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Abstract

Aims Renal dysfunction in patients with heart failure (HF) has traditionally been attributed to declining cardiac output and
renal hypoperfusion. However, other central haemodynamic aberrations may contribute to impaired kidney function. This
study assessed the relationship between invasive central haemodynamic measurements from right-heart catheterizations
and measured glomerular filtration rate (mGFR) in advanced HF.
Methods and results All patients referred for heart transplantation work-up in Sweden between 1988 and 2019 were iden-
tified through the Scandiatransplant organ-exchange organization database. Invasive haemodynamic variables and mGFR were
retrieved retrospectively. A total of 1001 subjects (49 ± 13 years; 24% female) were eligible for the study. Analysis of covari-
ance adjusted for age, sex, and centre revealed that higher right atrial pressure (RAP) displayed the strongest relationship with
impaired GFR [β coefficient �0.59; 95% confidence interval (CI) –0.69 to �0.48; P < 0.001], followed by lower mean arterial
pressure (MAP) (β coefficient 0.29; 95% CI 0.14–0.37; P < 0.001), and finally reduced cardiac index (β coefficient 3.51; 95% CI
2.14–4.84; P < 0.003). A combination of high RAP and low MAP was associated with markedly worse mGFR than any other
RAP/MAP profile, and high renal perfusion pressure (RPP, MAP minus RAP) was associated with superior renal function
irrespective of the degree of cardiac output.
Conclusions In patients with advanced HF, high RAP contributed more to impaired GFR than low MAP. A higher RPP was
more closely related to GFR than was high cardiac index.
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Introduction

Heart failure (HF) is a significant risk factor for impaired renal
function, which in turn leads to further deterioration of
cardiac function.1 Both acute and chronic HF may lead to re-

nal impairment in the absence of primary kidney disease.
Worsening renal function is frequently associated with fluid
retention, diuretic resistance, and hospital readmission.2,3

Moreover, in patients with chronic HF, renal insufficiency
is independently associated with increased risk for
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cardiovascular death and all-cause mortality.3,4 However,
dynamic changes in kidney function should always be
interpreted within the present clinical context in order to
achieve an adequate risk stratification and to optimize the
individual treatment adequately.5

Traditionally, impaired renal function in HF has been attrib-
uted to hypoperfusion of the kidneys due to either progres-
sive decline of cardiac output (CO) or intravascular volume
depletion secondary to excessive use of diuretics.6 However,
other mechanisms may also be of importance,7,8 including el-
evated central venous pressure leading to renal congestion.9

Several studies have investigated how disturbances in
central haemodynamics may affect kidney function,2,10,11

but those were limited by a single-centre design, a
small sample size, and the use of estimated glomerular fil-
tration rate (eGFR) as an outcome measure.12–14 Various
creatinine-based equations have been elaborated for esti-
mating GFR in the general population or in patients with
chronic kidney disease, but none of them have been found
to be accurate in predicting GFR in HF.15 Therefore, the
gold standard for assessing renal function is the direct mea-
surement of GFR (measured GFR; mGFR) by the plasma
clearance of either 51Cr-ethylenediamine tetraacetic acid
or iohexol. However, these methods are seldomly applied
as they are labour-intensive and costly.12,13

To increase our knowledge of how renal function is af-
fected by HF, we assessed the relationship between invasive
central haemodynamic variables and measured GFR in
patients with advanced HF in a large, multicentre, nationwide
study.

Material and methods

Population

Between 1988 and 2019, all patients referred for heart trans-
plantation (HTx) work-up in Sweden were identified through
the Scandiatransplant organ-exchange organization (Aarhus
University Hospital, Skejby, Denmark), which operates a
pre-HTx and post-HTx register of patients from Nordic coun-
tries. During that time, three centres in Sweden performed
HTx: Sahlgrenska University Hospital, Gothenburg; Lund Uni-
versity, Lund; and Karolinska University Hospital, Stockholm.

Study design

We designed a retrospective cohort study, in which eligible
individuals were selected according to pre-specified criteria.
Patients were included if they were aged ≥ 18 years and if
they suffered from advanced HF and had undergone a
right-heart catheterization (RHC) as part of their HF work-up
at a Swedish HTx centre. Furthermore, it was required that

mGFR had been performed within 1 month after the RHC. Ex-
clusion criteria comprised treatment with renal replacement
therapy, ongoing mechanical circulatory support, or evalua-
tion for re-transplantation.

The diagnosis of advanced HF was made according to the
European Society of Cardiology guidelines,16 based on the
presence of the following features in patients treated with
guideline directed optimal therapy: typical signs (fluid reten-
tion and/or peripheral hypoperfusion) and symptoms (New
York Heart Association class III to IV); evidence of severe
cardiac dysfunction [shown by either left-ventricular ejection
fraction < 30%, pseudonormal or restrictive mitral inflow
pattern at Doppler echocardiography, high left-ventricular
and/or right-ventricular filling pressures, or elevated
natriuretic peptides]; severely impaired functional capacity
(confirmed by either a 6 min walk test distance < 300 m, a
peak oxygen uptake < 12–14 mL/kg/min during cardiopul-
monary exercise test, or inability to exercise); positive anam-
nesis for more than one hospitalization for HF in the past
6 months.16,17 Despite poor cardiac function and reduced ex-
ercise capacity, the large majority of patients (>90%) were
clinically stable at rest, and not on any inotropic support.

Firstly, patients were divided into two groups based on
whether the level of mGFR was <60 mL/min/1.73 m2, or
≥60 mL/min/1.73 m2. Secondly, patients were divided in
three groups according to HF aetiology: dilated cardiomyopa-
thy (DCM), ischaemic heart disease (IHD), and miscellaneous
non-ischaemic heart disease (MNIHD). Finally, in order to in-
vestigate the impact of advances in HF treatment over time,
patients were split into three groups based on whether they
underwent HF work-up before 2008, during or following 2008
or time of HF work-up unknown.

The study design complied with the Declaration of
Helsinki, and study approval was obtained from the
Institutional Review Board at the University of Gothenburg
(Registration number 728-12).

Haemodynamic evaluation

The haemodynamic variables recorded during RHC included
heart rate (HR), mean right atrial pressure (RAP), commonly
used as an indicator of central venous pressure (CVP), mean
pulmonary arterial pressure (MPAP), pulmonary artery wedge
pressure (PAWP), and mean arterial pressure (MAP). Arterial
and mixed venous oxygen saturations were also obtained.
CO was assessed using the thermodilution technique and
determined as the average of three to five measurements.
Cardiac index (CI) was computed as CO divided by body sur-
face area according to the formula of DuBois and DuBois.18

Transpulmonal gradient was defined as the difference be-
tween PAWP and MPAP, and pulmonary vascular resistance
was determined as transpulmonal gradient divided by CO
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and expressed in Wood units. Renal perfusion pressure (RPP)
was calculated as the difference between MAP and RAP.

Assessment of renal function

Direct measurements of GFR were performed by plasma
clearance of 51Cr-ethylenediamine tetraacetic acid or iohexol
and expressed as mL/min/1.73 m2 body surface area. Quanti-
fication using either tracer was considered to be acceptable
based on a previous study that described an excellent
correspondence between GFR values determined by the
two methods.19 Estimated GFR was calculated from serum
creatinine using the Chronic Kidney Disease Epidemiology
Collaboration equation.20

Statistical analysis

All statistical analyses were performed using SAS 9.4 statisti-
cal software packages (SAS Institute, Cary, NC). Descriptive
statistics are presented as mean ± standard deviation (SD)
for continuous variables, and categorical variables as num-
bers with percentages in parentheses. Missing data were
handled using both complete case analysis as well as multiple
imputation. For the multiple imputation, a total of 100
replicas of the dataset were generated with imputed values
replacing missing data using the fully conditional specification
method. For continuous variables, predictive mean matching
was employed (SAS Proc MI).

Comparisons between participants with mGFR< and
≥60 mL/min/1.73 m2 at baseline were performed with
analysis of variance for continuous variables and Fisher’s ex-
act test for categorical data. Penalized spline regression was
performed to further evaluate the relationship between hae-
modynamic variables and mGFR.

After testing for multicollinearity, and adjusting for age,
sex, and centre, the effect of haemodynamic variables on
mGFR was explored using analysis of covariance (ANCOVA),
first, in an analysis for each haemodynamic variable
separately and, second, in a multivariable analysis including
all relevant haemodynamic variables. Furthermore, based
on the same multivariable ANCOVA model, we obtained esti-
mates of absolute standardized (dimensionless) coefficients
to enable a comparison of how different haemodynamic
variables contributed to mGFR. The multivariable analyses
were performed on the imputed data sets and results were
combined using Rubin’s rules.

In addition, an age-adjusted, sex-adjusted, and centre-
adjustedmultivariate ANCOVA analysis was performed for each
HF aetiology (DCM, IHD, and MNIHD) and each HF work-up
period (<2008, ≥2008, and unknown HF work-up time).

To study the effect of RAP as opposed to MAP on mGFR,
we created four subgroups by using median splits for RAP

(≥ or <10 mmHg) and MAP (≥ or <73.5 mmHg). Further-
more, to investigate the impact of RPP against forward blood
flow on GFR, we generated four subgroups by using median
splits for RPP (≥ or <64 mmHg) and CI (≥ or <1.9 L/min/
m2). Analysis of variance was used to calculate an estimate
for the mean of GFR for each subgroup, to create confidence
intervals, and to compare pairwise differences between
subgroups.

All statistical tests were two-tailed (alpha level 0.05), and P
values < 0.05 were considered statistically significant. No
adjustments for multiplicity were performed.

Results

Patient characteristics

A flow diagram illustrating the inclusion and exclusion of
patients is given in Figure 1. In total, 1596 patients with
advanced HF were screened, 1001 of whom were found to
be eligible for inclusion in the study. Patient exclusion was
primarily related to missing mGFR measurements.
Supporting Information Figure S1 depicts the aetiology of
HF in the study population. DCM was the commonest diag-
nosis, followed by IHD, and miscellaneous non-ischaemic
cardiac conditions.

Table 1 summarizes demographic, clinical, and laboratory
characteristics of the whole study cohort as well as for pa-
tients with GFR < 60 and GFR ≥ 60 mL/min/1.73 m2 sepa-
rately. For the whole cohort, mean age was 48.8 ± 12.9 years,
24% of participants were women, and mean body mass index
was 25 ± 4.2 kg/m2. Nearly all patients had symptoms com-
patible with New York Heart Association class III or IV, with
left-ventricular ejection fraction 23.2 ± 11% (mean + SD).
Mean mGFR was moderately impaired (60.4 ± 18 mL/min/
1.73 m2) as was eGFR. The relationship between mGFR and
eGFR in the entire cohort is presented in Table S1.

Table 2 displays invasive haemodynamic measurements.
The haemodynamic profile for the whole study group was
compatible with advanced HF with elevated left-sided and
right-sided filling pressures and low CO, as well as reduced
mixed venous oxygen saturation. Patients with mGFR ≥ 60
had lower RAP than those with mGFR < 60 (P < 0.001), plus
slightly higher MAP, HR, CO, and CI (P < 0.05 for all).

Impact of haemodynamic variables on renal
function

Penalized spline regression for the relationship between each
haemodynamic variable and mGFR is displayed in Figure S2.
Table 3 displays results from ANCOVA showing the relation-
ship between mGFR and haemodynamic measurements after
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Figure 1 Flow diagram depicting the selection of eligible study participants. HF, heart failure; re-HTx, heart re-transplantation; MCS, mechanical cir-
culatory support; mGFR, measured glomerular filtration rate; RHC, right-heart catheterization; RRT, renal replacement therapy.

Table 1 Baseline characteristics of the whole study cohort and participants displaying mGFR < 60 mL/min/1.73 m2 vs. ≥60 mL/min/
1.73 m2a

Variable
Whole study cohort

(n = 1001) mGFR< 60mL/min/1.73 m2 (n= 505)mGFR ≥ 60 mL/min/1.73 m2 (n= 496)P value

Age (years) 48.8 ± 12.9 51.6 ± 11.7 45.9 ± 13.4 <0.001
Female sex 242 (24.2) 127 (25.1) 115 (23.2) 0.515
DCM 542 278 264 0.569
IHD 229 113 116 0.881
Other non-ischaemic
HF

230 114 116 0.764

BMI (kg/m2) 25.2 ± 4.2 25.4 ± 4.1 25 ± 4.2 0.175
NYHA class III/IV 599/209 (96.4) 320/127 (96.4) 148/48 (96.5) 0.154
LVEF (%) 23.2 ± 11 24.1 ± 10.8 22.3 ± 11.1 0.021
Haemoglobin (g/L) 131 ± 19 128.9 ± 19 133.4 ± 18.7 0.009
Creatinine (μmol/L) 109.5 ± 48.7 125.5 ± 51.4 93 ± 39.4 <0.001
mGFR (mL/min/
1.73 m2)

60.4 ± 18 45.9 ± 9.6 75.2 ± 11.1 <0.001

eGFR (mL/min/
1.73 m2)b

71.8 ± 25.8 58.5 ± 22.1 84.5 ± 23 <0.001

BMI, body mass index; DCM, dilated cardiomyopathy; eGFR, estimated glomerular filtration rate; HF, heart failure; IHD, ischaemic heart
disease; mGFR, measured glomerular filtration rate; LVEF, left-ventricular ejection fraction; NYHA, New York Heart Association.
aData are presented as mean ± standard deviation or as numbers with percentages in parentheses.
bEstimated GFR was calculated using the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation.21
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adjustment for age, sex, and centre. In the analysis studying
each haemodynamic variable separately, mGFR displayed a
negative relationship with RAP and a positive association
with MAP and CI. There was no significant relationship
between mGFR with either HR or PAWP. The haemodynamic
variables RAP, MAP, and CI remained independently and
significantly related to mGFR in the multivariable analysis.
PAWP, which was not significantly associated with mGFR in
univariable analysis, displayed an independent and positive
association with mGFR in the multivariable analysis
(P = 0.044; Table 3). In all patients, the proportion of ex-
plained variance, R-squared, was 0.05 when using age, cen-
tre, and sex as explanatory variables. Adding haemodynamic
variables to the model yielded R-squared of 0.16. The latter
analysis was however based on patients with complete data.
The relationship between haemodynamic measures and
mGFR was consistent across different HF aetiologies (DCM,
IHD, and MNIHD, Table S2) and over time (<2008, ≥2008,
and unknown HF work-up time, Table S3).

Figure 2 displays absolute standardized (dimensionless) co-
efficients, enabling comparison of the impact of different hae-
modynamic variables on mGFR. Figure 2A shows that RAP had
the greatest effect on mGFR (negative impact), followed by
MAP and CI (positive impact). Among the haemodynamic var-
iables with a statistically significant effect onmGFR, PAWP had

the least impact on mGFR. Figure 2B shows that RPP (MAP-
RAP) had the greatest effect on mGFR (positive impact),
followed by CI (positive impact). HR did not display a signifi-
cant relationship to mGFR in either of the two models.

Figure 3A shows that a combination of high RAP and low
MAP was associated with markedly worse mGFR than any
other RAP/MAP profile. Similarly, Figure 3B shows that pa-
tients with high RPP had greater mGFR compared with those
with low RPP, irrespective of whether CI was high or low.

Discussion

In this Swedish, nationwide, retrospective cohort study in pa-
tients with advanced HF, a higher RAP, as of a proxy for renal
venous pressure, was the haemodynamic variable that
displayed the strongest relationship with impaired kidney
function. Lower MAP was the second most important vari-
able associated with reduced mGFR, followed by impaired
CI. Notably, a high RPP (MAP minus RAP) was more closely
linked to enhanced kidney function than increased forward
flow represented by CI. Our findings were consistent with re-
spect to HF aetiology and constant over time. The results,
which are based on a large nationwide population, provide

Table 2 Invasive haemodynamic measurements for the whole study cohort and for patients displaying mGFR < 60 mL/min/1.73 m2 vs.
≥60 mL/min/1.73 m2a

Variable Whole study cohort (n = 1001) mGFR < 60 mL/min/1.73 m2 (n = 505) mGFR ≥ 60 mL/min/1.73 m2 (n = 496) P value

HR (beats/min) 78 ± 18 75 ± 17 80 ± 19 0.001
RAP (mmHg) 11 ± 7 11 ± 6 9 ± 6 <0.001
MPAP (mmHg) 31 ± 10 30 ± 10 31 ± 10 0.166
PAWP (mmHg) 21 ± 8 21 ± 8 21 ± 8 0.207
MAP (mmHg) 75 ± 11 73 ± 11 76 ± 10 0.002
CO (L/min) 3.7 ± 1 3.6 ± 1 3.8 ± 1.1 0.016
CI (L/min/m2) 1.9 ± 0.5 1.9 ± 0.5 2 ± 0.5 0.002
TPG (mmHg) 9.7 ± 5.5 9.6 ± 5.1 9.9 ± 5.9 0.516
PVR (Wood units) 2.8 ± 1.9 2.9 ± 2 2.7 ± 1.7 0.332
SaO2 (%) 95 ± 6 94.8 ± 6 95 ± 5.1 0.595
SvO2 (%) 57 ± 10 56.5 ± 9 57.6 ± 10.6 0.225

CI, cardiac index; CO, cardiac output; HR, heart rate; IHD, ischaemic heart disease; MAP, mean arterial pressure; MPAP, mean pulmonary
arterial pressure; PAWP, pulmonary artery wedge pressure; PVR, pulmonary vascular resistance; RAP, mean right atrial pressure; SaO2, ar-
terial oxygen saturation; SvO2, mixed venous oxygen saturation; TPG, transpulmonary pressure gradient.
aData are presented as mean ± standard deviation unless otherwise specified.

Table 3 ANCOVA adjusted for age, sex, and centre showing (A) the effect of each haemodynamic variable on mGFR separately and (B) the
multivariable effect of all relevant haemodynamic variables on mGFR

Variable

(A) Effect of each variable on mGFR (B) Multivariable effect of all variables on mGFR

β coefficient 95% CI P β coefficient 95% CI P

Heart rate (beats/min) 0.07 �0.01 to 0.16 0.106 0.05 �0.04 to 0.11 0.323
RAP (mmHg) �0.51 �0.69 to �0.33 <0.001 �0.59 �0.69 to �0.48 <0.001
PAWP (mmHg) �0.01 �0.16 to 0.14 0.881 0.19 0.09 to 0.28 0.044
MAP (mmHg) 0.26 0.13 to 0.38 <0.001 0.26 0.14 to 0.37 <0.001
CI (L/min/m2) 4.32 2.07 to 6.57 <0.001 3.51 2.14 to 4.84 0.003

ANCOVA, analysis of covariance; CI, confidence interval; CI, cardiac index; mGFR, measured glomerular filtration rate; MAP, mean arterial
pressure; PAWP, pulmonary artery wedge pressure; RAP, mean right atrial pressure.
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new insights into the relationship between central haemody-
namics and measured GFR, whereas most previous studies
have reported single-centre findings based on estimated GFR.

Right atrial pressure

The perception that decreased renal function in HF is mainly
driven by impaired CO and intravascular volume depletion fol-
lowing treatment with diuretics is still prevalent.22 However, in
the present study, high RAP was the haemodynamic variable
most strongly related to impaired GFR. Furthermore, when
RAP and MAP were well balanced, mGFR was adequate
regardless of whether the two pressures were high or low. Al-
though the cross-sectional nature of our study prohibits causal
inference, it is tempting to suggest that congestion of the
kidney, rather than poor forward flow or hypovolemia, is a ma-
jor determinant of renal insufficiency. This is mechanistically

plausible because a rise in RAP, which is transferred backwards
into the venous system, may be expected to generate an in-
crease in renal interstitial pressure due to the encapsulated
nature of the organ. A high renal interstitial pressure will in
turn lead to reduced renal blood flow, the collapse of kidney
nephrons, and a progressive decline in GFR.23

Other lines of evidence support our hypothesis. Early ex-
perimental studies observed that elevated CVP caused renal
congestion and worsening renal function.23,24 In clinical
studies, a reverse relationship between renal plasma flow
and venous pressure in patients with chronic HF was demon-
strated by Kos et al.25 This concept was broadened by
Damman et al.,10 who demonstrated that increased CVP
was strongly associated with renal impairment in patients
with right-sided HF due to pulmonary hypertension. Further-
more, in a retrospective study of 178 HF patients, Guglin
et al.7 observed that the development of impaired kidney
function was more dependent on venous congestion than

Figure 2 Analysis of covariance with absolute standardized (dimensionless) coefficients enabling comparison of the impact of different haemodynamic
variables on measured glomerular filtration rate. CI, cardiac index; HR, heart rate; MAP, mean arterial pressure; PAWP, pulmonary artery wedge pres-
sure; RAP, right atrial pressure.

Figure 3 Effects of (A) high or low RAP (≥ or <10 mmHg) on mGFR in participants with high or low MAP (≥ or <73.5 mmHg) and (B) high or low RPP
(≥ or <64 mmHg) on mGFR in participants with high or low CI (≥ or <1.9 L/min/m

2
). CI, cardiac index; MAP, mean arterial pressure; mGFR, measured

glomerular filtration rate; RAP, right atrial pressure; RPP, renal perfusion pressure.
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on impairment of CI. Also, increased CVP, in combination
with low systolic blood pressure, has been shown to induce
a substantial reduction in eGFR in acute HF.11

Mean arterial pressure

A MAP of 65–70 mmHg is empirically thought to be the min-
imal adequate MAP for organ perfusion, which is also
relevant to the normal function of the kidney.26 In the pres-
ent study, we showed that lower MAP was independently
associated with impaired renal function at any level of RAP
(Figure 3A). Nevertheless, an increase in RAP exerted a larger
adverse influence on mGFR than a corresponding decrease in
MAP. This is in line with experiments on isolated kidney
models, which showed that an increase in CVP reduces renal
blood flow and decreases urine formation to a greater degree
than an equivalent decrease in systemic blood pressure.23,24

The filtration function of the kidneys depends on several
factors besides renal blood flow, including the number of
functional nephrons, the balance of vascular tone between
the afferent and efferent arterioles, the Starling forces within
the glomerulus and the surface, as well as the permeability
characteristics of the glomerular basement membrane.24,27

As a result, renal blood flow can be preserved by local auto-
regulation systems8,24 in the event of decreasing forward
flow and declining arterial blood pressure. When CVP in-
creases, however, there are no similar compensatory mecha-
nisms capable of upholding adequate renal blood flow.27 The
combination of high venous pressure and low arterial blood
pressure will therefore inevitably impair kidney perfusion10

(Figure 3A). Over time, this will lead to renal hypoxia, loss
of nephrons, and irreversible kidney damage.24 Furthermore,
neurohormonal activation associated with HF results in vaso-
constriction of pre-glomerular arterioles,24 which reduces
GFR, leading to enhancement of proximal tubular sodium ab-
sorption and creating a vicious cycle precipitating the deteri-
oration of kidney function.24

Renal perfusion pressure

We found that higher RPP was associated with superior renal
function irrespective of the level CI. When MAP is severely re-
duced, elevation of CVP may neutralize the local autoregula-
tion of renal blood flow, rendering it directly dependent on
RPP.28 Thus, augmented forward flow does not necessarily
reverse renal insufficiency, because an increase in CO may
be distributed through organ systems other than the kidneys.
Experience in the multicentre ESCAPE trial is supportive of
this suggestion.29 Likewise, studies showing improvement
in CI did not result in improved renal function, prevent
re-hospitalization, or increase survival.30,31 These other data
are consistent with our own in suggesting that a positive

effect of forward flow on renal function is highly likely to
be dependent on adequate RPP.

Pulmonary artery wedge pressure

The independent relationship between increasing levels of
PAWP and higher GFR after adjustment for RAP and other
haemodynamic measurements is noteworthy. PAWP was the
least influential of the four significant haemodynamic vari-
ables identified in our research and it is possible that its iden-
tification is a spurious finding due to overfitting of the statis-
tical model.32 However, a higher PAWP would be expected
to result in higher circulating levels of natriuretic peptides,33

thus increasing GFR through vasodilatory effects on glomeru-
lar afferent arterioles.34 There are thus plausible pathophysi-
ological explanations for the positive relationship between
PAWP and GFR observed in our multivariable analysis.

Clinical perspectives

The reciprocal pathways leading to deterioration of both car-
diac and renal function, termed the cardiorenal syndrome,
remain ill-defined, as are the therapeutic options for this
condition.24 The present study brings some clarity to this
topic by highlighting the importance of identifying the cen-
tral haemodynamic aberrations related to decreased renal
function and fluid retention. Our study showed that in-
creased RAP was more closely related to impaired kidney
function than decreased MAP and that a lower RPP was
more strongly associated with renal insufficiency than a high
CI. Therefore, when treating with diuresis fluid overload due
to worsening renal function in HF, it is not unlikely that re-
ducing CVP and/or increasing MAP, to maintain sufficient
RPP, could be a successful treatment strategy if intravascular
hypovolemia is avoided. If systolic blood pressure is ade-
quate (>110 mmHg), it is reasonable to lower CVP with a
pharmacological treatment such as low-dose nitroglycerin
to increase renal blood flow, enhance GFR, and reduce
oedema.35,36 If systolic blood pressure is moderately lowered
(90–110 mmHg), augmentation of diuresis can be stimulated
by use of an inodilator such as dobutamine or levosimendan
(not approved in the United States), which reduce CVP and
increase CO, but require haemodynamic monitoring.35,36 Fi-
nally, when systolic blood pressure is low (<90 mmHg), it
may be necessary to add a vasopressor such as norepineph-
rine to increase MAP35,36 to support RPP and thereby main-
tain renal blood flow and GFR.35–37

Prospective studies are needed to assess whether lowering
RAP and/or increasing MAP to optimize RPP is clinically useful
when treating fluid overload due to worsening renal function
in advanced HF.
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Strengths and limitations

The main strengths of our study are that it is based on a na-
tionwide sample of real-world patients with advanced HF in
whom RHC was used to obtain estimates of haemodynamic
indices and GFR was measured directly. The limitations
include the retrospective study design, in which we were
unable to retrieve data on, and control for, confounders such
as comorbidities and medications. Although most patients
had stable chronic HF, the fact that GFR measurements were
not performed on the same day as RHC may have introduced
a bias. Furthermore, a substantial proportion of patients ini-
tially considered for inclusion in our research were excluded
from the study due to missing mGFR values. Nevertheless,
we feel that our study provides robust and valuable findings
that aid to the understanding of the relationship between cen-
tral haemodynamics and renal insufficiency and provides sup-
port for goal-directed haemodynamic treatment strategies to
manage worsening renal function in different HF conditions.

Conclusions

In a large cohort of patients with chronic advanced HF, a higher
RAP, reflecting greater CVP, was the haemodynamic factor
most strongly related to impaired renal function, followed by
lower MAP and reduced CI. Higher RPP was associated with
superior renal function, irrespective of the degree of CI.
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Figure S1. Underlying heart failure etiology. ACHD = Adult
congenital heart disease; ARVD = arrhythmogenic right ven-
tricular dysplasia; CA = cardiac amyloidosis; CS = cardiac sar-
coidosis; DCM = dilated cardiomyopathy;
HCM = hypertrophic cardiomyopathy; IHD = ischemic heart
disease; RCM = restrictive cardiomyopathy; VD = valvular
disease.
Figure S2. Penalized spline regression for the relationship be-
tween each hemodynamic variable and mGFR. CI = cardiac in-
dex; HR = heart rate; MAP = mean arterial pressure;
PAWP = pulmonary artery wedge pressure; RAP = right atrial
pressure; RPP = renal perfusion pressure.
Table S1. Correlation between eGFR and mGFR.
Table S2. ANCOVA with absolute standardized (dimension-
less) coefficients adjusted for age, sex, and center showing
the multivariable effect of all relevant hemodynamic vari-
ables on mGFR for patients with DCM, IHD, and miscella-
neous non-ischemic heart disease.
Table S3. Analysis of covariance with absolute standardized
(dimensionless) coefficients adjusted for age, sex, and center
enabling comparison of the impact of different HTx work-up
eras on measured glomerular filtration rate.
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