transfected
dCas9-3*mCherry marker did not change. These data clearly
demonstrate that dCas9 efficiently functions as BiAD anchor
module.

BiAD 4 detects changes in H3K9me3 levels at major satellites.
To develop a BiAD system to monitor histone tail marks at
specific genomic loci, we focused on the detection of hetero-
chromatic H3K9me3, which is introduced by the SUV39H1 and
SUV39H2 protein lysine methyltransferases*> and abundantly
decorates facultative and constitutive heterochromatin®. For
DNA sequence recognition in the BiAD sensor 4, we used the ZF
targeting mouse major satellite repeats. To detect H3K9me3, the
chromo domain of HP1p (HP1CD) was selected, which retains
the high H3K9me3-binding affinity of the full length protein*’
while lacking the SUV39Hl-interacting chromoshadow
domain®®, The H3K9me3 specificity of this detector was
confirmed by H3K9me3 antibody stain in WT (Supplementary
Fig. 20a) and Suv39DKO iMEF cells (Supplementary Fig. 21a, b),
which were in agreement with previous studies using the full
length HP1p protein®’. Consistent with the unaltered geometry of
DAPI-dense chromocenters in the Suv39DKO cells reported
previously®®, the anchor module maintained its spotty localiza-
tion (Supplementary Fig. 21b). Adapting the chromo domain into
the BiAD sensor by fusion with the C- terminus of Venus did not
influence protein localization (Supplementary Fig. 20b).

The new detector module was combined with the ZF anchor for
locus-specific H3K9me3 detection. Several versions of the two
modules were generated, where the position of the split Venus
fragment was shuffled relative to the two domains. While BiFC
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Fig. 7 Real-time visualization of DNA methylation levels on major satellite repeats with BiAD sensor 1. a Live-cell imaging of cells stably expressing the
BiAD sensor 1 modules. The time points at which images were taken are annotated. The panels are centered on the cell that undergoes mitosis during the
imaging interval. To facilitate visualization, this cell was marked with a dotted circle. The imaging and data display conditions are identical between the
shown time points. b Representative phase contrast-fluorescence channel overlay images during the 5-aza-dC DNA demethylation treatment of the
cell line stably expressing BiAD sensor 1. To facilitate visualization, the BiFC signal was pseudo colored. The imaging and data display conditions are
identical between the three panels of the composite image. ¢ Quantification of the experiments representatively shown in panel. Error bars represent s.e.m.
for two biological replicates (for details cf. Supplementary Tables 6 and 7). Scale bar for all images is 10 um

signals were visible for all tested combinations, the ZF-VenN and
VenC-HP1CD pair displayed the highest signal-to-noise ratio and
was, therefore, selected for further applications (Supplementary
Fig. 22). The modification and DNA sequence-specificity of
the novel BiAD sensor was confirmed by H3K9me3 and DAPI co-
staining (Fig. 6a). Remarkably, despite the higher mobility of
histone tails, approx. 85% of the transfected cells displayed a
strong BiFC signal (Fig. 6c). This was comparable to what was
obtained for the 5mC readout at these sites and documents the
general applicability of BiAD sensors. To further validate
the H3K9me3 specificity of this sensor, we have exchanged the
conserved W42 residue within the HP1 chromodomain to A to
generate a detector domain that is deficient in H3K9me3
binding®!. In line with this, transfection of either Venus or
VenC-tagged HP1CD W42 domain into murine cells revealed that
the W42A variant no longer localizes to mouse chromocenters
(Supplementary Fig. 23a, b). Subsequent BiFC assays with BiAD
sensor 4 using HP1CD W42A as a detector module revealed a
dramatic drop in the percentage of cells that showed a strong,
spotty BiFC signal (88% vs. 2%) (Supplementary Fig. 23c, d).
Altogether, this series of validation experiments underlines the
high DNA sequence and H3K9me3 specificity of BiAD sensor 4.

To detect locus-specific changes of H3K9me3 levels, we
transfected the modules into the Suv39DKO iMEF cells, lacking
both methyltransferase enzymes involved in setting pericentro-
meric H3K9me3°2. A strong 15-fold decrease in the number of
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cells showing a specific BiFC signal was observed (Fig. 6¢ and
Supplementary Fig. 24a). As a control, we used the 5mC-specific
BiAD sensor 1, but did not observe differences between WT and
Suv39DKO iMEFs, in line with an unaltered DNA methylation in
the Suv39DKO iMEEF cells (Supplementary Fig. 9a, b). Altogether,
these results underscore the specificity of the novel BiAD sensor
and indicate that this tool can be used to detect the reduction in
H3K9me3 levels in a sequence-specific manner.

To detect an experimentally induced gain in H3K9me3 at these
sites, we generated stable Suv39DKO iMEF cells, in which the
expression of either WT or catalytically inactive (H324L)
SUV39H1® is induced by addition of doxycycline (dox)
(Supplementary Fig. 24b). Four days after induction, an increase
in the global H3K9me3 levels was detected in total lysates
obtained from WT but not H324L SUV39HI-expressing cells
(Supplementary Fig. 24c). Remarkably, these changes in
H3K9me3 levels could be traced in a locus-specific manner in
live cells with the BiAD sensor 4, which revealed a tenfold
increase in H3K9me3 signal 4 days after induction of the
catalytically active SUV39H1 (Fig. 6b, c). In contrast, only a
minor increase in BiFC signal was observed in the absence of dox
(Fig. 6b) or after induction of the inactive SUV39H1 H324L
variant (Fig. 6b, c). These data clearly demonstrate that the novel
BiAD sensor can be used to specifically readout increasing
H3K9me3 levels at major satellite repeats in live cells.
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Cell-cycle readout of 5mC levels with BiAD 1. To follow
changes in the levels of epigenetic marks in real time, we have
generated NIH3T3 cells in which the modules of BiAD sensor 1
were genomically integrated and stably expressed (Supplementary
Fig. 25a, b). In line with the heavy DNA methylation of peri-
centromeric heterochromatin, live-cell imaging of replicating cells
revealed a strong BiFC signal on major satellites throughout the
cell cycle (Fig. 7a). The detection of DNA methylation marks on
mitotic centromeres agrees with the clustering of pericentromeric
chromatin in mitosis and with published MBD localization
data'?. This result indicates that major satellite repeats are heavily
methylated in all major stages of the cell cycle and that BiAD
sensor 1 can be used to visualize the 5mC status of the target
DNA sequences even when these are embedded in highly
condensed mitotic chromatin structures. Moreover, the fact that
the constant expression of the biosensor did not appear to perturb
cell division documents the low cytotoxicity of this tool.

Real-time readout of 5mC with BiAD 1 upon drug treatment.
To visualize drug-induced DNA methylation changes in real time,
the cells that stably expresses the BiAD sensor 1 were imaged
before 5-aza-dC treatment, 5 days after drug addition and 1 day
after drug removal (Fig. 7b). Impressively, with this set-up we
could observe a drastic drop in the percentage of cells displaying
BiFC signals from circa 90% before 5-aza-dC treatment to around
6% on day 5 of the treatment (Fig. 7c). Imaging performed 24 h
after drug removal revealed a rapid recovery of the BiAD
fluorescence, with around 50% of the cells displaying BiFC
signals. Altogether, these experiments highlight the applicability
of stably expressing BiAD cell lines for the locus-specific tracking
of DNA methylation changes in single cells.

Discussion

The temporal order of epigenetic changes during the morpholo-
gical and functional alterations of cells, as well as the dynamic
connection between different epigenetic signals and changes in
cellular physiology and morphology are key aspects that have
remained mysterious so far. This is due to the lack of methods
that enable a dynamic and locus-specific readout of epigenetic
modifications inside the nucleus of living cells at the level
of endogenous loci. In the present work, we addressed this
urgent and unmet technological demand by developing several
novel BiFC-based epigenetic biosensors for live-cell microscopy
applications. With this toolbox, we were able for the first time
to directly and specifically detect the status of 5mC and
H3K9me3 signals at endogenous genomic sites. Furthermore, we
could follow dynamic changes in these marks upon drug
treatment, induction of epigenetic enzymes and during the cell
cycle. As demonstrated, our technology facilitates the live-cell
observation of epigenetic changes, thereby providing the
possibility to directly correlate alterations in the epigenetic
landscape with modifications in the cellular morphology and
physiology.

In our work, several critical functional properties of BiAD
sensors were studied. The fact that the BiFC signal is not
dramatically altered as the cells progress throughout the cell cycle
although their chromatin is massively reorganized from
interphase to mitosis supports the notion that the BiFC signal
arises from BiAD modules primarily binding next to each other at
one genomic locus and not from association of the modules
through 3D space. This is in agreement with results of chromo-
somal conformation studies documenting that genomic loci next
to each other on the linear genome have a much higher prob-
ability to interact than more distant loci or loci located on dif-
ferent chromosomes®*. In line with this, addition of trichostatin A
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(TSA) to induce genome wide chromatin decondensation did not
lead to significant changes in the intensity of the BiFC signals at
the resolution of our measurements. Still, we cannot fully exclude
that the BiFC signal partially arises from contacts formed in 3D
through chromatin loops.

Our observation that BiAD sensor 1 remains associated
with the mitotic apparatus as revealed by live-cell imaging with
constitutively expressing cells, indicates a continuous binding of
the sensor to chromatin. On the other hand, the finding that the
cells are able to proceed through cell division suggests that the
modules are able to transiently dissociate from chromatin during
DNA replication.

To our knowledge, these novel sensors are the only
tools available to date that enable visualization of epigenetic
modifications with locus-specific resolution in the nucleus of
living cells. Recently, another live-cell method was developed that
uses the expression of a genomically inserted fluorescent reporter
gene to measure the methylation state of the promoter adjacent
DNA®°, This method depends on the genetic modification of the
target locus by nearby integration of a reporter gene and its
dynamics is limited by the stability of the fluorophore. Moreover,
it uses an indirect readout of the methylation state of the
addressed locus by the monitoring the expression state of the
inserted reporter gene. With the BiAD sensors developed in this
study, in contrast, we achieved a direct, locus-specific readout of
epigenetic marks at native endogenous genomic loci. Since the
fluorescent signal is formed directly at the target locus, and it is
not spread over the whole nucleus as in the approach of>°, the
spatial information is preserved.

However, the binding of the BIAD modules might result in
alterations of the local chromatin environment and this may in
turn influence the BiFC signal. Furthermore, the perturbation of
the “native” state of the system may be accentuated by the
formation of the stable reconstituted fluorophore, which could act
as a bridge between the binding sites of the anchor and detector
modules and affect chromatin dynamics. Hence, future BiAD
studies might be accompanied by analyses of DNA accessibility
(like ATAC-seq) and chromatin structure (like as 3C or HiC-seq).

Although in this proof-of-concept study we focused on the
readout of epigenetic marks at different types of repetitive DNA
sequences, we demonstrate that by implementing CRISPR/dCas9
as an anchor module, the DNA-binding specificity of the sensors
can be easily manipulated. In a recent study, Chen et al.>®
combined photoactivated localization microscopy with fluores-
cence complementation to detect protein complexes in live cells
with nanometer resolution and single-molecule sensitivity. Using
this microscopy technique should enable the design of tiled BIAD
sensors for direct detection of epigenetic modifications at the level
of single copy genes. This application would revolutionize our
understanding of the dynamic properties of epigenetic signaling.
Moreover, simultaneous readout of different epigenetic
marks could be readily incorporated by making use of BiAD
sensors with different colors or three-fragment fluorescence
complementation systems®®. By expanding the number of
detector modules through incorporation of reading domains with
specificities for other histone marks®’, the dynamics of bivalent
chromatin domains could be assessed in live cells as well>®.
Moreover, since the BiAD approach is compatible with live-cell
imaging, the relationship between locus-specific epigenetic
modifications and cellular physiology can be directly addressed.

The ultimate aim of the BiAD approach developed in this work
is to enable the real-time tracking of locus-specific epigenetic
marks within the nucleus of single living cells, during cellular
differentiation, pathogenesis or alterations in the cellular envir-
onment. For an improved real-time imaging of locus-specific
epigenetic changes, the Venus fluorophore, for which the
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reversibility of the complemented signal is still debated, could be
replaced with TFP1.4°°761, which was engineered for reversible
fluorescence complementation®®, Resorting to proteins capable of
reversible fluorescence complementation could also help to
reduce the effects that the BIAD sensors might have on the local
chromatin environment at their target-binding sites and further
improve the kinetic resolution of signal changes.

Based on the results obtained in our study, we envisage the
generation of more model cell lines and of transgenic animals that
stably express the BiAD sensors. This will allow the locus-specific
detection of epigenetic changes during development, transge-
nerational epigenetics, cellular reprogramming, drug treatment,
or onset of disease phenotypes. We anticipate that either in their
current form or through combination with the recent develop-
ments in gene targeting and microscopy technologies, our tools
will greatly contribute to a better understanding of how specific
epigenetic signatures are set, erased and maintained at locus
and cellular level, during normal cellular development and onset
of disease.

Methods

Design of the BiAD plasmids. Venus was used as reporter in the BiAD sensors
due to its strong fluorescence intensity and its fast and efficient maturation
propertieséz’ 63, The 238 amino-acid protein was split at position 210 generating
two non-fluorescent fragments (VenN and VenC). This selection was based on
systematic experiments demonstrating a clear superiority of this split site over
others in respect to its lack of nonspecific assembly, high specificity and signal
intensity?® ¢4,

The mVenus-C1 and mCerulean-C1 mammalian expression vectors were a gift
from Prof. Steven Vogel®® (Addgene plasmids no. 27794 and no. 27796). Cloning
of the individual domains was performed using the Gibson assembly mix
(New England Biolabs). All devices were N-terminally fused to a 3XFLAG tag for
immunofluorescence and western blot detection. The domains were separated from
the fluorophores through a flexible 14-18 aa linker. The synthetic anchor domains
as well as the HP1 chromodomain were additionally tagged with the monopartite
nuclear localization sequence (NLS) of the SV40 Large T-antigen for nuclear
import. The methyl-binding domain of MBD1 contained an endogenous NLS. All
fusion proteins were expressed under the control of a CMV promoter. The identity
of all constructs was validated by sequencing. To generate the BiFC-based sensors,
the Venus ORF was split at amino acid 210 and fused as described above to either
the N- or C- terminus of the BiAD domains, through Gibson assembly. The
sequences of all BiAD sensor plasmid are provided in the Supplementary Fig. 26.

Cloning of the anchor domains. The vector encoding for the GFP-fused ZF
protein was provided by Dr Bert J. van der Zaal (Leiden University)”. The
sequence encoding for the ZF was amplified by PCR and assembled in the BIAD
module vectors as described above. The pTH-PanCen-mVenus was provided by
Prof. Thoru Pederson (Addgene plasmid no. 49640)'8. To avoid PCR artefacts due
to the repetitive structure of the TALE gene, the template vector was digested with
Sbfl and Xbal (NEB) to release the gene of the fluorophore in the original vector.
This was followed by Gibson assembly with PCR fragments encoding for mRuby2
(Dr Michael Davidson, Addgene plasmid no. 54768)%, VenN or VenC. To increase
the size of the linker that separates the TALE from the fluorophore from 7 to 18
amino acids, the first generation of BiAD modules was linearized with Sbfl and
assembled with an oligonucleotide cassette encoding for a GS-rich linker.

The dCas9-based anchor module was derived from the pHAGE-TO-dCas9-
3XmCherry plasmid (provided by Dr Thoru Pederson, Addgene plasmid no.
64108)19. The vector was cut with BamHI and Xbal (NEB) to release the triple
fluorophore fusion. The resulting fragment was then assembled with PCR inserts
encoding for the VenN or VenC fragments, respectively. For targeting the alpha
satellite repeats in the pericentromeric region of chromosome 9, the sgRNA
against the 5'-TGGAATGGAATGGAATGGAA 3’ sequence was used as described
by Ma et al.!¥ (2015).

Cloning of the detector domains. To detect the 5mC mark, the methyl-binding
domain of human MBDI (accession Q9UIS9.2) was amplified out of HEK293
cDNA and cloned as specified above. The construct borders were amino acid 1-113
as described®!. The R44Q-binding pocket mutation, was introduced by
site-directed mutagenesis PCR®’. For the recognition of H3K9me3, the chromo-
domain (amino acid 17-76 of mouse HP1p, accession NP_031648) was amplified
from NIH3T3 cDNA and cloned into the BiAD sensor backbone as described
above. The W42A-binding pocket mutation, was introduced by site-directed
mutagenesis PCRY.

10
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Cloning of epigenetic modification enzymes. To rescue the methylation levels of
the HCT116 DNMT1 hypomorphic cell line, a plasmid driving the expression of
full length human DNMT1 (accession AAI26228.1) under CMV promoter was
used. The catalytically inactive C1226A mutant version was employed as negative
control®®. Both plasmids were provided by Dr Pavel Bashtrykov (University of
Stuttgart). The enzyme variants were fused to LSSmKate2 (Addgene plasmid no.
54795, provided by Dr Michael Davidson and Dr Vladislav Verkhusha) for
microscopy-based detection. For cloning of the dox-inducible SUV39H1
expression plasmids, the CDS encoding for the full length mouse enzyme
(accession NP_035644.1) was sub-cloned from a mammalian expression plasmid
(provided by Dr Srikanth Kudithipudi, Stuttgart University) into the pSIN-TRE3G-
PGK-Puro-IRES-rtTA3 vector®. Both the wild type and the catalytically inactive
H324L variant, were cloned as mRuby2 fusions for microscopy-based detection.

Cell lines. HEK293 and NIH3T3 cells (American Type Culture Collection) were
maintained in Dulbecco’s modified Eagle’s medium and high glucose (Sigma)
supplemented with 10% heat-inactivated calf serum and 2 mM L-glutamine
(Sigma). Wild-type and Suv39h1h2™~ iMEFs were a gift of Prof. Thomas Jenuwein
(MPI Freiburg). p53~~ and p53”"/Dnmt1~'~ iMEFs were provided by Prof.
Howard Cedar (Institute for Medical Research Israel-Canada). The cells were
grown at 37 °C in Dulbecco’s modified Eagle’s medium and high glucose
supplemented with 10% heat-inactivated calf serum, 1 X non-essential amino acids
(Gibco), 1 x sodium pyruvate (Sigma), 0.1 mM B-mercaptoethanol (Gibco) and

2 mM L-glutamine. The wild-type and HCT116 DNMT1 hyphomorphic cells
(kindly provided by Prof. Bert Vogelstein, HHMI, USA) and were cultivated in
McCoy’s 5 A medium (Gibco) supplemented with 10% heat-inactivated calf
serum and 2 mM L-glutamine. All cells were grown at 37 °C in a saturated humidity
atmosphere containing 5% CO,.

Inhibitor treatment. To deplete HEK293 cells of DNA methylation, 5-aza-dC
(Sigma-Aldrich, cat. no. A3656) treatment was performed over a period of 3 days at
final drug concentration of 2 uM in the cell culture medium. The drug was
dissolved in 50% acetic acid at 100 mM and replaced on a daily basis. As control, an
equal volume of solvent, was added to the cell culture medium. To analyze the
global efficiency of demethylation, total genomic DNA was isolated before,
during and after the 5-aza-dC treatment using the DNeasy Blood and Tissue Kit
(QIAGEN). Two-hundred nanogram of the resulting material were digested with
the 5mC-inhibited enzyme Hpall (New England Biolabs). The DNA was resolved
on a 0.8% agarose gel supplemented with GelRed (Genaxxon), and finally imaged
with a Quantum imaging system (Vilber).

To determine the optimal TSA (Sigma-Aldrich, cat. no. T8852) concentration
needed to increase the global histone acetylation levels with minimum cytotoxic
effects, HEK293 cells were treated with 20, 80, and 330 nM TSA for 24 h. TSA
was dissolved in dimethylsulphoxide (DMSO) at a concentration of 5 mM.
Afterwards, cells were harvested and lysed for 30 min on ice in lysis buffer (20 mM
HEPES pH 7, 500 mM NaCl, 0.5% NP-40, 2.5 mM MgCl, and 0.2 mM
phenylmethylsulphonyl fluoride) followed by sonication with EpiShear
(Active Motif) for 455 (15s ON, 30s OFF cycles, 40% power, 1/8” microtip) to
release nuclear proteins. The lysate was next centrifuged at 15,000xg, 4 °C, 15 min
and the resulting supernatant, containing the nuclear fraction, was analyzed by
western blotting. To assess the global histone acetylation levels, an anti-H4panAc
antibody was used (Active Motif, cat. n0.530804, lot no. 530804). This was followed
by incubation of the nitrocellulose membrane with an anti-rabbit horseradish
peroxidase (HRP)-coupled secondary antibody (GE Healthcare Life Sciences, cat
no. NA934V, lot no. 9670531). The chemiluminescence signal was detected on a
FUSION Solo (Peqlab) system. For microscopy, 330 nM TSA were added 24 h
before the slides were fixed. Equal volumes of the DMSO carrier were added to the
control cells.

Amplicon-targeted bisulfite sequencing. To determine the methylation levels of
the loci adjacent to thle TALE-binding sites (TBSs) in the HCT116 DNMT1
hypomorphic cells, the hg38 reference genome was mined for TBSs. 720-bp long
sequences centered around the 20-bp long TALE-binding motif were extracted
from all TBSs and ranked based on their CpG content. With this approach, the
57999639: 58000359 locus on chromosome 7 was among the sequences with the
highest number of CpG sites (12 within the PCR amplicon) and it was selected for
DNA methylation analysis (Supplementary Fig. 15a).

For Illumina library preparation, genomic DNA was extracted from HEK293,
HCT116, and HCT116 DNMT1 hyphomorphic cells using the QIAamp DNA Mini
Kit (Qiagen), and bisulfite converted using EZ DNA Methylation-Lightning Kit
(Zymo Research) following the manufacturer’s instructions. The bisulfite treated
DNA was then used for PCR amplification using the amplicon and primers with
cell-type specific barcodes (listed in Supplementary Table 8) and HotStarTaq DNA
Polymerase (Qiagen). PCR products were resolved on an 8% acrylamide gel,
followed by extraction and clean-up using the NucleoSpin Gel and PCR Clean-up
(Macherey-Nagel). The products were mixed at an equimolar ratio and sent for
paired-end sequening on Illumina HiSeq2000 to Novogene Bioinformatics
Technology Co., Ltd., Beijing, China (www.novogene.cn).
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The high-throughput sequencing results were demultiplexed and analyzed
using the CLC Genomic Workbench 10.0.1 (CLC Bios, MA) following the
manufacturer’s standard data import protocol and the bisulfite sequencing plugin.
The reads were mapped to the Chr7 amplicon reference sequence with the length
and similarity fraction parameters set to 0.85. Over 99% of the reads could be
successfully mapped to the reference sequence using this approach. The
methylation levels normalized to the total read number where then extracted for
each CpG site of the amplicon, based on at least 1600 reads in each cell line.
Further visualization and analysis was performed in MS Excel.

Western blot of BiAD module expression. To detect the expression of the BiIAD
modules, HEK293 cells were transiently transfected with Fugene HD (Promega)
according to the manufacturer’s recommendations. Twenty-four hours after
transfection, the cells were harvested and lysed as described above. To assess the
impact of the R44Q mutation on the stability of the MBD domain, the mCerulean
plasmid was co-transfected together with the detector module. This was used to
compare the expression levels of the two MBD variants, independent of variabilities
in transfection efficiency. For evaluating the expression levels of the BiAD modules,
the nuclear lysate was separated on a 15% sodium dodecyl sulfate polyacrylamide
gel electrophoresis (SDS-PAGE) followed by transferring onto a nitrocellulose
membrane. For detection, the monoclonal anti-FLAG M2 (Sigma-Aldrich, cat. no.
F1804, lot no. SLBN5629V, 1:1000 dilution) antibody was used. This was followed
by incubation with a HRP-coupled mouse secondary antibody (GE Healthcare Life
Sciences, cat. no. NA931V, lot no. 9653127, 1:5000 dilution). For mCerulean
detection, the rabbit Living Colors full-length GFP (Clontech, cat. no. 632592, lot
no. 1404005, 1:1000 dilution) antibody was used. Uncropped blots are provided in
Supplementary Fig. 27.

Immunofluorescence. To determine the cellular localization of the BIAD modules
in HEK293 and NIH3T3 cells, cells were seeded on microscopy slides and trans-
fected with the corresponding plasmids, using Fugene HD. 24-48 h after trans-
fection, the slides were washed with MgCl, and CaCl, containing PBS (Sigma-
Aldrich), followed by crosslinking with 4% formaldehyde solution (Sigma-Aldrich)
for 10 min at room temperature. This was followed by permeabilization with 0.5%
Triton X-100 (Sigma-Aldrich) for 10 min at 4 °C and blocking with 1% BSA
solution pH 7.5 for 1 h at room temperature (Sigma-Aldrich, lot no. SLBN5629V).
The mouse anti-FLAG M2 and rabbit anti-H3K9me3 (Active Motif, no. 39161 lot
no. 13509002, 1:500 dilution) primary antibodies were used. For microscopy-based
detection, the corresponding Alexa Fluor 594-conjugated anti-mouse or
anti-rabbit (Invitrogen, cat. no. A-11062 and A-11037; lot no. 49401 and 56948 A,
respectively, 1:1000 dilution) secondary antibodies were used. For nuclear staining,
a 5min incubation step with 1 ug mL™! DAPI (Thermo Fisher Scientific) was
included before mounting.

BiFC assay. For the BiFC assays, cells were seeded on high precision no.1.5

(tol. + 5 um) glass slides (Carl Zeiss) and transfected with the BiAD modules as
indicated in Supplementary Tables 1-4. Depending on the cell line and the sensor
to be transfected, following transfection reagents were used: Fugene HD (Promega),
GenaxxonFect (Genaxxon), and Lipofectamine 3000 (Thermo Fisher Scientific)
following the recommendations of the supplier. NLS-mRuby2-C1 was routinely
used as a transfection control due to the absence of crosstalk in the BiFC
channel. In experiments where red fluorophore-tagged epigenetic enzymes were
co-expressed with the sensors, mCerulean-C1 was used as a transfection marker.
To keep the ratio between the total DNA and transfection reagent constant,
corresponding amounts of pcDNA3.1 (Invitrogen) were used as carrier. For
validating the targeting specificity of the sensors, co-transfections with the full
fluorophore-tagged modules was performed. These plasmids were transfected at
half of the amount as to what was used for the split fluorophore-fusions, to
compensate for the difference in fluorescence intensity. For studying the dynamics
of epigenetic changes, the cell treatment was performed 24-48 h before transfection
with the BiIAD modules. For the 5-aza-dC methylation kinetics, the BiAD sensor
was transfected 48 h before every imaging time-point. The time scale annotated in
Fig. 3 represents the number of days since the start of the 5-aza-dC treatment and
since recovery time, respectively. For imaging, the slides were fixed for 10 min

at room temperature with 4% formaldehyde and finally mounted in ProLong
Diamond antifade (Invitrogen).

The slides were imaged on an LSM 710 Zeiss confocal microscope equipped
with a Plan-Apochromat 63 x /1.40 Oil DIC M27 objective. The laser excitation
wavelengths as well as emission collection windows are indicated in Supplementary
Table 5. For enhanced sensitivity, the BiFC channel signal was routinely directed to
a QUASAR 34-channel photomultiplier unit (Carl Zeiss). Image analysis was
performed in Image] 1.51a. To account for the reduced brightness of the BiAD
sensor 4, the intensity of the 514 nm laser line was increased to 5%.

For analysis, the BiFC reconstitution pattern was broadly categorized by visual
inspection into three classes: strong spotty, weak spotty/blurry, and no signal. To
reliably identify transfected cells without detectable BiFC signal, NLS-mRuby2 was
routinely included as a transfection control. To account for the imbalances in
plasmid expression between the BiAD modules and the transfection control, the
cells were first visualized in the red channel. Only the cells that showed a detectable
red fluorescence signal were used for BiFC signal analysis. For the BiAD sensor 4,
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dCas9-3xmCherry was used as an internal transfection and DNA sequence
specificity control. For the quantification of the BiFC signal observed in the cell line
with stable integration of the BiAD 1 sensor modules, the cells were split into two
categories only: BiFC positive and BiFC negative. This was based on the lack of the
BiFC signal in the cells expressing the MBD R44Q variant, indicating that the BiFC
fluorescence detected for the MBD WT cells is specific and not due to
overexpression conditions, as it might be the case in transient transfections. In
experiments comparing fluorescence intensities between different conditions,
transfections of the constructs to be compared as well as their imaging were
performed in parallel using the same settings. All experiments were performed in
duplicates and 15-60 cells were counted per biological replicate or, where
applicable, per time point. The sample size was selected to ensure a proper
representation of the three BiFC patterns, namely strong spotty, weak spotty/
blurry, and no signal, within each transfection set-up. The error bars represent
standard error of the mean. Further details are provided in Supplementary Table 6.
p-values were determined for the “strong spotty” category by performing 1-sided
paired t-test analysis in MS Excel (see Supplementary Table 7).

Implementation of the Tet-SUV39H1-mRuby2 dox-inducible iMEFs. To
generate a suitable cellular system for assessing the dynamic range of the BiAD
sensor 4, doxycycline-inducible cells lines were created by retroviral infection of the
parental Suv39DKO iMEFs, with viruses delivering transgenes encoding for either
the SUV39HI or the catalytically inactive H342L mutant both fused to mRuby?2.
Retroviral packaging was performed using Platinium-E cells (Cell Biolabs)
according to established protocols®. In brief, for each calcium phosphate
transfection, 10-20 pg plasmid DNA and 5 pg helper plasmid (pCMV-Gag-Pol,
Cell Biolabs) were used. Transduced Suv39DKO iMEFs were selected 48 h after
infection using 1 ug mL~! puromycin. Two weeks after selection, protein
expression was induced with 1 pgmL™! doxycycline, final concentration in media.
The successful expression of SUV39H1-mRuby2 was confirmed by fluorescence
microscopy. Both protein variants displayed comparable expression levels, as
judged by their fluorescence intensity. To validate the activity of the constructs,
samples cells were collected before, during and after dox induction, at the indicated
time points. Equal volumes of cell lysates prepared as described above, were
loaded on a 18% SDS-PAGE and subjected to western blot using anti-H3K9me3
and anti-f actin (Abcam, cat. no. ab8227, lot no. GR576921, 1:2000 dilution)
antibodies. To test the applicability of the BiAD sensor 4, the expression of

the SUV39H1 variants was induced with 1 ugmL™! doxycycline, 48 h before
transfecting the cells with the biosensor modules. Cells were cultured in the
presence of dox for another 48 h prior fixation for microscopy imaging.

Generation of cell lines with stable expression of BiAD 1. To generate cell lines
with stable expression of the BiAD 1 modules, the MBD-VenC and ZF-VenN
modules were sub-cloned by Gibson assembly into a modified version of the
pMSCV-LTR-miRE-PGK-Puro-IRES-GFP vector giving rise to the pMSCV-LTR-
MBD_VenC-IRES-ZF_VenN-PGK-Puro construct. Two vectors were created with
this approach, whereby one contained the WT MBD domain, while in the second
this was replaced with the MBD R44Q variant. Following sequencing, these vectors
were used for virus production and infection of NIH3T3 cells, following the pro-
cedure described above. Transduced cells were selected 48 h after infection using 1
pg mL~! puromycin. The successful expression of the MBD-VenC and ZF-VenN
modules was assessed by immunofluorescence and western blotting with the anti-
FLAG M2 antibody (Sigma-Aldrich, cat. no. F1804, lot no. SLBN5629V), following
the procedures described above. B-actin detection (Abcam, cat. no. ab8227, lot no.
GR576921) was used to account for differences in the amounts of loaded lysates.

Live-cell imaging. For live-cell imaging, cells were seeded on 35-mm Fluorodish
cell culture dishes (World Precision Instruments). Growth media without phenol
red was used and imaging was performed on an LSM 710 Zeiss confocal micro-
scope equipped with a Plan-Apochromat 63 x /1.40 Oil DIC M27 objective and an
XL-LSM 710 S1 incubation chamber for temperature and CO, control. In transient
transfection experiments with the sensors, transfection conditions, image
acquisition, and display settings were identical to what was used for formaldehyde-
fixed cells to allow the direct comparison of the observed BiFC signals. To
minimize laser-induced phototoxicity and accommodate for differences in BiFC
signal intensities between cells with transient and stable expression of the BIAD
modules, the thickness of the imaged slice was enlarged from 0.8 to 1.6 um for the
cell-cycle imaging of the BiFC signal. Time-lapse imaging was performed for 18 h,
with images being taken every 25 min. A representative subset of time-points was
selected for display in Fig. 7a. Image acquisition and display settings were identical
within the panels of the figure.

For visualization of drug-induced changes of DNA methylation, NIH3T3
cells with stable expression of the BIAD modules were subjected to 5-aza-dC
(Sigma-Aldrich, cat. no. A3656) treatment. This was performed over a period of
5 days at a final drug concentration of 0.2 uM in the cell culture medium. Images
were taken before, at the end of the treatment and 1 day after 5-aza-dC removal.
Image acquisition and display settings were identical between the time-points. To
facilitate data visualization, fluorescence intensities are presented as a look-up table
from dark purple to bright yellow (fire LUT) generated with Image] 1.51a.

|DOI: 10.1038/541467-017-00457-z | www.nature.com/naturecommunications 1


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

Data availability. Bisulfite sequencing data has been deposited at Sequence Read
Archive (SRA) under accession code SRP111502. All key data supporting the
findings of this study are available within the paper and its supplementary infor-
mation files. Additional primary data are available from the corresponding author
upon reasonable request.
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