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The effects of in ovo administration of a defined lactic acid microbiota (LAM), previously

isolated from adult hens, in the cecae microbiota structure and Enterobacteriaceae

colonization after exposure to virulent Escherichia coli during the hatching phase of

broiler chickens were evaluated. Embryos inoculated with LAM showed a significant

(P < 0.05) reduction of Enterobacteriaceae colonization at day-of-hatch (DOH) and

day (d) 7. Furthermore, there was a significant increase in total lactic acid bacteria on

DOH, body weight (BW) DOH, BW d7, and d0–d7 BW gain and reduced mortality

d0–d7 was observed in the LAM group compared with that in phosphate-buffered

saline (PBS) control. The bacterial composition at the family level revealed that the

Enterobacteriaceae was numerically reduced, whereas the Ruminococcaceae was

significantly increased in the LAM group when compared with that in the PBS control.

Moreover, the bacterial genera Proteus and Butyricicoccus and unidentified bacterial

genera of family Lachnospiraceae and Erysipelotrichaceae were significantly enriched

in the LAM group. In contrast, the Clostridium of the family Peptostreptococcaceae and

unidentified genus of family Enterobacteriaceae were significantly abundant in the PBS

control group. In summary, in ovo administration of a defined LAM isolated from adult

hens did not affect hatchability, improved body weight gain and reduced mortality at d7,

induced variations in the cecae microbiota structure and reduced Enterobacteriaceae

colonization on a virulent E. coli horizontal infection model in broiler chickens.
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INTRODUCTION

Early establishment of the gastrointestinal microbiota has been
shown to have significant benefits in the development of
gut-associated lymphoid tissues and intestinal integrity (1, 2).
Therefore, several investigators have decided to evaluate the
administration of in ovo probiotics in chickens. Several studies
have indicated that this method does not alter hatchability,
improves intestinal health, and favors microbial diversity (3–
5). Furthermore, in ovo delivery of probiotics may have a
significant impact in commercial poultry because hatching
cabinets represent one of the first potential sources of pathogenic
enterobacteria (6, 7). Avian pathogenic Escherichia coli (APEC)
may also penetrate the shell (8) or can be vertically transferred
(9), causing significant mortality during the first week (10).
Recently, our laboratory has developed a novel in ovo challenge
model for APEC strains (11). The objective of the present study
was to evaluate the in ovo administration of defined lactic
acid microbiota (LAM), previously isolated from adult hens, on
hatchability, performance during the first 7 days after hatch,
microbiota composition, and Enterobacteriaceae colonization
while utilizing a virulent E. coli horizontal infection model in
broiler chickens.

MATERIALS AND METHODS

Isolation and Selection of Lactic Acid
Microbiota Isolated From Adult Hens
Ten lactic acid bacteria (LAB) were isolated from 10 34-week-old
Hy-Line Brown backyard flock hens fed with a maize grain diet.
Cecal and ileum (Meckel diverticulum to cecal tonsils) content
from these birds was collected, and then, both sections were
flushed with phosphate-buffered saline (PBS). Epithelium and
intestinal contents were briefly homogenized, serially diluted, and
plated on de Man–Rogosa–Sharpe (MRS) agar plates (Catalog
no. 288110, Becton Dickinson and Co., Sparks, MD 21152 USA)
to obtain one pure colony from each sample. The isolates were
identified by 16S ribosomal RNA (rRNA) sequence analyses
(Microbial ID Inc., Newark, DE 19713, USA). The report showed
that four of the strains were Lactobacillus johnsonii, three
isolates were Weissella confusa, two Lactobacillus salivarius, and
one as Pediococcus parvulus. Aliquots of the combined culture
containing 10 selected LAB isolates were grown on MRS agar as
a combined batch culture (LAM) and used in the present study.

Escherichia coli Culture and Challenge
Dr. A. M. Donoghue, from the Poultry Production and
Product Safety Research Unit, United States Department of
Agriculture—Agricultural Research Service, kindly donated the
APEC strain that was used in these experiments (12). This E.
coli isolate, obtained from adult chickens with colibacillosis, was
confirmed to be susceptible to tetracycline and oxytetracycline
(Animal Disease Diagnostic Laboratory, Ohio Department of
Agriculture, Reynoldsburg, USA). This strain was serially diluted
to the desired colony-forming unit (CFU) concentration for
in ovo challenge (day [d] 19 of embryogenesis) as described
previously (11).

Enumeration of Bacteria
In trials 1 and 2, the gastrointestinal tract (GIT) (duodenum to
the cecum) was aseptically removed postmortem and collected
into sterile bags. These samples were then diluted and plated on
either MRS agar (Difco Lactobacilli MRS Agar, cat. no. 90004-
084, VWR, Suwanee, USA) to evaluate the total number of LAB
or MacConkey agar (VWR cat. no. 89429-342 Suwanee, USA)
to evaluate the number of gram-negative bacteria as described
by Tellez et al. (13). To confirm negative results or account
for the possibility that bacterial groups were present in lower
numbers, the detection limit on bacterial recovery by direct

TABLE 1 | Ingredient composition and nutrient content of a corn–soybean starter

diet used in all experimental groups on an as-is basis.

Item Starter diet

Ingredients (%)

Corn 57.34

Soybean meal 34.66

Poultry fat 3.45

Dicalcium phosphate 1.86

Calcium carbonatea 0.99

Salt 0.38

DL-Methionine 0.33

L-Lysine HCl 0.31

Threonine 0.16

Vitamin premixb 0.20

Mineral premixc 0.10

Choline chloride 60% 0.20

Antioxidantd 0.02

Calculated analysis

Metabolizable energy (kcal/ kg) 3,035

Crude protein (%) 22.16

Ether extract (%) 5.68

Lysine (%) 1.35

Methionine (%) 0.64

Methionine + cystine (%) 0.99

Threonine (%) 0.92

Tryptophan (%) 0.28

Total calcium 0.90

Available phosphorus 0.45

Determined analysis

Crude protein (%) 21.15

Ether extract (%) 6.05

Calcium (%) 0.94

Phosphorus (%) 0.73

a Inclusion of 106 spores/g of feed mixed with calcium carbonate.
bVitamin premix supplied the following per kilogram: vitamin A, 20,000 IU; vitamin D3,

6,000 IU; vitamin E, 75 IU; vitamin K3, 6.0mg; thiamine, 3.0mg; riboflavin, 8.0mg;

pantothenic acid, 18mg; niacin, 60mg; pyridoxine, 5mg; folic acid, 2mg; biotin,

0.2mg; cyanocobalamin, 16 µg; and ascorbic acid, 200mg (Nutra Blend LLC, Neosho,

MO 64850).
cMineral premix supplied the following per kilogram: manganese, 120mg; zinc, 100mg;

iron, 120mg; copper, 10 to 15mg; iodine, 0.7mg; selenium, 0.4mg; and cobalt, 0.2mg

(Nutra Blend LLC, Neosho, MO 64850).
dEthoxyquin.
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plating was confirmed by enrichment of the samples on selective
media, respectively.

Experimental Design
In the present study, two independent trials were conducted
following the previously published in ovo challenge model for
virulent E. coli (11). In each trial, 360 18-day-old Ross 308
embryos were candled, randomly allocated, and placed into two
separate hatchers (GQF 1550 Digital Cabinet Egg Incubator)
based on treatment group (n = 180/treatment group). In both
trials, the same hatchers, set in the same room, were used for
each experimental treatment. On d19 of embryogenesis, embryos
were inoculated, into the amnion, with either 0.2ml with sterile
PBS control or 107 CFU/ml of LAM as described previously
(3). Additionally, on d19 of embryogenesis, seeder embryos
(n = 18 seeders/hatcher or 10%/hatcher) were inoculated with
E. coli/tetracycline treatment (4.5 × 104 CFU/ml E. coli +

272µg/ml) via in ovo injection into the amnion and segregated

TABLE 2 | Effect of in ovo administration of a lactic acid microbiota (LAM) on

gram-negative and presumptive lactic acid bacteria recovered from the

gastrointestinal tract (duodenum to the cecum) in an in ovo challenge model for

horizontal transmission of a virulent Escherichia coli1.

Treatment Gram-negative

recovery,

day-of-hatch

(Log10 CFU/g)

Presumptive

lactic acid

bacteria,

day-of-hatch

(Log10 CFU/g)

Gram-negative

recovery,

day 7 (Log10

CFU/g)

Trial 1

In ovo PBS control 4.32 ± 0.91a 5.17 ± 1.01b 7.43 ± 0.12a

In ovo 107 CFU/ml LAM 2.19 ± 0.77b 8.44 ± 0.12a 4.21 ± 0.77b

Trial 2

In ovo PBS control 3.91 ± 0.81a 1.84 ± 0.84b 6.34 ± 0.33a

In ovo 107 CFU/ml LAM 2.12 ± 0.55b 8.60 ± 0.12a 3.10 ± 0.77b

1Data expressed as mean ± SE.
a,b Indicates significant difference between treatment groups within columns (P < 0.05).

PBS, phosphate-buffered saline.

into mesh hatching bags (reusable mesh nylon netting, IDS,
Amazon). Doses for coadministration of tetracycline and this
particular virulent E. coli strain have been described previously
(11). On d21, dry chicks were removed from hatchers, and
hatchability was recorded. For each trial, GIT samples were
collected postmortem on day-of-hatch (DOH) and d7 to evaluate
gastrointestinal composition on selective media for enumeration
of total presumptive gram-negative or total aerobic LAB as
previously published (14). From each trial, 90 chicks from each
group were neck-tagged, individually weighed, and randomly
allocated into three-floor pens (n= 30 chicks/pen) and provided
ad libitum access to water and a balanced, unmedicated corn
and soybean diet (Table 1). Weight allocation on DOH was
performed to normalize body weight (BW) and prevent initial
treatment effect on BW as previously described (11). Mortality
was recorded for the duration of each trial (7-day trial period)
as well as BW gain (BWG). Cecal contents were collected from
six chickens per group to evaluate microbiome analysis (trial 2
only). Chickens were provided ad libitum access to water and
a balanced, unmedicated corn and soybean diet, meeting the
nutritional requirements for broilers recommended by Aviagen.
This study was carried out following the recommendations of the
Institutional Animal Care and Use Committee at the University
of Arkansas, Fayetteville. The Institutional Animal Care and
Use Committee approved protocol #17073 at the University of
Arkansas, Fayetteville, for this study.

Microbiota Analysis
Sample Processing, DNA Extraction, PCR, Library

Preparation, and Sequencing
At d7, ceca content samples (n = 6/group) were prepared
and transferred into collection tubes containing a lysis and
stabilization buffer. DNA extraction, amplification, and library
preparation were performed as described by Almonacid et al.
(15). Briefly, samples were lysed through bead-beating, and
DNA was extracted by guanidine thiocyanate silica column-
based purification method using a liquid-handling robot in a
class 1,000 cleanroom (16). The following universal primers were
used for PCR amplification of the V4 variable region of the 16S

TABLE 3 | Effect of in ovo administration of a lactic acid microbiota (LAM) on hatchability, body weights, and mortality at day 7, an in ovo challenge model for horizontal

transmission of a virulent Escherichia coli.

Group Hatchability1 Average BW

day-of-hatch

Average BW

Day 7

BW gain

Day 0–7

Mortality2

Day 7

Trial 1

In ovo PBS control 174/180 (96.66%) 40.03 ± 0.07b 164.56 ± 2.52b 116.93 ± 2.63b 14/90 (15.55%)*

In ovo 107 CFU/ml LAM 177/180 (98.33%) 47.87± 0.65a 185.14 ± 2.71a 137.27 ± 2.69a 5/90 (5.55%)

Trial 2

In ovo PBS control 176/180 (97.77%) 41.30 ± 0.03b 161.31 ± 2.68b 111.81 ± 1.91b 16/90 (17.77%)*

In ovo 107 CFU/ml LAM 179/180 (99.44%) 45.77± 0.11a 175.15 ± 2.71a 129.38 ± 3.12a 7/90 (7.77%)

1Data expressed as number of chicks that hatched/total number of 18-day embryos placed (%), n = 180 embryos.
2Data expressed as number of chicks that died from placement to 7 days/total number placed (%), n = 90 (3 replicates, n = 30/replicate).
a,b Indicates significant difference (P < 0.05). Data expressed as mean ± SE.

*Indicates significant differences in mortality (P < 0.05).

PBS, phosphate-buffered saline.
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rRNA gene: (515F: 5′GTGCCAGCMGCCGCGGTAA and 806R:
5′GGACTACHVGGGTWTCTAAT); primers also contained
Illumina tags, and barcodes were used for amplification of the
V4 variable region of the 16S rRNA gene (17). PCR products
were then pooled, column-purified, and size-selected through
microfluidic DNA fractionation (18). Consolidated libraries were
quantified by quantitative real-time PCR using the Kapa Bio-
Rad iCycler qPCR kit on a BioRad MyiQ before loading for
sequencing. Sequencing was performed in a pair-end modality
on the Illumina NextSeq 500 platform rendering 2 × 150-bp
pair-end sequences.

16S Ribosomal RNA Gene Sequences Analysis
After sequencing, the samples were demultiplexed, utilizing
Illumina’s BCL2FASTQ algorithm. Forward and reverse reads
obtained in each of the four lanes per sample were filtered
using the following criteria: both forward and reverse reads
in a pair must have an average Q-score > 30. Primers
and any leading random nucleotides (used to increase the
diversity of the library being sequenced) were trimmed, forward

FIGURE 1 | Bacterial phyla composition of phosphate-buffered saline control

and LAM treatment groups in trial 2.

FIGURE 2 | Bacterial family composition of phosphate-buffered saline control

and LAM treatment groups in trial 2.

reads were capped at 125 bp, and reverse reads were capped
at 124 bp. After quality filtering as described earlier, the
Deblur (19) workflow was applied for the forward reads to
generate a feature table and representative sequences using the
“qiime deblur denoise-16S” method implemented in QIIME2
version 2019.1 (20). The features that were present only in
a single sample were removed from the feature table. Naive
Bayes classifier (21) was trained using Green genes 13_8 99%
operational taxonomic units (OTUs) (22), where the sequences
were trimmed to include only 125 bases from the region of
the 16S rRNA gene bound by the 515F/806R primer pair.
This pretrained classifier was used to assign taxonomy to the
representative sequences using the q2-feature-classifier plugin.
Microbial diversity analyses were performed using the q2-
diversity plugin of QIIME2 using the even sampling depth of
14,610. The alpha diversity as computed by observed OTU
metric and Shannon’s index (23) and beta diversity as calculated
by unweighted UniFrac (24) distance metrics are reported.
All figures were created using ggplot2 packages (25) on R
version 3.5.3.

FIGURE 3 | Differentially abundant bacterial families identified by LEfSe (P <

0.05 and LDA score >2.0). Ruminococcaceae was significantly enriched in the

LAM treatment group as compared with that in the phosphate-buffered saline

control in trial 2.

FIGURE 4 | Composition of the bacterial genera that were found in

phosphate-buffered saline control and LAM treatment groups. “Not Assigned”

represents the sequence reads that were not assigned at any genus, however,

were assigned at the higher level. Others represent the minor bacterial taxa

whose average relative abundance across samples was <0.2% in trial 2.

Frontiers in Veterinary Science | www.frontiersin.org 4 August 2020 | Volume 7 | Article 489

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Arreguin-Nava et al. In ovo Administration of Defined LAB

Statistical Analysis
All data were subjected to one-way analysis of variance as a
completely randomized design using the general linear model
procedure of SAS (26). Data are expressed as mean ± standard
error (SE). Significant differences (P < 0.05) among the means
were further separated using Duncan’s multiple range test for
bacteria recovery, BW, and BWG. Hatchability and mortality
were compared using the chi-square test of independence to
determine the significance (P < 0.05) for these studies (27).
The linear discriminant analysis effect size (LEfSe) method was
used to identify significantly different bacterial taxa between
two treatments at different levels of the taxonomy (phylum,
family, and genus) using the criteria: P < 0.05, and LDA score
(log10) > 2.0. For statistical analysis of alpha and beta diversity,
Wilcoxon and permutational multivariate analysis of variance
(PERMANOVA) (28) tests were used, respectively. In both tests,
the level of significance was set at P < 0.05.

RESULTS

The effect of in ovo administration of a LAM on presumptive
gram-negative and LAB recovered from the GIT in a virulent
E. coli seeder is summarized in Table 2. In both trials, LAM
significantly reduced (P < 0.05) the recovery of gram-negative
bacteria from the GIT at hatch and at d7 when compared with
the in ovo PBS control group. However, in ovo administration
of LAM significantly increased the recovery of presumptive
LAB on DOH when compared with control embryos in both
trials (Table 2). No significant differences in the recovery of
presumptive LAB were observed at d7 between control or treated
groups (data not shown).

Table 3 shows the results of the effect of in ovo administration
of a LAM on hatchability, BW at DOH and d7, BWG, and d7
mortality. In both trials, no significant differences in hatchability
were observed. Nevertheless, in ovo administration of the LAM
significantly increased the average BW at hatch and at day 7, as
well as BWG from d0 to d7 when compared with the control PBS
group. Furthermore, a significant reduction in mortality was also

observed in both trials in embryos that received the LAM when
compared with the control PBS group (Table 3).

Summary of the Feature Table
The summarization of the feature table resulted in 703,667
sequence reads in 11 samples (5 PBS control and 6 LAM) that
range from 14,610 to 99,834 reads per sample. The median
and mean ± SE reads per sample were 66,975 and 63,969.73
± 7,716.50, respectively. Moreover, there were altogether 102
unique features (amplicon sequence variants) from all samples.

Bacterial Composition at the Phylum Level
Firmicutes and Proteobacteria are the only two phyla detected,
as shown in Figure 1. Firmicutes was reported as a dominant
phylum in both groups (PBS control: 77.40± 3.03%, LAM: 83.56
± 7.40%), followed by the Proteobacteria (PBS control: 22.59
± 3.03%, LAM: 16.43 ± 7.40%). Although not significant, the
Firmicutes were higher in LAM, whereas the Proteobacteria was
higher in the PBS control group (Figure 1).

Bacterial Composition at the Family Level
The relative abundance of bacterial families recovered from two
treatment groups is shown in Figure 2. The relative abundance of
Lachnospiraceae was found to be the highest in both groups (PBS
control: 47.34 ± 5.42%, LAM: 43.46 ± 6.27%), followed by the
Enterobacteriaceae in the PBS control group (22.59± 3.03%) and
the Ruminococcaceae family in the LAM group (26.55 ± 6.89%).
The relative abundance of the Enterobacteriaceae in the LAM and
the relative abundance of Ruminococcaceae in the PBS control
group were 16.43 ± 7.40% and 14.24 ± 5.53%, respectively.
The other critical bacterial families were Erysipelotrichaceae (PBS
control: 5.95 ± 3.11%, LAM: 3.73 ± 3.22%), an unidentified
family of order Clostridiales (PBS control: 5.42 ± 3.46%, LAM:
6.46 ± 2.19%), Lactobacillaceae (PBS control: 3.20 ± 1.23,
LAM: 2.05 ± 1.23), and Clostridiaceae (PBS control: 0.45
± 0.35%, LAM: 1.05 ± 0.85%). Also, Peptostreptococcaceae,
Enterococcaceae, and Paenibacillaceae were reported with an
average relative abundance across all samples<1%. Interestingly,
LEfSe analysis identified the bacterial family Ruminococcaceae to

FIGURE 5 | Differentially abundant bacterial genera identified by LEfSe (P < 0.05 and LDA score >2.0) between two treatment groups: phosphate-buffered saline

control and LAM in trial 2.
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be significantly higher in the LAM group as compared with that
in the PBS control group, as shown in Figure 3 (LEfSe, P < 0.05,
LDA score > 2.0).

Bacterial Composition at the Genus Level
The relative abundance ofmajor bacterial genera identified in two
treatment groups is shown in Figure 4. The majority of sequence
reads (>50%) were not properly assigned at the genus level, as
shown by the “Not Assigned” group (Figure 4) but were assigned
at the higher level of the taxonomy. The relative abundance of
minor bacterial genera (an average across all samples < 0.2%)
were grouped into “Others.” Clostridium genus belonging to
the families Clostridiaceae (PBS control: 0.44 ± 0.35%, LAM:
1.02 ± 0.86%), Erysipelotrichaceae (PBS control: 5.89 ± 3.11%,
LAM: 3.33 ± 3.19%), Lachnospiraceae (PBS control: 2.80 ±

0.44%, LAM: 3.84 ± 0.55%), and Peptostreptococcaceae (PBS
control: 0.48 ± 0.25%, LAM not detected) were identified
(Figure 4). Likewise, the genus Ruminococcus of the family

FIGURE 6 | Alpha diversity between phosphate-buffered saline control and

LAM as calculated by Shannon’s diversity index (A) and observed OTUs (B) in

trial 2. In ovo administration of LAM significantly increased the Shannon

diversity (A) as well as species richness (B) when compared with those in the

phosphate-buffered saline control *(Wilcoxon test, P < 0.05).

Lachnospiraceae (PBS control: 2.73± 1.07%, LAM: 2.77± 1.21%)
and Ruminococcaceae (PBS control: 1.48 ± 0.67%, LAM: 5.74 ±
2.42%) were found. Also, the genus Oscillospira that belongs to
the family Ruminococcaceae has reported the highest percentage
in the LAM group (11.25 ± 2.45%), whereas the second highest
in the PBS control group (5.33 ± 1.53%). Another important
observation was that the genera Butyricicoccus and Proteus were
not detected in the PBS control group, whereas they were found
in the LAM group 2.59 ± 1.37% and 2.51 ± 1.06%, respectively.
The genera Paenibacillus and Anaerotruncus were reported <1%
in each treatment group.

The bacterial genera Proteus, Butyricicoccus, and
unidentified bacterial genera of family Lachnospiraceae and
Erysipelotrichaceaewere significantly enriched in the LAMgroup.
In contrast, the Clostridium of the family Peptostreptococcaceae
and unidentified genus of family Enterobacteriaceae were
significantly abundant in the PBS control group (LEfSe, P < 0.05
and LDA score > 2.0) (Figure 5).

FIGURE 7 | PCoA plot showing the bacterial community structure between

phosphate-buffered saline control and LAM treatment groups as measured by

the Bray–Curtis (A) and unweighted UniFrac (B) distance metric. There was a

significant difference in the community structure between two treatment

groups when measured with both metrics using permutational multivariate

analysis of variance (Bray–Curtis, P = 0.003 and unweighted UniFrac distance

metric; P < 0.001) in trial 2.
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Alpha Diversity
The alpha diversities, as measured by Shannon’s diversity index
and the observed OTU metric, are shown in Figures 6, 7,
respectively. The alpha diversity calculated by both metrics was
significantly higher in the LAM group as compared with that in
the PBS control (Wilcoxon test, P < 0.05). This indicates that the
species richness increases when treated with LAM as compared
with PBS.

Beta Diversity
The PCoA plots illustrating beta diversities as computed by
Bray–Curtis and unweighted UniFrac distance metrics are
shown in Figures 7A,B, respectively. In agreement with the
alpha diversity, there was a significant difference in bacterial
community structure between PBS control and LAMasmeasured
by both Bray–Curtis (PERMANOVA, P= 0.003) and unweighted
UniFrac (PERMANOVA, P < 0.001) distance metrics.

DISCUSSION

Several investigators have shown the significance of in ovo
administration in the composition and diversity of the intestinal
microbiota of neonate broiler chickens (4, 5, 29). Additionally,
Bacteroides, Clostridium cluster XIVa, and Clostridium cluster
IV have been described to have a profound role in intestinal
homeostasis and reduction of inflammation (30, 31). In the
present study, the bacterial composition at the family level
revealed that Enterobacteriaceae was numerically higher in
the PBS control group, whereas the Ruminococcaceae was
significantly higher in the LAM treated group. Ruminococcaceae
is a family in the class Clostridia, which includes Clostridium
and other similar genera (Figures 2–5). Ruminococci spp. are
among the most abundant cellulose-degrading bacteria in the
rumen and may also make a significant contribution to plant
cell wall breakdown in the large intestine in other mammals.
They belong to the clostridial cluster IV, contributing to up to
20% of bacteria present in humans and are important short-
chain fatty acid (SCFA) producers (32). SCFAs induce profound
physiological responses in gut integrity and reduce inflammation
(33, 34). Interestingly, Ruminococcus spp., Faecalibacterium spp.,
and Lachnospiraceae spp. are essential butyric acid contributors
(35). Gastrointestinal inflammation has been associated with
a significant reduction of Clostridium clusters XIVa and IV,
such as Lachnospiraceae, Ruminococcus, and Roseburia (36),
hence, the importance of differentiating beneficial clostridial
strains from pathogenic strains such as Clostridium perfringens
and Clostridium difficile (37). In the present study, SCFA-
producing bacteria of the family Ruminococcaceae and the genus
Butyricicoccus were not detected in the PBS control, whereas
they were found in the LAM. Moreover, the unidentified genera
that belong to Lachnospiraceae were significantly higher in
embryos inoculated with LAM, whereas the Enterobacteriaceae
family was significantly higher in embryos inoculated with
PBS. Lachnospiraceae (phylum Firmicutes, class Clostridia) is
abundant in the digestive tracts of many mammals and is
crucial bacteria because of their role in the production of
SCFA (38). In mice, probiotics have been shown to induce

significant changes in SCFA. This, in turn, has a profound
impact on intestinal physiology as well as pathogen control
for enteropathogens such as enterohemorrhagic E. coli O157:
H7 (39). In chickens, in ovo application of probiotics suggests
that they can improve performance and immune functions and
provide resistance against enteropathogens without affecting the
hatchability of chickens (3, 14, 40, 41). Likewise, in the present
study, hatchability was not affected by the in ovo treatment
in both trials (Table 2). Moreover, embryos inoculated with
LAM showed a significant reduction in the total number of
gram-negative bacteria at DOH and d7. This reduction was
also accompanied by a significant increase in total LAB at
DOH in the LAM-treated group when compared with that
in the PBS control (Table 2). These results were associated
with significant differences in both beta diversity and alpha
diversity, suggesting that the LAM treatment may drive large-
scale changes in the microbial community structure and
composition (Figures 6, 7) as has been published previously
(4, 5, 29). In summary, in ovo administration of a defined LAM
isolated from adult hens did not affect hatchability, improved
BWG and reduced mortality at d7, induced variations in
the cecae microbiota structure, and reduced Enterobacteriaceae
colonization on a virulent E. coli horizontal infection model in
broiler chickens.
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