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Synopsis Venomous organisms used in research were historically chosen based on size and availability. This opportunity-

driven strategy created a species bias in which snakes, scorpions, and spiders became the primary subjects of venom

research. Increasing technological advancements have enabled interdisciplinary studies using genomics, transcriptomics,

and proteomics to expand venom investigation to animals that produce small amounts of venom or lack traditional venom

producing organs. One group of non-traditional venomous organisms that have benefitted from the rise of -omic tech-

nologies is the Conoideans. The Conoidean superfamily of venomous marine snails includes, the Terebridae, Turridae (s.l),

and Conidae. Conoidea venom is used for both predation and defense, and therefore under strong selection pressures. The

need for conoidean venom peptides to be potent and specific to their molecular targets has made them important tools for

investigating cellular physiology and bioactive compounds that are beneficial to improving human health. A convincing

case for the potential of Conoidean venom is made with the first commercially available conoidean venom peptide drug

Ziconotide (Prialt�), an analgesic derived from Conus magus venom that is used to treat chronic pain in HIV and cancer

patients. Investigation of conoidean venom using -omics technology provides significant insights into predator-driven

diversification in biodiversity and identifies novel compounds for manipulating cellular communication, especially as it

pertains to disease and disorders.

Introduction

Venom is defined as any exogenous substance that is

used to elicit an adverse effect in its target, and as a

result a wide range of organisms from notorious

snakes to lesser known leeches and bees are consid-

ered venomous (Fig. 1; Escoubas and King 2009;

Casewell et al. 2013; King 2015; Petras et al. 2015).

Historically, organisms used in venom research were

chosen opportunistically, based on size and ease of

collection, which largely focused on vertebrates, spe-

cifically snakes. Two genera of snakes account for

almost 40% of all published venom toxin sequences

in elapid snake venom research (Fry et al. 2008).

Remarkably, one easy to collect genus (Naja) has

been used to identify 40% of all three-finger snake

venom toxins (3FTxs) sequenced. Only three studies

have used harder to milk and less studied, non-

front-fanged snakes to investigate 3FTx bioactivity

(Fry et al. 2003; Pawlak et al. 2006, 2009; King

2015). The venom research strategy of size and ac-

cessibility can neglect the ecology, morphology, or

evolutionary relatedness between organisms, resulting

in a diversity of venomous animals, such as inverte-

brates, being effectively ignored (Modica and

Holford 2010; Puillandre and Holford 2010; von

Reumont et al. 2014b).

Invertebrates are underrepresented in venom re-

search. Spiders, which are the most diverse group

of venomous animals, with about 45,000 species,

make up less than 5% of all venom research studies
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(Nentwig 2013). Analogous to the within taxa bias

seen in snakes, of the 17,000 species of scorpions

described, only �50 species have had their venom

investigated (King 2015). It can be argued that the

venom research bias existed largely due to lack of

technological methods for effectively collecting and

characterizing small quantities of venom. The defi-

ciency of invertebrates has led to a dearth of infor-

mation that has hindered venom research. However,

recent technological advancements in the field of

molecular biology and proteomics has increased the

representation of marine cone snails, sea anemones,

bees, and ants in venom studies (Norton and Olivera

2006; Moran et al. 2008; Barlow et al. 2009; Casewell

et al. 2013; Sanggaard et al. 2014; Zhang et al. 2015).

Extensive research on a broad range of organisms is

imperative in order to effectively derive and test hy-

potheses about venom as it relates to species

diversification, predator–prey interactions, and to de-

scribe the immense biodiversity of animals found on

Earth (Fig. 1).

Rise of -omics

Early research on venom relied heavily on identifying

proteins using Edman degradation and mass spectro-

metry (MS; Perkins et al. 1993a, 1993b). In conjunc-

tion with fractionation, MS allowed for the separation

and identification of individual venom components.

Development of soft ionization methods in the late

1980s, such as electrospray ionization (ESI; Fenn

2003), and matrix-assisted laser desorption (Karas

and Hillenkamp 1988; Tanaka 2003) have revolution-

ized biological research. In particular, the ability to

identify proteins directly from MS data is a powerful

capability that soon demonstrated to be crucial for

Fig. 1. Biodiversity of venomous taxa. Phylogenetic reconstruction of the tree of life highlighting venomous organisms. Grey bars

represent the clades that include venomous organisms. Highlighted clades represent the traditionally studied venomous taxa (scorpions,

spiders, snakes, and lizards).
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analyzing venoms. Quickly thereafter, research groups

started to implement MS techniques to characterize

snake venom (Perkins et al. 1993a, 1993b). MS

approaches also enable the identification of isoforms

of venom peptides, slight variations in sequences, and

post translational modifications (Craig et al. 1999;

Escoubas et al. 2008; Safavi-Hemami et al. 2014;

Petras et al. 2015). Recent advancements in MS pro-

tocols have produced what are referred to as top-

down methods, in which whole intact venom com-

ponents can be identified (Breuker et al. 2008;

Ueberheide et al. 2009; Anand et al. 2014; Sunagar

et al. 2016). Although groundbreaking, in some or-

ganisms a proteome-only MS approach can be prob-

lematic. MS requires extraction of venom, which is

impractical for organisms that do not readily store

venom for delivery and other organisms that have

hard-to-access venom delivery systems that prevent

stimulation or extraction (von Reumont et al.

2014a). Additionally, MS methods for determining

primary venom peptide sequences are largely depen-

dent on downstream data analyses of source data-

bases, such as Mascot or Genbank (Perkins et al.

1999; Bhatia et al. 2012). For model organisms with

a rich complement of sequence databases, such as

humans, mice, or drosophila, this is not an issue.

In the case of non-model organisms, the application

of MS methods for primary sequencing is severely

limited by the database used. Non-model systems

generally require de novo sequence assembly and

source databases that are either missing or deficient.

As a result, an integrated strategy, termed venomics

(Calvete et al. 2007; Calvete 2014; Eichberg et al.

2015), in which MS proteomics is combined with

next generation transcriptomic or genomic sequenc-

ing and bioinformatic methods is necessary to vali-

date characterization of de novo venom peptides

found in non-model organisms and to paint the

full canvas of venom evolution and variation (Fig.

2; Fry et al. 2013; Sunagar et al. 2016). Using the

multi-omic integrated venomic strategy, venom re-

search has become more accessible to smaller,

harder to collect, and understudied venomous taxa.

The integrated venomic strategy has also broadened

the scientific community engaged in venom research

from traditional chemists and pharmacologists look-

ing for bioactive compounds for drug discovery and

development, to evolutionary biologists looking for

anatomical and molecular characters to understand

venom evolution through various taxa over time

(Duda and Palumbi 1999; Moran et al. 2008;

Favreau and Stöcklin 2009; Elmer et al. 2010; Koh

and Kini 2012; Otvos et al. 2013; Gorson et al.

2015; Jouiaei et al. 2015; Zhang et al. 2015).

The honey bee, Apis mellifera, was the first venom-

ous organism to have a fully sequenced genome using

Sanger sequencing (Weinstock et al. 2006). Since then,

the development of next generation sequencing (NGS)

high throughput techniques has allowed rapid sequenc-

ing of other venomous organisms. The genomes of

tarantula Acanthoscurria geniculate (Sanggaard et al.

2014), scorpion Mesobuthus martensii (Cao et al.

2013), velvet spider Stegodyphus mimosarum

(Sanggaard et al. 2014), fire ant Soenopsis invicta

(Wurm et al. 2011), and king cobra Ophiophagus

hannah (Vonk et al. 2013) have all been sequenced

using NGS technologies. With multiple platforms avail-

able, such as Illumina (Illumina, Inc., San Diego,

California), 454 (Roche Applied Science, Penzberg,

Germany), SOLiD (ThermoFisher Scientific, Waltham,

Massachusetts), and Ion Torrent (ThermoFisher

Scientific, Waltham, Massachusetts), genome sequenc-

ing of venomous organisms is becoming both accessi-

ble and affordable. However, genomics alone does not

provide enough information for determining the exact

mode and tempo of gene expression and does not give

significant insight into differential gene expression

within various tissue types (Sunagar et al. 2016).

While genomics is the study of the complete DNA

composition of an organism, venom gland transcrip-

tomics is the sequencing of mRNA specific to the

venom gland or secretory tissue of a venomous or-

ganism and therefore a glimpse at the specific venom

cocktail being used at the time by the animal

(Durban et al. 2011; Dutertre et al. 2014; Gorson

et al. 2015; Sunagar et al. 2016). Both transcrip-

tomics and genomics enable the identification of cer-

tain domains of a venom protein, such as the signal

and pre-pro regions that are rarely identified on the

proteomic level as they are cleaved off after transla-

tion (Duda and Palumbi 1999; Espiritu et al. 2001;

Kaas et al. 2010; Robinson and Norton 2014;

Sunagar et al. 2016). Employing an integrated

venomic strategy has enabled researchers to resolve

previously unanswerable questions, such as identify-

ing a correlation between varying venom composi-

tions and differences in ecological and environmental

factors. Several studies employing a combined geno-

mics and transcriptomics approach have looked at

venom variation between different developmental

stages in snakes (Durban et al. 2011; Durban et al.

2013; Gibbs et al. 2013). Specifically, proteomics and

transcriptomics were used to show venom variation

in various populations of the Southern Pacific

Rattlesnake, Crotalus oreganus helleri in the United

States (Sunagar et al. 2014). Lectin �-chains, which

are generally undergoing positive selection, were

found to be evolving under negative selection in
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the C. oreganus helleri rattlesnake population found

on Catalina Island (in the Pacific Ocean; Sunagar et

al. 2014). The integrated venomics approach used in

this study revealed that there can be different evolu-

tionary selection pressures acting on different venom

classes depending on the population site. In another

study that used an integrative venomics approach, it

was found that there were significant differences in

the mature peptides being produced in different

samples of venom from Conus consors (Biass et al.

2015). Proteomics and transcriptomics were used to

analyze C. consors venom at three different stages:

venom milked from the snail, venom extracted

from the venom gland, and venom expressed in

the transcriptome, effectively tracing the venom pro-

duction and delivery process from the venom glad

tissue to the point of venom envenomation of the

prey. The surprising result was that the cocktail of

venom peptides identified in the transcriptome, in

the venom produced within the venom gland, and

in the venom injected into the prey were not heavily

correlated. Each venom compartment was distinctive

in terms of peptide and protein content. This study

emphasizes the complexity of the venom mechanism

of Conodiean snails and indicates what is being se-

creted in the venom is not necessarily the same as

what is being produced in the gland (Biass et al.

2015).

Fig. 2. Venomics: an integrated NGS and proteomic strategy. An integrated multi -omics approach using genomic, transcriptomic,

bioinformatic, and proteomic protocols to identify venom proteins and peptides. Application of a combined -omics strategy validates de

novo venom peptide/protein identification and provides robust data to test hypotheses related to venom evolution and ecology. The

sequences shown at the bottom are an example of a validated peptide database obtained from NGS and proteomics.
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Advances in -omic technologies have increased the

breadth of research being done on all organisms and

have advanced research of non-model organisms.

Characterizing Conoidean Venom
Evolution and Variation

The technological -omics advancements removed the

barrier requiring large amounts of crude venom ex-

tracts and smaller-sized taxa such as centipedes, cer-

tain sea anemones, ants, and small scorpions have

become the focal point of an ever increasing

number of venom studies (Putnam et al. 2007;

Moran et al. 2008; Calvete et al. 2009; Cao et al.

2013; Sanggaard et al. 2014; Xu et al. 2014). One

non-model organism that has received a lot of atten-

tion using venomic technologies is the venomous

marine snails in the Conoidean superfamily.

Conoidean snails are slow moving predators and

therefore rely heavily on the efficacy of their venom

(Azam et al. 2005; Yao et al. 2008; Kendel et al.

2013; King 2015). The dependence on venom for

prey capture has led conoidean venom peptides to

achieve incredible molecular specificity (Olivera

2002; Olivera et al. 2014). Conoideans subdue

their prey using a venom apparatus made up of a

proboscis, radular tooth, a radular sac, venom gland,

and venom bulb (Fig. 3(A); Taylor 1990; Kantor et

al. 2000; Modica and Holford 2010; Kantor and

Puillandre 2012). Cone snails (Conus) are the most

studied in the Conoidea (Puillandre et al. 2014;

Puillandre et al. 2015); however, Conus comprises

only �5% of the biodiverse group of venomous

marine snails (Olivera et al. 1999; Holford et al.

2009; King 2015). Other non-Conus Conoideans,

such as the Turridae (s.l.) family, which has more

recently been divided into seven family groups

(Tucker and Tenorio 2009; Bouchet et al. 2011),

and the Terebridae family, also produce venom

(Heralde et al. 2008; Aguilar et al. 2009; Gonzales

and Saloma 2014; Gorson et al. 2015; Moon et al.

2016). Cone snails and terebrids dwell in shallow-

water tropical marine habitats, while the majority of

turrids can be found at greater depths (4200m;

Taylor 1977). Terebrids and turrids (some less

than 3 mm in length) have incredibly small venom

ducts, producing limited amounts of venom, which

initially inhibited their characterization. Using an

integrated venomics strategy, venom research of ter-

ebrids and turrids has become more feasible

(Castelin et al. 2012; Kendel et al. 2013; Gonzales

and Saloma 2014; Gorson et al. 2015; Moon et al.

2016).

Conoidean venoms are a complex mixture of

small molecules, peptides and proteins (Norton and

Olivera 2006; Gonzales and Saloma 2014; Gorson et

al. 2015; Neves et al. 2015). Each Conoidean venom

consists of4100 different peptides which contain a

signal sequence, followed by a pro region, and a

mature peptide at the C-terminus (Olivera et al.

1999; Lavergne et al. 2015). As cone snails are well

studied, 3000 different peptides (conotoxins) have

Fig. 3. Conoidean venom characterization. (A) A generic repre-

sentation of the Conoidean venom apparatus, which includes: a

venom bulb that is contracted to push the venom through the

venom gland, where the venom is being produced, a radular sac

that contains hollowed teeth (harpoons) that are used to inject

venom into the prey, and a proboscis that extends several times

beyond the snails body size to deliver venom-filled radula to a

prey target. Scissors shown represent the dissection of the

venom duct for downstream analysis by transcriptomic, genomic

or proteomic methods. (B) Identification of Conus venom peptide

superfamilies and cysteine frameworks. (C) Conoidean venom

peptides selected for bioactivity characterization. MVIIA is a

peptide from Conus magus venom that produced the ziconotide

(Prialt�) drug that is commercially available. MVIIA is in the O1

conotoxin gene superfamily and has a VI/VII cysteine framework.

Tv1 is a peptide from Terebra variagata that has a cysteine pattern

similar to the M-superfamily in cone snails and has a III cysteine

framework, but has a peptide fold of antiparallel beta hairpins

that is unique to known venom peptides. Tv1 and MVIIA are very

distinct peptides illustrating the disparate complexity of

Conoidean venom peptides.
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been identified from Conus venoms since the 1970s

(Conoserver.org). The majority of conotoxins have

been classified into venom gene superfamilies by ex-

amining the sequence identity of the signal sequence

(Jacob and McDougal 2010; Robinson et al. 2014;

Robinson and Norton 2014). A similar process is

being used to characterize turrid and terebrid

venom peptide superfamilies (Fig. 3(B); Heralde et

al. 2008; Gonzales and Saloma 2014; Gorson et al.

2015). Different venom peptide superfamilies gener-

ally have distinct physiological targets and high spe-

cificity for those targets (Olivera et al. 1999). While

there are similarities between the venoms of Conus,

inter- and intraspecific variation exists, such as dif-

ferences in the proportions of cysteine frameworks or

venom gene superfamilies (Duda and Palumbi 1999;

Olivera et al. 1999; Jakubowski et al. 2005; Romeo et

al. 2008; Abdel-Rahman et al. 2011). Due to the high

rates of non-synonymous mutations and the early

divergence of Conoidean families, the venoms of ter-

ebrids and turrids (s.l.) vary significantly from the

venoms of cone snails (Powell 1966; Duda and

Palumbi 1999; Puillandre and Holford 2010;

Gorson et al. 2015). The disparity in Conus and ter-

ebrid venom was recently revealed by looking at the

variation in venom peptide superfamilies between

Triplostephanus anilis and Terebra subulata (Gorson

et al. 2015). Fourteen terebrid venom gene superfa-

milies were identified in the two terebrid species

(TA, TB, TC, TD, TE, TF, TG, TH, TI, TJ, TK,

TL, and TM). Of the fourteen terebrid superfamilies

described, only one, TM, is homologous to a super-

family found in Conus marmoreus (H superfamily;

Robinson and Norton 2014). The divergence of

Conus and terebrid venom gene superfamilies sug-

gests that terebrid venom peptides will have different

structural features and physiological targets from

Conus, thereby increasing the pool of bioactive com-

pounds that can be explored for discovery of novel

therapeutic drugs. Conoidean venoms are exceed-

ingly effective candidates for drug discovery as they

are: (1) rapid acting, (2) highly selective, and (3)

very potent (Fig. 3(C)).

Potential of Conoidean Venom to
Increase Drug Discovery and
Development

Many bioactive peptides have evolved as a means of

predation or defense, especially in venomous animals

(Olivera et al. 1985; Gray et al. 1988; Olivera et al.

1999; Dutertre et al. 2014). The wide variety of bio-

logically active venom peptides are a promising re-

source for drug discovery (Lewis and Garcia 2003;

Favreau and Stöcklin 2009; Twede et al. 2009; Koh

and Kini 2012; King 2015; Ortiz et al. 2015). The

constant selective pressures acting on venom, due

to the effects of the predator–prey arms race (Van

Valen 1973; Dawkins and Krebs 1979; Casewell et al.

2013; Holding et al. 2016), enabled venom peptides

to develop features to increase stability and prey mo-

lecular target affinity. Venom peptides tend to inter-

fere with transmissions of ions in and out of cells,

suggesting they would be effective tools for manipu-

lating ion channel driven cell disorders such as pain

or cancer (Miljanich 2004; Vetter and Lewis 2012;

Lang et al. 2014). These properties make venom pep-

tides more appealing than artificially or chemically

conceived peptide-like compounds for which bioac-

tivity is not guaranteed (Uhlig et al. 2014).

The past two and a half decades have seen an in-

crease in the number of projects that are taking ad-

vantage of the Earth’s amazingly biodiverse group of

venomous organisms to develop novel drugs, to create

tools for diagnosing human diseases, and to create

probes to help advance the study of molecular recep-

tors and physiological pathways (Nisani et al. 2007;

King 2011; Diochot et al. 2012; Casewell et al. 2013).

As reptiles were the most accessible venomous organ-

isms for quite some time, the majority of approved

venom drugs were discovered from snake venom.

Specifically, snake venom proteins targeting thrombin,

integrin, and fibrinogen receptors were discovered

(King 2011; Koh and Kini 2012). Captopril�, an an-

giotensin-converting enzyme (ACE) inhibitor synthe-

sized to mimic a venom peptide from Brazilian

lancehead snakes, is a breakthrough drug that vali-

dates venom-based drug discovery research

(Cushman and Ondetti 1991). The venomic strategy

has made it more affordable and practical to examine

non-model venomous organisms for peptide or pro-

tein components that can lead to new therapeutics.

Investigating more venomous organisms will greatly

increase the amount of compounds available for

drug discovery and development (Puillandre and

Holford 2010; Casewell et al. 2013; King 2015).

The41 million estimated venom peptides ex-

pressed in conoidean venom are an immense re-

source for discovering novel compounds for

therapeutic drug development. The majority of con-

oidean venom peptides are disulfide-rich molecules

that have been shown to manipulate voltage and

ligand gated potassium (Kþ), calcium (Ca2þ), and

sodium (Naþ) channels, as well as nicotinic acetyl-

choline receptors, and noradrenaline transporters

(Olivera 2002; Terlau and Olivera 2004; Becker and

Terlau 2008; Fig. 4). As mentioned previously, ion

channels and receptors are the molecular targets for
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cancer, pain, and other debilitating human disorders

(Wood et al. 2004; Veiseh et al. 2007; Gkika and

Prevarskaya 2011; Dave and Lahiry 2012; Lang et

al. 2014). Ziconotide (Prialt�), a peptide from the

venom of Conus magus, was approved for commer-

cial use by the Food and Drug Administration in

2004 and is the first non-opiod analgesic (Olivera

2000; Miljanich 2004; Schmidtko et al. 2010).

Similar to MVIIA, CVID, MrIA, Vc1.1, RgIA,

Contulakin-G, and Conantokin-T are peptides syn-

thesized from the natural secretions of Conus that are

currently undergoing clinical trials to determine of

their potential as pain therapeutics (Fig. 4; Malmberg

et al. 2003; Miljanich 2004; Armishaw and Alewood

2005; Vincler et al. 2006; Han et al. 2008; McIntosh

et al. 2009). Although most Conus peptides in phar-

maceutical development are being used as analgesics,

PVIIA shows promise as a therapy for myocardial

infarction, and Conantokin-G for epilepsy (Fig. 4;

Koch et al. 2004; Armishaw and Alewood 2005;

Twede et al. 2009).

Conclusion

The progress of -omics technologies triggered a

domino effect in venom research. An integrated

venomics strategy has enabled a broader range of

venomous organisms, many of which are non-

model organisms, difficult to acquire, and contain

limited amounts of venom, to be examined and ul-

timately contribute to the understanding of venom

evolution in biodiversity. Without the vast techno-

logical molecular improvements in the last decade,

studies would most likely still revolve around

snakes, spiders, and scorpions. The increasing

amount of venom peptides identified from

Conoideans that are now in clinical trials, demon-

strates the importance of expanding the diversity of

venomous species examined (Fig. 4). As -omics tech-

nology continues to improve, it will be easier and

cheaper to add more species to the pool of venom-

ous organisms under investigation, enabling re-

searchers to resolve questions about venom

convergence across the animal kingdom and increase

the quantity of peptides available for drug discovery

and development for the benefit of human health.
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Calvete JJ, Juárez P, Sanz L. 2007. Snake venomics. Strategy

and applications. J Mass Spect 42:1405–14.

Calvete JJ, Sanz L, Angulo Y, Lomonte B, Gutiérrez JM. 2009.

Venoms, venomics, antivenomics. FEBS Lett 583:1736–43.

Cao Z, Yu Y, Wu Y, Hao P, Di Z, He Y, Chen Z, Yang W,

Shen Z, He X et al. 2013. The genome of Mesobuthus

martensii reveals a unique adaptation model of arthropods.

Nat Commun 4:2602.
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