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LCN2 (lipocalin 2) is a member of the lipocalin family of proteins that transport small, hydrophobic ligands.
LCN2 is elevated in various cancers including esophageal squamous cell carcinoma (ESCC). In this study,
LCN2 was overexpressed in the EC109 ESCC cell line and we applied integrated analyses of the gene
expression data to identify protein-protein interactions (PPI) network to enhance our understanding of the
role of LCN2 in ESCC. Through further mining of PPI sub-networks, hundreds of differentially expressed
genes (DEGs) were identified to interact with thousands of other proteins. Subcellular localization analyses
found the DEGs and their directly or indirectly interacting proteins distributed in multiple layers, which was
applied to analyze the possible paths between two DEGs. Gene Ontology annotation generated a functional
annotation map and found hundreds of significant terms, especially those associated with the known and
potential roles of LCN2 protein. The algorithm of Random Walk with Restart was applied to prioritize the
DEGs and identified several cancer-related DEGs ranked closest to LCN2 protein. These analyses based on
PPI network have greatly expanded our understanding of the mRNA expression profile of LCN2
overexpresssion for future examination of the roles and mechanisms of LCN2.

L
CN2 (lipocalin 2), also known as oncogene 24p3, uterocalin, siderocalin or neutrophil gelatinase associated
lipocalin (NGAL), is a 24 kDa secreted glycoprotein and a member of the lipocalin family of proteins that
transports small, hydrophobic ligands1. LCN2 protein is secreted into the extracellular environment and

forms a heterodimer with matrix metalloproteinase-9 (MMP-9) through disulfide bonds, modulating the stability
rather than the enzymatic activity of MMP-92. By sequestering iron-laden siderophores, LCN2 deprives bacteria
of a vital nutrient and thus inhibits their growth, suggesting its bacteriostatic effect or protection against bacterial
infection3. Its small size, secreted nature and relative stability have led to it being investigated as a diagnostic and
prognostic biomarker in many acute diseases, especially in acute kidney injury4.

Dysregulated of LCN2 has been observed in several benign and malignant diseases, including breast, colorectal,
pancreatic, ovarian, gastric, thyroid, ovarian, and bladder, as well as kidney cancers5. Elevated LCN2 participates
in various functions in malignant cells, even sometimes the conclusions were controversial. LCN2 inhibits
apoptosis in thyroid cancer and decreases invasion and angiogenesis in pancreatic cancer, but increases prolif-
eration and metastasis in breast and colon cancer6. Our previous studies have demonstrated that LCN2 is elevated
in esophageal squamous cell carcinoma (ESCC), and its upregulation significantly correlates with cell differenti-
ation and tumor invasion and could served as an independent prognostic factor7,8. To better understand the
biological role of LCN2 in ESCC, we overexpressed LCN2 in the EC109 ESCC cell line. Subsequently, Agilent
whole genome oligo microarray (Agilent Technologies, USA) was applied for mRNA expression profile and
hundreds of differentially expressed genes (DEGs) were obtained from LCN2 overexpressed cell comparing with
its control (data prepared in other manuscript).

Network-based analyses of protein-protein interactions (PPI) utilize known associations among the protein
molecules to globally describe the interactions of these associations in context of of biochemistry, signal trans-
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duction and biomolecular networks. Virtually all proteins perform
specific functions through the interactions with other proteins in
specific biological contexts9. In the recent years, the integrated ana-
lysis of large-scale gene expression data with PPI networks has
received considerable attention10,11. Knowledge of the PPI network
provides a number of applications, such as prediction of proteins
interaction and protein function, and identification of functional
protein modules, disease candidate genes identification, and drug
targets identification12,13.

To acquire a more global biological context for mRNA expression
profiles, analyses should exceed the merely listing of affected genes
and extend our knowledge to explain the enhanced biological pheno-
type resulting from the cascades of spatial or temporal interactions of
target genes with other proteins. In this study, we analyzed the
mRNA expression profile of LCN2 overexpression in ESCC using
system biology method based on the knowledge of PPI network.

Results
PPI sub-network of DEGs derived from LCN2 overexpression.
More than 200 DEGs, including 167 upregulated genes and 96
downregulated genes, were obtained, using a 2-fold threshold,
from the mRNA expression profile following LCN2 overexpres-
sion. In order to gain insight into how the DEGs affected cellular
biological activity, a full screen of their interactions with other
proteins would provide important clues of their functions. The
combination of PPI datasets from both acknowledged HPRD and
BioGRID databases provides credible original data for subsequent
analyses. Three kinds of PPI sub-networks were generated by
mapping the downregulated, upregulated and total DEGs to the
parental PPI network, respectively. Fifty-five downregulated DEGs
had literature on interacting proteins, which formed a PPI sub-
network with their first neighboring proteins that contains 834
nodes and 7005 edges (Supplementary Figure S1). On the other
hand, eighty-two upregulated proteins had reported interacting
proteins and formed a PPI sub-network with their first neigh-
boring proteins containing 1813 nodes and 23380 edges (Supple-
mentary Figure S2). The total DEG PPI sub-network was
composed of 2458 nodes and 33671 edges, including 135 DEGs
(Figure 1A). These three sub-networks indicated that the overex-
pression of LCN2 greatly disturbes the PPI network in ESCC as
hundreds of DEGs interacted with thousands of other proteins to
enlarge the biological consequences of its overexpression.

To focus on LCN2 protein, a PPI sub-network based on the axis of
LCN2 R interacting proteins R DEGs R interacting proteins was
also built to detect the relationship between LCN2 and the nearest
DEG proteins. This central LCN2 sub-network contained 121 nodes
and 132 edges, including 8 DEGs, the downregulated TGFB1,
COL4A3, COL4A4, SDC2 and DCN, the upregulated LCN2,
AREG and A2M. Currently, only four LCN2-interacting proteins
(MMP2, MMP9, HGF and LRP2) have been reported and collected
by HPRD and BioGRID, and their expression levels did not signifi-
cantly change in our mRNA profile of LCN2 overexpression in ESCC
(Figure 1B). However, three of the LCN2-interacting proteins inter-
acted with LCN2 overexpression-related DEGs, such as MMP9 inter-
action with the downregulated TGFB1, COL4A3, COL4A4 and the
upregulated A2M, HGF interaction with downregulated SDC2, and
MMP2 interaction with downregulated DCN.

To detect whether there are internal interactions between DEGs,
the DEG-DEG interactions were acquired. This sub-network con-
tained 18 nodes (10 downregulations and 8 upregulations) and 17
edges, including a small module composed of 11 DEGs, a four-DEG
interactions and two two-DEG interactions (Figure 1C).

Network topological properties. Dependent on its distinguishing
topological characteristics, the real biological networks (e.g. the PPI
network) are significantly different from random networks. The

power law of node degree distribution is one of most important
criteria14,15. The distributions of node degree approximately
followed power law distributions, with an R2 5 0.844, 0.814 and
0.866 for the downregulated, upregulated and total DEGs sub-
networks, respectively (Figure 2). This suggestes that the three PPI
sub-networks were scale-free, which is one of most important
characteristics of true complex biological networks16. These results
also indicate that a few protein nodes act as hubs with a large number
of links to other protein nodes. Other topological parameters of these
sub-networks, such as clustering coefficient, network centralization
and network density are shown in Table 1. Several special network
elements, including closeness centrality, topological coefficients,
neighborhood connectivity distribution and average clustering
coefficient distribution are indicated in Supplementary Fig. S3 with
their definitions were described in Supplementary Text S1.

Subcellular localization of proteins in the PPI sub-networks. The
appropriate subcellular localization and their translocations of
proteins are crucial because they provide the physiological context
for their function, such as complex formation, signal transduction,
and protein modification. With Cerebral plugin, nodes were re-
distributed according to their intracellular localization without
changing their connecting neighbors. The total DEG sub-network
was divided into 9 layers in this study with their percentage as
follows: Secreted (6.8%), Membrane (11.2%), Cytoskeleton (4%),
Cytoplasm (33.1%), Secreted/Nucleus (1.4%), Cytoskeleton/Nu-
cleus (0.9%), Cytoplasm/Nucleus (14.7%), Nucleus (20.1%) and
Unknown (7.7%) (the proteins without subcellular location
annotation) (Figure 3A). The subcellular locations of proteins in
the total DEG PPI sub-network range from extracellular to
intracellular and even nucleus. We also found at least 12 DEGs are
able to transloate from cytoplasm to nucleus (Supplementary Table
S1).

The subcellular location of LCN2 is variable, depending on its
cellular functions. LCN2 is able to be secreted to the extracellular
space, forming a complex with MMP9 by disulfide bond linkage,
protecting MMP9 from proteolytic degradation to enhance tumoral
invasiveness and diffusion2. The other principal characteristic of
LCN2 is to capture iron-containing siderophores and transport them
to the cell interior after interacting with specific membrane receptors
(24p3R, megalin or NGALR), increasing cytoplasmic mineral levels
and triggering the iron-dependent reactions17–19. The currently
annotated LCN2-interacting proteins are mostly located in the extra-
cellular space (e.g. MMP2, MMP9 and HGF), or in the membrane
(LRP2). In addition to interacting with MMP2 and MMP9 extracel-
lularly, LCN2 could also interact with its own receptor LRP2. Our
previous study has identified a novel splicing variant of the LCN2
receptor in ESCC, and both LCN2 and its receptor are overexpressed
in ESCC19. To detect whether there were any possibilities for LCN2
transform information into the nucleus, we also distributed the pro-
teins of LCN2-central PPI sub-network according to their subcellular
localizations. As shown in Fig. 3B, a dozens of LCN2 neighboring
proteins, especially LRP2-interacting proteins, such as MAPK8IP1,
HDAC7 and ANAPC10, were located in the nucleus or could trans-
locate into the nucleus.

To further illustrate the strength of this kind analysis, we applied
the shortest path algorithm to find the possible shortest path from
LCN2 to FOXP1, and identify the linking proteins between LCN2
and FOXP1. We found 28 shortest paths from LCN2 to FOXP1 with
all the path lengths equaling 4 (Table 2). In Table 2, we prioritized the
list of paths first by the normalized intensity of LCN2 directly-inter-
acting genes, followed by normalized intensities of subsequent genes
participating sequentially down the signal cascade. For example, the
four LCN2 interacting proteins were ranged by the order of MMP9,
MMP2, HGF and LRP2 according their normalized intensity.
Subsequently, the MMP9 interacting proteins were also ranged by
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the order of their normalized intensity (Supplementary Figure S4).
We also distributed these proteins members in the paths according to
their subcellular localizations. Most of these paths obey the principle
of from extracellular to cytoplasm till nucleus (Figure 3C).

Functional annotation map of the PPI sub-network. Cellular
activities, likely cancer-related, should be influenced by the DEGs
through their interactions in the PPI network. To identify potential
cellular activities related to LCN2 activity, we analyzed over-

Figure 1 | PPI sub-network generation by mapping DEGs to the HPRD&BioGRID parental PPI network. (A) PPI sub-networks of total DEGs.

(B) LCN2-central PPI sub-network. (C) Internal interactions of DEGs. Different colors of nodes indicate the types of proteins represented. Green and red

nodes represent proteins encoded by down- and up-regulated genes, respectively. Blue nodes represent interacting proteins which were not significantly

differentially expressed. The arrangement of nodes was applied to the ‘‘Spring Embedded’’ layout in Cytoscape.
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represented GO ‘‘Biological Process’’ terms of the total DEG PPI sub-
network were analyzed. A functional annotation map containing 451
GO terms was generated in which proteins were ended up in nodes
according to their enriched GO terms, with the edges connecting the
GO terms indicative of proteins share the same enriched GO terms
(Figure 4). To our great interest, several GO terms were potentially
related to LCN2 functions. For example, a group of immunity-related
terms were found, such as ‘‘regulation of immune respond’’, ‘‘activa-
tion of immune respond’’, ‘‘innate immune respond’’ and ‘‘deference

respond’’, etc. On the other hand, the proteins in the total PPI
sub-network significantly involved the signal transduction. Many
terms of different signal pathways were clustered, for example,
‘‘regulation of transforming growth factor beta receptor signaling
pathway’’, ‘‘regulation of Wnt receptor signaling pathway’’, ‘‘immu-
ne response-regulating cell surface receptor signaling pathway’’.
Another large GO term group was comprised of cell cycle-related
GO terms, such as ‘‘G1 phase of mitotic cell cycle’’, ‘‘G1/S transition
of mitotic cell cycle’’, ‘‘G2/M transition of mitotic cell cycle’’, ‘‘M

Figure 2 | Power law distribution of node degree. (A) Degree distribution of the downregulated DEG PPI sub-network. (B) Degree distribution of the

upregulated DEG PPI sub-network. (C) Degree distribution of the total DEG PPI sub-network. The graph displays a decreasing trend of degree

distribution with an increase in number of links displaying scale-free topology.

Table 1 | Topological parameters of three DEG PPI sub-networks

PPI sub-network y 5 bxa

Number of
nodes

Number of
edges R2 Correlation

Clustering
coefficienta

Network
centralizationb

Network
densityc

Network
diameterd

Downregulated
DEGs

y 5

226.33x21.132
834 7005 0.844 0.782 0.365 0.621 0.020 6

Upregulated
DEGs

y 5

515.01x21.172
1813 23380 0.814 0.662 0.331 0.803 0.014 6

Total DEGs y 5

849.12x21.218
2458 33671 0.866 0.696 0.306 0.739 0.011 6

aClustering coefficient is a measure of the degree to which nodes in a graph tend to cluster together.
bNetwork centralization measures the degree of the effect when removing some central nodes in the whole network.
cNetwork density describes the portion of the potential connections in a network that are actual connections.
dNetwork diameter representative of the linear size of a network.
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phase of mitotic cell cycle’’, ‘‘M/G1 transition of mitotic cell cycle’’,
suggesting LCN2 regulates the cell cycle. Two terms directly reflect
the reported functions of LCN2 were also found, there were ‘‘cellular
response to molecule of bacterial origin’’ and ‘‘extracellular matrix
organization’’. The significant GO terms of interest were shown in
Supplementary Table S2.

DEG prioritization. Since the overexpression of LCN2 caused the
expression change of hundreds of genes, it is interesting to detect how
the DEGs were ranked by their importants when considering their
relationship with LCN2. In this study, the RWR algorithm was used
to analyze the closeness of proteins to LCN2 in the total DEG PPI
network. Raw probability scores ranged from 0.705 to 7.96 e29. Since

Figure 3 | Subcellular layers illustrating the PPI sub-network. (A) The total DEG PPI network. (B) LCN2-central PPI sub-network. (C) 28 possible paths

from LCN2 to FOXP1.

www.nature.com/scientificreports
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the scores of many nodes were very close, the scores were log10-
transformed and to range from 21.27 to 28.10 (the more negative
the score, the less significant.). The log-transformed score was
regarded as the node attribute and displayed by the Cytoscape. The
closer the protein to LCN2, the larger the node size (Figure 5A). The
nodes of LCN2 interacting proteins (MMP2, MMP9, HGF and
LRP2) were the biggest nodes, which was consistent with the idea
of the algorithm of RWR. The DEGs alone are displayed in Fig. 5B for
greater clarity in distinguishing differences. (Figure 5B). To better
illustrate their closeness to LCN2, the DEGs were classified into
different layers according to their range of score, e.g. only the seed
node LCN2 was classified as the A layer, DEGs with a log-
transformed of score 22.0 , 22.99 were classified as the B layer,
and DEGs with a log-transformed score of 23.0 , 23.99 were
classified as the C layer. The more negative the score, the further
the node from LCN2. Based on Fig. 5B, these DEGs were rearranged
into different layers also by the Celebral plugin (Figure 5C). As
shown in Fig. 5C, downregulated SDC2, TGFB1 and DCN,
upregulated A2M were ranked in the first closest class of DEGs to
LCN2, while other DEGs such as AREG, PLAT were ranked in the
second class, and so on. These result provided the prioritizations of
DEGs when considering their relationship with LCN2.

Disscussion
Esophageal cancer is the sixth most common fatal human cancer in
the world, and the histological type of squamous cell carcinoma is
one of the most common cancers in the Chinese population20,21.
Accumulated researches have illustrated that an integrative analysis
of gene expression and PPI networks can provide deep insights into
the molecular mechanisms of diseases, or the specific genes
involved22,23. In this study, we applied a system approach by linking
public PPI data with DEGs of LCN2 overexpression to provide
unique insights into the mechanisms of LCN2 from the network
aspect. The three sub-networks for downregulated, upregulated and
total DEGs were composed thousands of protein nodes, indicating

LCN2 influences other proteins directly or indirectly, and its over-
expression disturbes the PPI network to alter cell function in ESCC.
Second, this analysis provided a full screen of LCN2 directly-
interacting proteins and their neighbor proteins, and this method
is more effectively than merely literatures research and manually
curation one by one. To our surprise, all four LCN2 interacting
proteins (LRP2, MMP2, MMP9 and HGF) have been found over-
expressed in ESCC8,24,25. Moreover, some of neighboring DEGs were
also reported aberrant expression in ESCC. The upregulated DEG of
A2M, the downregulated DEGs of DCN and TGFB1 are found
enhanced in ESCC25–27. Our previous study showed found SDC2
mRNA down-regulation in ESCC is related to a poor prognosis28.
These evidences suggested that our PPI sub-network could discover
the links between LCN2 and other ESCC related genes (proteins).
The topologies of the these three sub-networks showed that they are
scale-free biological networks rather than a random networks, with
their node degree distributions following a power law, one of most
important network characters. This indicates that the overexpres-
sion of LCN2 has truly disturbs the of PPI network in ESCC.

Since LCN2 can distribute both extracellularly and intracellularly
and its overexpression causes broad changes in gene expression pro-
files, it is interesting to understand how LCN2 signals are transduced
from the cell exterior or within the cytoplasm to the nucleus.
Subcellular localization offers important clues for proteins to reveal
their participating pathways that regulate cellular activities at the
subcellular level. Studies of cellular signal transduction processes
indicate that classical signaling pathways are integrated parts of lar-
ger molecular interaction networks29. We assumed that the signaling
is transduced by sequential PPIs, since the composition and bio-
logical role of proteins vary with subcellular localization. For
example, proteins located in the plasma membrane are primarily
involved in cell adhesion, cytoskeleton and cell signaling, whereas
in the nucleus, proteins are mainly involved in transcription and
ribosomal assembly. In this study, subcellular localization informa-
tion was incorporated into total DEG PPI sub-network, generating
biologically intuitive pathway-like layouts of a network. That many
of the interacting proteins of LCN2 receptor LRP2 are able to trans-
location into nucleus provides evidence for such a pathway. For
example, MAPK8IP1 (mitogen-activated protein kinase 8 interact-
ing protein 1), also named JNK-interacting protein-1 (JIP1), is a
scaffolding protein that enhances JNK signaling by placing JNK
and upstream kinases in proximity, which is critical in oncogenic
transformation involving gene expression, cell survival, growth, dif-
ferentiation and death30,31. In a like manner, overexpression of LCN2
might influence the PPI network directly or indirectly, affecting
the signaling of extracellular-membrane-cytoskeleton/cytoplasm-
nucleus cascades to cause the altered expressions of DEGs and con-
sequent alterations in cell proliferation, cell morphology, invasion
and metastasis.

We assumed the elevated LCN2 protein would cause a wide range
of mRNA expression profile alternation through the cascade of PPI
activities, and the transcription factors or transcriptional regulators
in the PPI sub-network play critical roles in this expression alterna-
tion. So we were interested in the transcription factors or transcrip-
tional regulators in our PPI sub-network. FOXP1 is a member of the
FOX family of transcription factors which has a broad range of
functions. FOXP1 overexpression is associated with poor prognosis
in diffuse large B-cell lymphoma, gastric MALT lymphoma and
hepatocellular carcinoma but with good prognosis in breast can-
cer32,33. Tang et al. found 1473 potential target genes of FOXP1 using
genome-wide expression microarrays and ChIP-seq in Huntington’s
disease34. Among these potential target genes list, we also found 6
downregulated DEGs of our LCN2 overexpression microarray result
(COL4A4, EGR1, FOS, PGCP, PMP22, TGFBI). These suggested
that the mRNA expression profile alternation following LCN2 over-
expression were through some critical transcription factors. The

Table 2 | Possible shortest paths from LCN2 to FOXP1

No. The protein members of the path

1 LCN2 R MMP9 R CD44 R ELAVL1 R FOXP1
2 LCN2 R MMP9 R COL4A5 R ELAVL1 R FOXP1
3 LCN2 R MMP9 R THBS1 R ELAVL1 R FOXP1
4 LCN2 R MMP9 R FN1 R MYC R FOXP1
5 LCN2 R MMP9 R FN1 R SUMO2 R FOXP1
6 LCN2 R MMP9 R FN1 R ELAVL1 R FOXP1
7 LCN2 R MMP9 R COL1A1 R ELAVL1 R FOXP1
8 LCN2 R HGF R PLAU R MYC R FOXP1
9 LCN2 R HGF R PLAU R ELAVL1 R FOXP1
10 LCN2 R HGF R SDC2 R ELAVL1 R FOXP1
11 LCN2 R HGF R FN1 R MYC R FOXP1
12 LCN2 R HGF R FN1 R SUMO2 R FOXP1
13 LCN2 R HGF R FN1 R ELAVL1 R FOXP1
14 LCN2 R MMP2 R HSP90AA1 R MYC R FOXP1
15 LCN2 R MMP2 R HSP90AA1 R FOXP2 R FOXP1
16 LCN2 R MMP2 R ITGB1 R ELAVL1 R FOXP1
17 LCN2 R MMP2 R CAND1 R SUMO2 R FOXP1
18 LCN2 R MMP2 R CAND1 R ELAVL1 R FOXP1
19 LCN2 R MMP2 R THBS1 R ELAVL1 R FOXP1
20 LCN2 R MMP2 R IL1B R ELAVL1 R FOXP1
21 LCN2 R MMP2 R COL1A1 R ELAVL1 R FOXP1
22 LCN2 R LRP2 R DLG3 R ELAVL1 R FOXP1
23 LCN2 R LRP2 R PLAU R MYC R FOXP1
24 LCN2 R LRP2 R PLAU R ELAVL1 R FOXP1
25 LCN2 R LRP2 R TLN1 R SUMO2 R FOXP1
26 LCN2 R LRP2 R DLG4 R ELAVL1 R FOXP1
27 LCN2 R LRP2 R THBS1 R ELAVL1 R FOXP1
28 LCN2 R LRP2 R APOE R ELAVL1 R FOXP1
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other reason is that the expression level of FOXP1 was also changed,
which might be regulated by other transcription factors. The alterna-
tion of FOXP1 expression might also change the expression level of
its target genes. Thus the transcription regulational cascade signals
were formed and genome-wide expression was changed. So we take
FOXP1 for exam to find the possible shortest path from LCN2 to
transcription factor illustrating how LCN2 affect mRNA expression
profile alternation. In total, 28 shortest paths between LCN2 and
FOXP1 were found. We noticed that ELAVL1 (ELAV like RNA
binding protein 1, also called HuR) is most frequent protein (17/
28) in the 28 possible paths to reach FOXP1. Overexpression of
ELAVL1 is also found in ESCC, which is associated with positive

lymph node metastasis, deep tumor invasion, high tumor stage, and
poor survival35. According to their subcellular localizations, most of
these paths follow a pathway starting from the extracellular space to
the cytoplasm to the nucleus. Moreover, many DEGs are able
transloated from cytoplasm to nucleus. With a number of proteins
are capable of translocation into nucleus, it can be argued that the
overexpression of LCN2 should greatly impact on the ESCC gene
expression profile.

The total DEG PPI sub-network, when annotated by GO also in
the format of a network, show that the PPI sub-network disturbed by
the overexpresion of LCN2 involves various biological entities, clo-
sely related to the known functions of LCN2. Of interest, this func-

Figure 4 | Functional map of the total DEG PPI sub-network. Functionally grouped network with terms as nodes linked based on their kappa score level

($0.3). Functionally related groups partially overlap. The similar GO terms were labeled in the same color. The interested GO term group related or

potentially related to LCN2 function was indicated by a Roman numeral.
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Figure 5 | Priorization analyses of DEGs in the total DEG PPI sub-network. (A) Random Walk with Restart algorithm was used to score all proteins in

the PPI network for their network proximity to the seed node of LCN2. The node size in the PPI sub-network is designed in a gradient according to

their scores. (B) The DEGs were extracted from (A) to better show their size. (C) The DEGs were re-arranged according to their closeness to LCN2 protein.

The more negative the log10-transformed score, the further the node from LCN2. DEGs were classified into seven layers (from A to G, the Y axis)

according to their range of scores as described in the Result section.
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tional annotation map revealed many immunity-related GO terms,
such as ‘‘regulation of immune respond’’, ‘‘activation of immune
respond’’, ‘‘innate immune respond’’ and ‘‘deference respond’’,
suggesting a role for LCN2 in the immune response. Direct evidence
for an involvement of LCN2 in the immune response has been
reported. Secreted LCN2 is involved in the the innate immune res-
ponse to limit bacterial growth by sequestering the iron-laden side-
rophore36. That no iron metabolism related GO terms were found in
this analysis, could be due to the possibility that there are no side-
rophores secreted by bacteria in the cell culture media for LCN2 to
transport iron. Flo et al. reported that Lcn22/2 mice exhibit appar-
ently normal iron metabolism. However, Lcn22/2 mice fail to mount
efficient innate immune responses against bacterial infection36.
Though we do not find significant GO terms associated with ‘‘can-
cer’’ or ‘‘tumor’’, the functional annotation map contained two large
group terms of signaling pathways and the cell cycle, which is poten-
tially related to the initiation or development of carcinoma. We
assume LCN2 is not a proto-oncogene, but its biological influence
in ESCC is multi-faceted, since so many signaling and cell cycle
regulatory pathways are involved following its overexpression.

How to choose the DEGs for the subsequent functional experi-
ments is still a huge challenge for the researchers after microarray
analysis is completed. The RWR algorithm was applied to prioritize
DEGs by ranking their closeness to LCN2. Many cancer-related
genes were found closest to LCN2. For example, interaction of
A2M (alpha2-macroglobulin) with low-density lipoprotein recep-
tor-related protein-1 (LRP1) is associated with an inhibition of
tumor cell proliferation, migration, invasion, spheroid formation,
and anchorage-independent growth through inhibition of beta-cate-
nin signaling in astrocytoma cells37. DCN (also called decorin) is
known to interfere with cellular events of tumorigenesis mainly by
blocking various receptor tyrosine kinases (RTK) such as the EGFR,
Met, IGF-IR, PDGFR and VEGFR2. Genetic ablation of DCN leads
to enhanced liver tumor incidence by providing an environment
devoid of this potent pan-RTK inhibitor38. It has been suggested that
frequent overexpression of TGFB1 promotes the progression of eso-
phageal precancerous lesions via the proliferation of epithelial cells
and angiogenesis, through the upregulation of vascular endothelial
growth factor (VEGF) expression25. These results prioritize other
DEGs, for examination of a relationship with LCN2, and provide
important clues for experimental evaluation of the DEGs.

Conclusions
In summary, the analyses based on PPI network have greatly expand
our understanding of the mRNA expression profile of LCN2 over-
expression, as well as the potential biological roles of LCN2. Our
study also provides a work flow to analyze expression data generated
from high-throughput experiments.

Methods
The differentially expressed genes. LCN2 was overexpressed by transfection of the
pcDNA3.0 plasmid, encoding LCN2, in the EC109 ESCC cell line. A control cell line
was generated by transfection with an empty plasmid. The stably transfected cell
clones were selected by Medium 199 (Invitrogen, USA) containing G418 (400 mg/ml)
(Invitrogen, USA). Overexpression of LCN2 protein was confirmed by western blot
analysis. The total RNA of LCN2 overexpressing cell and its control were extracted
using TRIzol (Invitrogen, USA), respectively. Total RNA was amplified and labeled
using the Agilent Quick Amp labeling kit by Cy3 or Cy5 and dye swapping. The
labeled RNA was hybridized with Agilent whole Human genome oligo microarray
(Agilent Technologies, USA) according its manual. After hybridization and washing,
the processed slides were scanned with an Agilent DNA microarray scanner (part
number G2505B) using settings recommended by Agilent Technologies. The raw
data was treated by LOWESS (locally weighted scatterplot smoothing) normalization
and log transformation. The expression data is in the GEO database (http://www.
ncbi.nlm.nih.gov/geo/) under accession number of GSE57630. The differentially
expressed genes (DEGs) were defined using a 2-fold threshold.

PPI sub-network construction. The newest versions of human protein-protein
interaction datasets were available from both HPRD (http://www.hprd.org/) (Release
9) and BioGRID (http://thebiogrid.org/) (Release 3.2.107). These interactions were

derived from literatures of both low through-put and high through put
experimentally validation. These two datasets have been widely applied in disease
researches combined with human PPI network39,40. BioGRID also contains
interactions from other species. In this study, the union interactions of Homo sapiens
species from these two datasets were integrated manually, with each pair of
interacting proteins in two lists of an Excel file. The redundancy from these two
datasets was removed by the autofilter of Excel. The curated PPI data containing
18595 unique proteins and 174552 interactions were used as the parental PPI
network. Cytoscape software was applied for visualization and analysis of PPI
networks, which provides various plugins for different analyses41. PPI networks are
illustrated as graphs in Cytoscape with the nodes representing the proteins and the
edges representing their interactions. The different node attribution files and visual
style files were imported into Cytoscape for better illustration in the context of
biological networks.

We constructed five PPI sub-networks by mapping the DEGs to the
HPRD&BioGRID parent PPI network by the following steps. First, the
HPRD&BioGRID parent PPI network was imported in to Cytoscape. The DEGs
(gene symbols) were listed in a text file (downregulated DEGs, upregulated DEGs and
total DEGs, respectively) and mapped to the parental PPI network by the menu of
‘‘Select R Nodes R From ID List File’’. To confine the interactions only to those close
to the DEGs and gain maximal significance, only first level interactions between
DEGs and their neighbor were detected. We used Cytoscape menus of ‘‘Select R
Nodes R First Neighbors of Selected Nodes’’ and ‘‘New R Network R From Selected
Nodes, All Edges’’ to extracted the sub-network. Second, LCN2 was used as the query
node and extracted interactions for the axis of LCN2 R neighbor proteins R DEGs
R neighbor proteins by twise repeating the ‘‘First Neighbors of Selected Nodes’’,
constructing the LCN2-central PPI sub-network. Third, a sub-network was generated
by ‘‘New R Network R From Selected Nodes, All Edges’’ after total DEGs were
mapped to the parental PPI network to detect the internal interactions between
DEGs. Duplicated edges, single nodes and self-interactions of these sub-networks
were regarded as redundant data and removed to avoid miscalculations of topological
parameters of the PPI sub-network.

Network topological parameter analyses. The topological parameters of networks
were analyzed by NetworkAnalyzer. By computing a comprehensive set of topological
parameters, such as network diameter, density, centralization, heterogeneity, and
clustering coefficient, neighborhood connectivity, average clustering coefficients and
the distribution of node degrees, NetworkAnalyzer provides insights into the
organization and structure of complex networks42. The degree of a node was the
number of its directly connecting neighbours in the network. In this study, the power
law of distribution of node degrees, one of most important network topological
characteristics, was analyzed as we performed previously43. Briefly, the edges in all
networks were treated as undirected. Distribution of node degree P(k) is defined as the
number of nodes with a degree k for k 5 0, 1, 2, …. The pattern of their dependencies
can be visualized by fitting a line on the node degree distribution data.
NetworkAnalyzer calculates the positive coordinate value for fitting the line where the
power law curve of the form y 5 bxa. R2 value is a statistical measure of the linearity of
the curve fit and used to quantify the fit to the power line. When the fit is good, the R2

value is very close to 1. Moreover, other network parameters reflecting network
properties were also analyzed and displayed.

Subcellular layers of the PPI sub-network. The subcellular localization information
of each protein in the total DEG PPI sub-network was extracted by a custom R
program from the newest Gene Ontology annotation file of Homo sapiens GO
Annotations (released on 4/15/2014) at http://www.geneontology.org/GO.
downloads.annotations.shtml. If one of the proteins was annotated with multiple
localizations, especially for the proteins localizing in the nucleus (e.g. cytoplasm and
nucleus), these localizations were integrated (cytoplasm/nucleus). The subcellular
localization information was imported into Cytoscape as a node attribute. Cerebral
software (http://www.pathogenomics.ca/cerebral/) was applied to re-distribute the
nodes according to subcellular localization without changing their interactions,
which provides a pathway-like diagram44. The igraph R program was applied to find
the shortest path between LCN2 and FOXP1 (forkhead box P1) in the total DEG PPI
sub-network. The shortest path algorithm is able to find the shortest connection
between two nodes in the graph45. The protein members of these paths were also
displayed according to their subcellular localization. These shortest paths were
prioritized according to the normalized intensity of genes in their order with the
signaling cascade.

Functional annotation map generation. We integrated Gene Ontology (GO)
annotation into the total DEG PPI sub-networks by mining for enriched GO
‘‘Biological Process’’ terms of proteins using the ClueGO plugin, which allows the
decoding and visualization of functionally grouped GO terms in the form of
networks. ClueGO is a user friendly plugin to analyze interrelations of terms and
functional groups in biological networks46. Only GO terms with a P-value , 0.001
were considered significant. A kappa score was calculated reflecting the relationships
between the terms based on the similarity of their associated genes, which was set to
0.3 as the threshold in this study.

Random walk with restart to prioritize DEGs. A random walk on a graph is defined
as an iterative walker’s transition from a specific node to a random neighbor starting
at a given source node (e.g. ‘‘protein A’’). In this study, the algorithm of Random Walk
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with Restart (RWR) we applied in which allow the restart of the walk in every time
step at node ‘‘protein A’’ with probability r. The equation for the random walk with
restart is defined as:

ptz1~(1{r) Wptzrp0

where r is the restart probability, W is the column-normalized adjacency matrix of the
network graph, and pt is a vector of size equal to the number of nodes in the graph
where the i-th element holds the probability of being at node i at time step t. The initial
probability vector p0 was constructed such that equal probabilities were assigned to
the nodes representing members of the disease, with the sum of the probabilities equal
to 1. In this study, RWR was carried out by a customized R program in the total DEG
PPI sub-network with LCN2 protein set as the seed node. The probabilities of DEGs
were regarded as node attributes and displayed by Cytoscape.

1. Flower, D. R. The lipocalin protein family: structure and function. Biochem J 318,
1–14 (1996).

2. Yan, L., Borregaard, N., Kjeldsen, L. & Moses, M. A. The high molecular weight
urinary matrix metalloproteinase (MMP) activity is a complex of gelatinase B/
MMP-9 and neutrophil gelatinase-associated lipocalin (NGAL). Modulation of
MMP-9 activity by NGAL. J Biol Chem 276, 37258–65 (2001).

3. Yang, J. et al. An iron delivery pathway mediated by a lipocalin. Mol Cell 10,
1045–56 (2002).

4. Paragas, N. et al. NGAL-Siderocalin in kidney disease. Biochim Biophys Acta
1823, 1451–8 (2012).

5. Bolignano, D1. et al. Neutrophil gelatinase-associated lipocalin (NGAL) in human
neoplasias: a new protein enters the scene. Cancer Lett 288, 10–6 (2010).

6. Chakraborty, S., Kaur, S., Guha, S. & Batra, S. K. The multifaceted roles of
neutrophil gelatinase associated lipocalin (NGAL) in inflammation and cancer.
Biochim Biophys Acta 1826, 129–69 (2012).

7. Zhang, H. et al. Up regulation of neutrophil gelatinase associated lipocalin in
oesophageal squamous cell carcinoma: significant correlation with cell
differentiation and tumour invasion. J Clin Pathol 60, 555–561 (2007).

8. Du, Z. P. et al. Neutrophil gelatinase-associated lipocalin and its receptor:
independent prognostic factors of oesophageal squamous cell carcinoma. J Clin
Pathol 64, 69–74 (2011).

9. Wu, J. et al. Integrated network analysis platform for protein-protein interactions.
Nat Methods 6, 75–7 (2009).

10. Li, M., Wu, X., Wang, J. & Pan, Y. Towards the identification of protein complexes
and functional modules by integrating PPI network and gene expression data.
BMC Bioinformatics 13, 109 (2012).

11. Bapat, S. A. et al. Gene expression: protein interaction systems network modeling
identifies transformation-associated molecules and pathways in ovarian cancer.
Cancer Res 70, 4809–19 (2010).

12. Sharan, R., Ulitsky, I. & Shamir, R. Network-based prediction of protein function.
Mol Syst Biol 3, 88 (2007).

13. Li, Y. & Li, J. Disease gene identification by random walk on multigraphs merging
heterogeneous genomic and phenotype data. BMC Genomics 13 Suppl 7, S27
(2012).

14. Maslov, S. & Sneppen, K. Specificity and stability in topology of protein networks.
Science 296, 910–3 (2002).

15. Zhu, X., Gerstein, M. & Snyder, M. Getting connected: analysis and principles of
biological networks. Genes Dev 21, 1010–24 (2007).

16. Barabási, A. L. & Oltvai, Z. N. Network biology: understanding the cell’s
functional organization. Nat Rev Genet 5, 101–13 (2004).

17. Goetz, D. H. et al. Ligand preference inferred from the structure of neutrophil
gelatinase associated lipocalin. Biochemistry 39, 1935–41 (2000).

18. Hvidberg, V. et al. The endocytic receptor megalin binds the iron transporting
neutrophil-gelatinase-associated lipocalin with high affinity and mediates its
cellular uptake. FEBS Lett 579, 773–7 (2005).

19. Fang, W. K. et al. A novel alternative spliced variant of neutrophil gelatinase-
associated lipocalin receptor in oesophageal carcinoma cells. Biochem J 403,
297–303 (2007).

20. Ferlay, J. et al. Estimates of worldwide burden of cancer in 2008: GLOBOCAN
2008. Int J Cancer 127, 2893–2917 (2010).

21. Yang, L. et al. Estimates of cancer incidence in China for 2000 and projections for
2005. Cancer Epidemiology Biomarkers and Prevention 14, 243–250 (2005).

22. Zhu, W., Yang, L. & Du, Z. Layered functional network analysis of gene expression
in human heart failure. PLoS One 4, e6288 (2009).

23. Chen, J., Aronow, B. J. & Jegga, A. G. Disease candidate gene identification and
prioritization using protein interaction networks. BMC Bioinformatics 10, 73
(2009).

24. Wang, F. et al. HDAC inhibitor trichostatin A suppresses esophageal squamous
cell carcinoma metastasis through HADC2 reduced MMP-2/9. Clin Invest Med
36, E87–94 (2013).

25. Xu, Z. et al. TGFb1 and HGF protein secretion by esophageal squamous epithelial
cells and stromal fibroblasts in oesophageal carcinogenesis. Oncol Lett 6, 401–406
(2013).

26. Saito, T. et al. Factors influencing the acute phase protein levels in patients with
esophageal cancer. Jpn J Surg 21, 402–11 (1991).

27. Wu, I. C. et al. Plasma decorin predicts the presence of esophageal squamous cell
carcinoma. Int J Cancer 127, 2138–46 (2010).

28. Huang, X. et al. Prognostic significance of altered expression of SDC2 and CYR61
in esophageal squamous cell carcinoma. Oncol Rep 21, 1123–9 (2009).

29. Friedman, A. & Perrimon, N. Genetic screening for signal transduction in the era
of network biology. Cell 128, 225–231 (2007).

30. Stebbins, J. L. et al. Identification of a new JNK inhibitor targeting the JNK-JIP
interaction site. Proc Natl Acad Sci U S A 105, 16809–13 (2008).

31. Cui, J., Zhang, M., Zhang, Y. Q. & Xu, Z. H. JNK pathway: diseases and therapeutic
potential. Acta Pharmacol Sin 28, 601–8 (2007).

32. Koon, H. B., Ippolito, G. C., Banham, A. H. & Tucker, P. W. FOXP1: a potential
therapeutic target in cancer. Expert Opin Ther Targets 11, 955–65 (2007).

33. Katoh, M. et al. Cancer genetics and genomics of human FOX family genes.
Cancer Lett 328, 198–206 (2013).

34. Tang, B. et al. Forkhead box protein p1 is a transcriptional repressor of immune
signaling in the CNS: implications for transcriptional dysregulation in
Huntington disease. Hum Mol Genet 21, 3097–111 (2012).

35. Zhang, C. et al. Cytoplasmic expression of the ELAV-like protein HuR as a
potential prognostic marker in esophageal squamous cell carcinoma. Tumour Biol
35, 73–80 (2014).

36. Flo, T. H. et al. Lipocalin 2 mediates an innate immune response to bacterial
infection by sequestrating iron. Nature 432, 917–921 (2004).

37. Lindner, I. et al. Alpha2-macroglobulin inhibits the malignant properties of
astrocytoma cells by impeding beta-catenin signaling. Cancer Res 70, 277–87
(2010).
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