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The recent history of perceptual experience has been
shown to influence subsequent perception. Classically,
this dependence on perceptual history has been
examined in sensory-adaptation paradigms, wherein
prolonged exposure to a particular stimulus (e.g., a
vertically oriented grating) produces changes in
perception of subsequently presented stimuli (e.g., the
tilt aftereffect). More recently, several studies have
investigated the influence of shorter perceptual
exposure with effects, referred to as serial dependence,
being described for a variety of low- and high-level
perceptual dimensions. In this study, we examined serial
dependence in the processing of dispersion statistics,
namely variance—a key descriptor of the environment
and indicative of the precision and reliability of
ensemble representations. We found two opposite serial
dependences operating at different timescales, and likely
originating at different processing levels: A positive,
Bayesian-like bias was driven by the most recent
exposures, dependent on feature-specific decision
making and appearing only when high confidence was
placed in that decision; and a longer lasting negative
bias—akin to an adaptation aftereffect—becoming
manifest as the positive bias declined. Both effects were
independent of spatial presentation location and the
similarity of other close traits, such as mean direction of
the visual variance stimulus. These findings suggest that
visual variance processing occurs in high-level areas but
is also subject to a combination of multilevel
mechanisms balancing perceptual stability and
sensitivity, as with many different perceptual
dimensions.

Introduction

Considerable evidence indicates that the human
visual system is able to extract statistical information
from sensory signals supporting the formation of
summary or ensemble representations across a variety
of dimensions, including low-level features such as
orientation or size, as well as higher level (complex or
abstract) traits such as facial expressions in a crowd
(Alvarez, 2011; Alvarez & Oliva, 2009; Ariely, 2001;
Chong & Treisman, 2003; Geisler, 2008; Rosenholtz,
Huang, Raj, Balas, & Ilie, 2012). Such information can
be used to efficiently encode (Dahmen, Keating, Nodal,
Schulz, & King, 2010; Fairhall, Lewen, Blalek, & de
Ruyter van Steveninck, 2001) and interpret subsequent
sensory inputs, and to make predictions about future
events (Summerfield & de Lange, 2014; Summerfield &
Egner, 2009).

Many forms of visual input can be summarized in
terms of statistical moments such as central tendency
(e.g., mean) and variance or dispersion (consider, for
example, a random-dot kinematogram, which will have
a mean and a variance in the distribution of dot
motion). Most studies on ensemble processing have
focused on central-tendency statistics (Albrecht &
Scholl, 2010; Chong & Treisman, 2005; Corbett &
Oriet, 2011; Haberman & Whitney, 2009; Im & Chong,
2014; Sweeny & Whitney, 2014; Wolfe, Kosovicheva,
Leib, Wood, & Whitney, 2015), while variance com-
putations have received less attention. However,
variance is known to play a crucial role in visual
experience, modulating perceptual grouping, ensemble
averaging (Brady & Alvarez, 2015; de Gardelle &
Mammasian, 2015; de Gardelle & Summerfield, 2011;
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Maule & Franklin, 2015; Maule, Witzel, & Franklin,
2014; Zylberberg, Roelfsema, & Sigman, 2014), texture
processing (Morgan, Chubb, & Solomon, 2014; Mor-
gan, Mareschal, Chubb, & Solomon, 2012), and
comparison between arrays (Fouriezos, Rubenfeld, &
Capstick, 2008). Variance is also critical to perceptual
prediction, since it provides a measure of the expected
range of stimuli (Summerfield & de Lange, 2014) as
well as the precision (reliability) of the sensory input
(Corbett, Wurnitsch, Schwartz, & Whitney, 2012;
Meyniel, Sigman, & Mainen, 2015; Sato & Kording,
2014). As an indication of sensory reliability, variance
also affects metacognitive judgments, although evi-
dence is conflicting regarding the extent and direction
of this effect (de Gardelle & Mammasian, 2015; Spence,
Dux, & Arnold, 2016; Zylberberg et al., 2014).

Notably, most studies involving variance manipula-
tions have examined its impact on perceptual decisions
about other features rather than on the perception of
variance itself. Comparatively few studies have inves-
tigated the mechanisms of variance processing directly.
Those that do have addressed mainly three questions:
What are the general properties of variance processing
(speed, automaticity, attentional demands)? To what
extent does variance computation rely on the process-
ing of the individual elements of the ensemble? And
does it operate as a specific trait of the ensemble or
feature dimension over which it is computed, or rather
as an abstract property? So far, these studies have
employed heterogeneous designs and reached disparate
conclusions. Concerning the general properties of
variance processing, a study examining judgments of
color diversity (Bronfman, Brezis, Jacobson, & Usher,
2014) suggested a rapid, preattentive mechanism. This
is in agreement with another study which reported
priming by visual variance, an effect that seems to
occur rapidly, automatically, and without need of
feature-based attention (Michael, de Gardelle, &
Summerfield, 2014); however, this latter study did not
examine variance perception directly, but only the
priming effect of variance on mean judgments.

Regarding the second question, namely the reliance
of variance computation on the processing of individ-
ual elements, available evidence (based on highly
heterogeneous studies) is conflicting: One study on
pattern regularity (positional variance) suggested a very
inefficient computation of variance, underwritten by
subsampling of a small fraction of the elements of the
array (Morgan et al., 2012). By contrast—and surpris-
ingly, given the finding of a rapid, preattentive
mechanism—the aforementioned study on color diver-
sity reported that variance processing required a
conscious representation of the individual elements
(Bronfman et al., 2014). In a similar manner, a study on
facial emotions in a crowd determined that variance
judgments along this dimension relied on high-level

processing of individual faces (Haberman, Lee, &
Whitney, 2015).

Finally, regarding the question whether variance,
once computed over a certain feature dimension of a
visual ensemble, retains its specificity or emerges as an
abstract property, the previously reported study on
priming suggested that the effect of (implicit) variance
on mean perception was feature specific (Michael et al.,
2014). In contrast, a study on direct variance percep-
tion found negative adaptation aftereffects which
generalized across dimensions of visual variance,
suggesting a high-level rather than a sensory origin for
this effect, and therefore indicating that variance may
operate as an independent cognitive property (Payzan-
LeNestour, Balleine, Berrada, & Pearson, 2016). In
summary, available evidence shows some dissension,
but a picture starts to emerge: Variance computations
would be relatively rapid, but appear to require high-
level processing of the individual elements of the array;
however, once computed, variance would become
dissociated from the properties of the ensemble and of
the perceptual dimension over which it was estimated,
and operate as a high-level cognitive trait.

To clarify some these issues, here we examine
variance processing as a distinct perceptual feature by
investigating the influence of previous variance pre-
sentations on judgments about this dimension. It has
long been known that perception is affected by
previous input. Influences of past perceptual events on
current perception fall generally into two different
categories. Best known are adaptation aftereffects—
repulsive (negative) biases in perception exerted after
prolonged exposure to a certain stimulus magnitude—
which have been described for many low- and high-
level traits, including variance (Campbell & Maffei,
1971; Mather, Verstraten, & Anstis, 1998; Payzan-
LeNestour et al., 2016; Roseboom, Linares, & Nishida,
2015), and which are classically employed as an
experimental tool for investigating perceptual mecha-
nisms (Kohn, 2007). The second category is observed in
relation to shorter presentations, generally consisting of
an attractive (positive) perceptual bias toward recent
sensory history. These serial dependences have been
found for several low- and high-level features (Cicchini,
Anobile, & Burr, 2014; Fischer & Whitney, 2014; John-
Saaltink, Kok, Lau, & de Lange, 2016; Liberman,
Fischer, & Whitney, 2014; Xia, Liberman, Leib, &
Whitney, 2015). It has been proposed that these two
different effects contribute in opposite ways to the
tuning of the balance between perceptual sensitivity
and stability: While negative adaptation produces a
normalization of neural representations in order to
maximize sensitivity to changes around the most
frequent stimulus intensity, serial dependence contrib-
utes to perceptual stability by smoothing out discrete
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discontinuities as sensory noise (Fischer & Whitney,
2014).

Our study employs serial dependence in variance
judgments as a way to track the dynamics and
timescales of the processing of this statistic as a distinct
perceptual feature. We conducted three experiments.

Experiment 1 investigated the existence, magnitude,
and direction of serial dependence in visual variance
perception, as well as its relationship with associated
stimulus features such as ensemble mean and spatial
location. In addition, we separately explored fovea and
periphery, as the compression of visual information
into summary statistics is particularly relevant to the
much larger, poorly spatially resolved peripheral field
(Balas, Nakano, & Rosenholtz, 2009; Freeman &
Simoncelli, 2011; Rosenholtz et al., 2012; Ziemba &
Simoncelli, 2015). Experiment 2 attempted to identify
the specific levels of perceptual decision that give rise to
serial dependence in variance: whether it is a bias in
low-level perceptual, decision-making, or response
processes. In Experiment 3 we investigated the rela-
tionship between the reported confidence in perceptual
decisions and their influence in subsequent judgments
along the same dimension, especially considering
Bayesian accounts of confidence as a measure of the
precision of neural representations (Meyniel et al.,
2015).

Overall, our results indicate that judgments of visual
variance are subject to serial-dependence effects as seen
for many other sensory dimensions. These effects are
independent of basic stimulus features such as spatial
location, but do depend on whether the previous
judgment made was regarding the same (visual
variance) or a different (visual direction) dimension,
and on the level of confidence expressed in previous
judgments. Together, these results suggest that visual
variance is processed as a more abstract feature of
perception, though is subject to the same processes of
efficient coding and perceptual stability found for many
other perceptual dimensions.

Experiment 1: Serial dependences
in variance judgments

Figure 1 outlines the experimental paradigm utilized
across all three experiments. We employed random-dot
kinematograms (RDKs), which allow independent
manipulation of mean and variance, and asked
participants to score the randomness of the motion of
RDKs using a visual analogue scale. Several variations
of this basic paradigm were used to characterize the
effects of previous history on variance judgments.

In Experiment 1, we investigated the existence of
serial dependence in variance judgments and its

relationship to basic features of stimulus presentation,
including eccentricity, spatial location, and mean RDK
motion direction. Thus, Experiment 1 employed the
basic task (variance estimation without further re-
quirements), with separate blocks in which the RDK
was displayed in fovea and periphery.

Methods

Stimuli

The stimulus consisted of a cluster of random
moving dots (RDK) displayed for 500 ms at a certain
eccentricity (08 or 208; see later) over a dark-gray
background (3.92 cd/m2). The cluster spanned 58 of
visual angle (8va) along the horizontal and vertical
dimensions and comprised 100 light-gray dots (diam-
eter¼ 0.118va, luminance¼ 43.14 cd/m2) moving along
a straight trajectory at a rate of 2 pixels/frame (8.458va/
s). The initial position of each dot was uniformly
randomized (excluding overlap with other dots), and its
coordinates were updated per frame by a trigonometric
calculation based on the individual dot’s angular-
motion direction, re-entering the cluster from the
opposite side if it reached a boundary. Each dot’s
motion direction was extracted from a circular Gauss-
ian (von Mises) distribution that varied for each
stimulus presentation: Its mean could take any random
integer value from 08 to 3598, and its standard deviation
was pseudorandomized among six possible values—
namely 58, 108, 208, 308, 408, and 608. This parameter,
standard deviation of RDK motion (StD), is the
dimension of interest in this experiment.

Procedure

The experimental session comprised a practice block
with 72 trials and eight experimental blocks with 60
trials each. The practice had a double purpose:
familiarizing participants with the scoring process and
the scale used in the experiment, and training mainte-
nance of centered gaze fixation. A broader range of StD
values was presented during the practice block com-
pared to the experimental blocks (18, 108, 208, 368, 608,
and 908). In both practice and experimental blocks,
participants had to score the randomness (variance) of
the motion of the RDK using a visual analogue scale
(see Figure 1) by adjusting the position of a sliding bar
with the mouse. During the practice block, feedback
was provided after each response by showing the
correct response (score corresponding to the veridical
variance) on an additional scale which appeared below
the one employed by the participant, after the
participant’s response. For simplicity, the scale was a
linear translation of the StD numeric values ranging
from 08 (left end) to 908 (right end). Within this block,
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the first 36 trials were foveal (the stimulus was

presented at 08va eccentricity) and the remaining 36

were peripheral (208va).

The eight experimental blocks employed the nar-

rower set of StD values detailed under Stimuli (58, 108,

208, 308, 408, and 608) and did not have feedback. Half

of the eight blocks were foveal (stimulus presentation at

08va eccentricity for all trials) and half peripheral

(presentation at 208va along the horizontal axis),

equally frequent in the right and left hemifields. The

sequence of foveal and peripheral blocks was pseu-

dorandomized for each participant.

Eye tracking was performed during the entire

experimental session. Calibration of the eye-tracking

Figure 1. Experiments 1–3: Structure. In all experiments, each trial presented a random-dot kinematogram of a certain mean and

variance (standard deviation, StD) in the motion trajectories of its component dots. In the example, Trials n� 1 and n have low and

high StD values, respectively. Experiment 1 required variance (StD) reports for each trial, using a visual analogue scale. Experiment 2

interleaved two thirds of trials in which variance reports were required and one third in which either no response (Experiment 2A) or

mean trajectory estimation (Experiment 2B) was required. In Experiment 2B the trial type was precued, so that the label ‘‘DIR’’ or
‘‘RAN’’ at the beginning of each trial indicated whether a mean or variance judgment was required for that trial. Experiment 3

required subjective confidence ratings following variance reports, using a similar visual analogue scale.
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system was performed at the beginning of each block
(practice and experimental) using a standard five-point
grid, allowing for a maximal average error of 0.58va.

At the beginning of each trial a red fixation cross
appeared at the center of the screen, spanning 1.18va
(horizontally and vertically). Participants were in-
structed to maintain their gaze on the fixation cross.
The RDK stimulus appeared after 1,000 ms, and both
the stimulus and the fixation cross disappeared
simultaneously at 1,500 ms from trial onset. Immedi-
ately after, the response scale and sliding bar were
displayed on the screen. The initial position of the bar
was randomized for each trial along the whole length of
the scale, to exclude the possibility that participants
simply repeated the same (response) action on each
trial. If the participant failed to respond within 5 s, the
next trial started automatically. The intertrial interval
was randomized between 250 and 1,000 ms.

On each trial, participants were allowed to correct
their gaze position during the first 700 ms if they
noticed that their gaze had deviated from the central
fixation cross. However, if a deviation (of more than
58va) occurred between 700 and 1,000 ms, the trial was
aborted and restarted. About a third of participants (9/
30) were tested with a slightly different procedure, in
which a trial abortion led directly to the start of the
next trial (after the intertrial interval). This procedure
led to the exclusion of more trials from analysis, since
poorly fixated trials were not restarted. Importantly, in
both cases trials retained for analysis were those in
which fixation was maintained during stimulus pre-
sentation (1,000–1,500 ms), and no trial was aborted or
restarted after stimulus onset at 1,000 ms.

Participants

Participants were recruited through online adver-
tisement and among members of the laboratory. All
were over 18 years old and reported normal or
corrected-to-normal vision. Every participant signed an
informed consent form before taking part and was
either awarded 10 course credits or paid £10 for
participation. The study was granted ethical approval
by the Research Ethics Committee of the University of
Sussex.

Apparatus

Experiments were programmed in MATLAB 2012b
(MathWorks, Natick, MA) with Psychtoolbox 3.0.10
and displayed on a LaCie Electron 22BLUE II 22-in.
monitor with screen resolution of 1,024 3 768 pixels
and refresh rate of 60 Hz. Eye tracking was performed
with the EyeLink 1000 Plus (SR Research, Mississauga,
Ontario, Canada) at a sampling rate of 1,000 Hz, using
a level desktop camera mount. Head position was

stabilized at 43 cm from the screen with a chin and
forehead rest.

Statistical analysis

Statistical analyses (detailed in the Results section)
were performed in MATLAB 2016a, R 3.4.2 (http://
www.r-project.org), and JASP (Version 0.8.3.1).

Results

Thirty participants (25 female, five male; mean age¼
19.0 years, standard deviation ¼ 1.35) participated in
this experiment. Except for two members of the
laboratory, they were first-year psychology students
who volunteered for course credits.

To ensure the validity of foveal and peripheral
conditions, trials without centered gaze fixation during
stimulus presentation were removed from the analysis:
A trial was deemed valid if the participant maintained
fixation within 58va of the center of the screen for over
80% of the stimulus-presentation period (1,000–1,500
ms from trial onset). Invalid trials were removed, as
well as all data regarding trial history that involved at
least one of these trials; for instance, if Trial n was valid
but Trial n � 3 was not, Trial n was not included in
analyses regarding serial dependence associated to
position n� 3 or further backwards. A total of 12,480
trials entered the analysis.

Overview of responses

Figure 2A shows the distribution of responses (Rn)
for each StD value and visual eccentricity. Showing
that participants were able to perceive the different
levels of variance presented in the experiment, reports
were positively correlated and monotonically increased
with stimulus StD for both foveal and peripheral
presentations.

To examine the general pattern of variance judg-
ments, we conducted a repeated-measures analysis of
variance (ANOVA) on the influence of two within-
subject factors—StD in the current trial (StDn) and
eccentricity—on participant’s responses. Both main
effects and their interaction were significant (sphericity
correction was applied by the Greenhouse–Geisser
method). For StDn, the main effect yielded F(1.825,
45.621)¼ 473.80, p , 0.001, g2p ¼ 0.950, in relation to
higher reports for larger stimulus StD. For eccentricity
the main effect was F(1,25) ¼ 33.32, p , 0.001, g2p ¼
0.571: Peripheral presentation was associated with
lower variance reports, with a mean difference of 6.798
(fovea minus periphery), t(25) ¼ 8.237, p , 0.001,
Cohen’s d¼ 1.615. The StDn 3 Eccentricity interaction
was also significant, F(2.715, 67.882)¼ 20.06, p ,
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Figure 2. Experiment 1. (A) Distribution of responses by StDn and eccentricity. The height of the bars represents the mean, and the error

bars the between-subjects standard error. (B) Normalized relative error in current response (zREn) as a function of the StD presented in

the previous trial (StDn�1). The relative error, defined as REn¼ (Rn� StDn)/StDn, has been normalized by the distribution of errors

provided by each subject for the current StDn; thus, a positive zREn means a larger report in that trial than the participant’s average for

that stimulus level, and conversely a negative zREn indicates a lower-than-average score—that is, sign is not necessarily related to

comparison with veridical StDn, if the participant exhibits a systematic bias for that StDn. Consequently, plotting zREn reports by StDn�1
allows examination of any possible bias in relation to previous-trial StDn�1, beyond any unrelated source of bias. The error bars represent

the between-subjects standard error. The ascending slope of the plots indicates a positive bias associated with StDn�1, for both foveal

and peripheral presentations; relative overestimation occurs for larger StDn�1. (C) Response bias associated with StD presented in recent

history. Each data point represents the fixed-effects coefficient estimate (B) in a Bayesian linear mixed-effects model for the association

between the StD presented in Trials n� 1 to n� 10 (StDn�t, t¼ 1, . . ., 10) and the normalized response error in the current trial. The

value of the B coefficient represents the linear slope between the past StD at a certain trial position (StDn�t) and the normalized

response error provided in the current trial—that is, the variation (in z scores) observed on the current response (regardless of the

presented StD), when StDn�t was increased by 18. A positive B represents an attractive bias (ascending slope), and a negative B a

repulsive bias (descending slope). The error bars depict the 95% credible intervals for the value of the B coefficient.
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0.001, g2p¼ 0.445, indicating that the difference between
foveal and peripheral responses increased for large
StDn values, as shown in Figure 2A. These results were
confirmed in a Bayesian repeated-measures ANOVA
with the same variables: The full model (both main
effects and interaction) was the most explanatory
according to the Bayes factor, outperforming the
second best (only the two main effects) by a factor of
BFfull/main ¼ 1.075 3 106. These findings (lower
responses in periphery than in fovea, especially for
large StDn) seem to relate to a greater regression to the
mean exhibited in responses about peripheral stimuli
(likely due to worse discrimination between stimulus
levels), combined with the fact that the range of the
response scale allows for larger errors by overestima-
tion than underestimation.

To further characterize perception of variance
throughout the different presented StD levels and
confirm the apparently worse performance in the
periphery, we examined the dispersion of the responses
per StD (rR), defined as the standard deviation of the
distribution of responses per stimulus level. We
conducted a repeated-measures ANOVA on the influ-
ence of StDn level and eccentricity on response
dispersion. The main effect for StDn yielded F(2.994,
74.840)¼ 58.426, p , 0.001, g2p ¼ 0.700, in relation to
greater response dispersion for large StD levels, as is
common in magnitude-estimation tasks: The value of
rR was lowest at 9.87 for StD¼ 5 and steadily increased
with StD value until it peaked at 21.03 for StD ¼ 30,
remained almost equal (rR ¼ 20.51) for StD ¼ 40, and
decreased moderately for StD ¼ 60 (rR ¼ 15.98),
probably due to a ceiling effect. As for the main effect
of eccentricity on response dispersion, it was F(1, 25)¼
4.165, p¼ 0.052, g2p ¼ 0.143, suggesting a trend toward
greater response dispersion in peripheral presentations:
mean difference¼�0.658 (fovea minus periphery), t(25)
¼�1.738, p¼0.086, Cohen’s d¼�0.339. Last, the effect
of the StDn 3 Eccentricity interaction was F(3.530,
88.244)¼ 4.757, p¼ 0.002, g2p ¼ 0.160, due to the larger
response dispersion in periphery occurring mainly for
large StD values. In a Bayesian repeated-measures
ANOVA with the same variables as in the frequentist
counterpart, the best model was the full model (StDn,
eccentricity, and interaction), which outperformed the
second best (with only StDn) by a factor of BFfull/StDn¼
8.747. In summary, response dispersion increased with
stimulus (StD) level and there was a (nearly significant)
trend toward greater response dispersion for peripheral
presentations, especially at large StDs, suggesting a
slightly worse performance at 208va eccentricity com-
pared to 08va, in agreement with the previous finding of
a greater regression to the mean in peripheral
responses.

Variance reports are subject to a positive bias driven by
very recent trial history

To characterize the existence of serial dependences in
variance reports, we tracked whether the response errors
provided by each participant for each StD level were
different as a function of the StD level presented in the
previous trial (serial dependence in relation to Trial n� 1)
or at positions further backward in trial history (Trial n�
t). Thus, the response variable in our analyses of serial
dependence, unless stated otherwise, is the normalized
response error relative to the current stimulus (zREn).
Response errors, defined as REn¼ (Rn� StDn)/StDn, are
normalized by the distribution of reports provided by
each individual for the level of StD presented in the
current trial. Thus, zREn sums to zero across all trials for
a given participant and StDn level: A negative zREn

indicates that the participant provided a below-average
response in that trial compared to their responses for
other physically identical stimuli, while a positive zREn

indicates an above-average response. Therefore, nor-
malization ensures that the value of the response variable
zREn is independent of the current StDn level and of each
participant’s global scoring biases.

Figure 2B presents the average zREn as a function of
the previous stimulus (StDn�1), plotted separately by
eccentricity. Regardless of generally lower reports at
larger eccentricity, a trend toward larger zREn for
higher StDn�1 values is evident for all trials pooled as
well as for both foveal and peripheral presentations, as
shown by the ascending slope of the three plots (Fovea,
Periphery, All). In other words, there was a relative
overestimation of the current stimulus when the
previous stimulus had a large StD, and a relative
underestimation when the previous StD was small,
compared to other trials in identical conditions of
eccentricity. This indicates a positive (attractive,
Bayesian-like) bias driven by Trial n � 1: Current
responses resemble the previous stimulus—serial de-
pendence for visual variance.

To verify this observation, we ran a repeated-
measures ANOVA on the effect of StDn�1 level (as a
within-subject factor) on current variance reports
(zREn). The effect of StDn�1 was statistically signifi-
cant, F(3.231, 93.697)¼ 7.221, p , 0.001, g2p ¼ 0.199,
Greenhouse–Geisser correction applied. The Bayes
factor for the inclusion of StDn�1 compared to the null
model (both of them included participant as grouping
variable) was BFinclusion¼ 56,187.91, indicating extreme
(Wagenmakers et al., 2017) evidence for superior
explanatory ability of the model that included this
term.
Serial dependence in variance does not depend on other
stimulus properties (visual eccentricity, spatial location,
or ensemble mean): Having established the existence of
a positive serial dependence exerted by the previous
trial, we sought to ascertain which properties of the
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stimulus presentation might modulate such bias.
Previous studies on serial dependence have observed
that it appears in the fovea as well as the periphery, and
its strength is tuned by spatiotemporal proximity
(Fischer & Whitney, 2014). Moreover, if the function of
(positive) serial dependence is to promote perceptual
continuity (Fischer & Whitney, 2014), it seems rea-
sonable to expect that similarity of other attributes of
consecutive stimuli would lead to a stronger influence
of the studied feature dimension, especially for two
attributes as closely related as ensemble mean and
variance.

To test the influence of these properties, we
conducted a repeated-measures ANOVA on zREn (as
dependent variable) with two within-subject factors:
StDn�1 and each of the features of interest separately
(eccentricity, retinal location, and similarity of means).

For eccentricity, both main effects were statistically
significant—Feccentricity(1, 25)¼ 31.004, p , 0.001,
g2p eccentricity¼ 0.554; FStDn�1

(2.662, 66.556)¼ 7.029, p ,

0.001, g2p StDn�1
¼ 0.219 (Greenhouse–Geisser sphericity

correction)—while the interaction was not, F(3.789,
94.722)¼ 1.710, p ¼ 0.157, g2p ¼ 0.064. This result, as
indicated by the roughly parallel plots for fovea and
periphery in Figure 2B, suggests that while eccentricity
influences the absolute value of the current StD
response, it does not modulate the serial dependence
exerted by StDn�1. To formally test this hypothesis, we

turned to Bayesian repeated-measures ANOVA. Table
1a summarizes the comparisons between all competing
models. The largest Bayes factor corresponds to the
model including both main effects but not the
interaction (BF10 ¼ 3.432 3 1029), which outperforms
the model that also includes the StDn�1 3 Eccentricity
interaction by a factor of BFmain/full ¼ 17.645—strong
evidence (Wagenmakers et al., 2017) against its
inclusion and in favor of the conclusion that while there
is an overall difference in reports, there is no difference
in serial dependence across eccentricity.

Regarding the influence of spatial location, we
analyzed only peripheral presentation blocks, classify-
ing trials according to whether the previous stimulus
had been presented on the same or the opposite
hemifield as the current one—that is, same presentation
location versus a separation of 408va between consec-
utive presentations. Results for the model comparison
given by a Bayesian repeated-measures ANOVA are
presented in Table 1b: The best model in terms of
evidence includes only StDn�1 (BF10¼ 2.073), while the
worst model also includes the hemifield and the StDn�1
3 Hemifield interaction (BF10 ¼ 0.120). This indicates
moderate evidence against the full model (including
interaction) compared to the null, and strong evidence
against it when compared to the most explanatory
model—that is, the one with StDn�1 only (BFfull/StDn�1

¼
0.058). These results support the hypothesis of serial

Model P(M) P(Mjdata) BFM BF10 Error %

(a) Eccentricity

Null model 0.200 2.747 3 10�30 1.099 3 10�29 1.000

StDn�1 0.200 1.229 3 10�29 4.918 3 10�29 4.476 0.626

Eccentricity 0.200 0.004 0.015 1.385 3 1027 1.303

StDn�1 þ Eccentricity 0.200 0.943 65.900 3.432 3 1029 3.951

StDn�1 þ Eccentricity þ StDn�1 3 Eccentricity 0.200 0.053 0.226 1.945 3 1028 2.392

(b) Spatial location (hemifield)

Null model 0.200 0.232 1.208 1.000

StDn�1 0.200 0.481 3.702 2.073 0.464

Hemifield 0.200 0.079 0.343 0.340 1.690

StDn�1 þ Hemifield 0.200 0.181 0.883 0.780 3.545

StDn�1 þ Hemifield þ StDn�1 3 Hemifield 0.200 0.028 0.114 0.120 1.387

(c) Mean difference (n � 1, n)

Null model 0.200 3.111 3 10�6 1.244 3 10�5 1.000

StDn�1 0.200 0.998 2,550.135 320,978.693 0.570

Mean difference 0.200 4.784 3 10�9 1.914 3 10�8 0.002 0.726

StDn�1 þ Mean difference 0.200 0.002 0.006 502.187 0.815

StDn�1 þ Mean difference þ StDn�1 3 Mean difference 0.200 8.729 3 10�7 3.491 3 10�6 0.281 1.091

Table 1. Serial dependence and stimulus properties—model comparison: Experiment 1, serial dependence (associated with Trial n�
1) and stimulus properties. Each panel presents the results of a Bayesian repeated-measures ANOVA on zREn, with two within-subject
factors: StDn�1 and one property of interest—eccentricity, spatial location (peripheral blocks only: same or opposite hemifield relative
to previous stimulus), and difference in the mean trajectories of the random-dot kinematograms presented in consecutive trials.
Notes: P(M)¼ prior probability of each model, assumed to be equal for all; P(Mjdata)¼ posterior probability of the model (given the
data); BFM¼Bayes factor for the model; BF10¼Bayes factor for the alternative hypothesis relative to a null model (expressed by each
model). All models include subject.

Journal of Vision (2018) 18(7):4, 1–24 Suárez-Pinilla, Seth, & Roseboom 8



dependence being unaffected by the spatial location of
consecutive stimuli. To confirm the absence of tuning
by spatial proximity, we further assessed the strength of
serial dependence separately for trials with repeated
versus opposite hemifield location with respect to the
previous stimulus. Results for these analyses are
presented in the Supplementary Materials, section 1
(see also Supplementary Figure S1). While the data of
Experiment 1 suggest a nonsignificant trend toward a
stronger serial-dependence effect for same presentation
locations, these results are not confirmed by the data of
other experiments; for Experiment 3, the trend goes in
the opposite direction.

Last, we examined the influence of mean RDK
direction on serial dependence of variance—specifically,
whether the magnitude of the serial-dependence effect (in
variance) depended on the successive presentations
containing a similar mean direction. With this aim, we
binned the absolute difference between the mean RDK
directions in the previous and current trial into five
categories:�368, 378–728, 738–1088, 1098–1448, and 1458–
1808. As before, we conducted a Bayesian repeated-
measures ANOVA with two within-subject factors
(StDn�1 and mean difference). As shown in Table 1c, the
best model included only StDn�1 (BF10¼ 3.2103 105),
whereas the model including both main effects and their
interaction was the second worst (after the one withmean
difference only), with BF10¼ 0.281. The Bayes factor for
inclusion of the interaction term indicated extreme
evidence against it (BFinclusion¼ 3.4913 10�6); this was
also the case if the comparison was made between the full
model and the model lacking only the interaction
(BFmain/full¼ 1789.55). This lack of association of mean
similarity and serial dependence in variance was further
confirmed in a different experiment (detailed in Supple-
mentaryMaterials, section 2) that used a limited range of
mean trajectories, allowing for only four between-trials
differences (08, 358, 558, and 908).

In summary, serial dependence in variance reports is
not modulated by low-level properties of the stimulus,
including visual eccentricity or spatial location, or
associated features such as mean, suggesting that visual
variance (operationalized as variance of motion direc-
tion) is processed as a feature dimension independent
from these properties, at least at the level of perceptual
decision making that gives rise to serial dependence.
Positive serial dependence in variance extends up to the
latest two trials: Investigations of serial dependence have
typically focused on the influence of very recent trial
history, examining only the effect of the immediately
previous and penultimate trials on reports. We examined
serial dependence through trial history by modeling the
fixed-effects size of serial dependence while allowing for
between-subjects variability, building 10 varying-inter-
cept, varying-slope Bayesian linear mixed-effects models
(LMMs) with zREn as a dependent variable and StDn�t (t

¼ 1, . . ., 10) as an independent predictor, with random
effects grouped by participant. We chose a uniform prior
distribution over the real numbers for the fixed-effects
coefficient and for the standard deviation of the by-
subject varying intercepts and slopes, and an LKJ prior
with shape parameter g¼ 2.0 for the random-effects
correlation matrices. Unless stated otherwise, analogous
priors were established for other Bayesian LMMs
reported in this article. Fixed-effects coefficient estimates
were largely insensitive to prior selection, as can be seen
in the example presented in the Supplementary Materials
(section 3, Supplementary Figure S2).

We applied these models to foveal and peripheral
blocks separately, as well as to the overall data set.
Figure 2C presents the fixed-effects coefficients and
95% credible intervals for the association between past
StD (up to Trial n� 10) and current report for all trials,
as well as per eccentricity. The value of the LMM fixed-
effects coefficient estimate for the effect of StDn�t on
zREn represents the linear slope for the relationship
between the StD presented in Trial n� t and the
normalized response error provided in the current trial:
in other words, the variation (in z scores) in zREn when
StDn�t increases by 18. Therefore, a positive B
coefficient represents an attractive bias: A larger StD in
a past trial drives a larger response in the present one,
regardless of the current stimulus. Conversely, a
negative B coefficient represents a repulsive bias.

The fixed-effects B coefficient estimates for the effect
of StDn�1 and StDn�2 on zREn are positive, indicating
an attractive bias. For StDn�1 (all trials pooled), B¼
0.0034 [0.0017, 0.0051] suggesting that regardless of the
value of StDn, participants’ judgments of visual variance
increased by a magnitude of 0.0034 (z score) per 18
increase in previous-trial StD (StDn�1). The effect of
StDn�2 is weaker but still present: B¼ 0.0014 [0.0003,
0.0026]. To make clear the size of these effects, we can
consider absolute responses as an outcome variable
(adding the current StDn and the interaction with StDn�1
to the models). Here, the increase is 0.0586 (0.0272–
0.0892) units per unit of StDn�1, or an attractive effect of
5.9% toward the previous stimulus, whereas for StDn�2
the effect size is 0.0242 (0.0006–0.0483), or 2.4%.

Thus, variance judgments at one specific trial (n) are
attracted by a small but meaningful amount toward the
variance presented in the previous trial (n� 1) and, to a
lesser extent, the trial before that (n� 2). Note that since
the initial position of the response bar is randomized for
each trial, simple motor routines involved in response
execution cannot explain this serial dependence.

Variance reports are subject to a negative bias driven by
less recent trial history

Looking past the previous two trials, as shown in
Figure 2C, a reversal from positive (Trials n� 1 and n�
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2) to negative B coefficient values is observed for less
recent presentations, indicative of a negative (i.e.,
repulsive, anti-Bayesian) bias: Current responses were
less similar to the StD presented in those trials, in a
manner akin to sensory-adaptation aftereffects (Kohn,
2007; Payzan-LeNestour et al., 2016). This effect
started at Trial n � 4, peaked at Trials n � 7 to n� 9
(StDn�8: B ¼�0.0021 [�0.0032, �0.0010]), and started
to decline afterward. Similar effect sizes and timescales
are observed for foveal and peripheral presentations
(see Figure 2C).

In the Supplementary Materials (section 4, Supple-
mentary Figure S3) we present a complete exploration
of the evolution of the negative effect in relation to
more remote positions in trial history. Evidence for the
negative effect starts to fade after Trial n � 9 but
persists to some extent until Trial n � 20.

To confirm that the observed serial effects were truly
dependent on trial history, we conducted extensive
control analyses exploring potential serial dependences
in relation to future presentations (StDnþ1) and to
shuffled data (see Supplementary Materials, section 5,
Supplementary Figure S4). These analyses confirm that
only in the true trial history is there evidence for the
obtained negative and positive aftereffects, supporting
the conclusion that these effects are not simply due to
statistical artifacts.

Experiment 2: Processing stages
involved in serial dependence in
variance reports

In the previous experiment we found evidence for
serial dependence in judgments about the variance of
RDK stimuli. Specifically, we found two opposite types
of bias at different timescales: an attractive, Bayesian-
like bias related to the StD of the very recent (n� 1 and
n� 2) trials and a repulsive, negative bias which
operates on a longer timescale.

At what level of processing do these serial depen-
dences exert their influence? The nonlocal nature and
independence from intertrial similarity in RDK direc-
tion mean suggest that attractive serial dependence may
not be driven by low-level, sensory processes. However,
the specific stages of variance processing at which it
arises are yet to be determined (Fischer & Whitney,
2014; Fritsche, Mostert, & de Lange, 2017; John-
Saaltink et al., 2016). To address this issue, in this
experiment we applied several manipulations to the
task to disambiguate the contributions of low-level
sensory processes, perceptual decision, and responses
to serial dependence of variance judgments.

Experiment 2A aimed to isolate the contribution of
response to the serial dependence effect by introducing
no-response trials, in order to exclude the influence of
physically making a response. However, in this
experiment no-response trials were not precued,
meaning that a potential contribution of decision
making and response preparation during stimulus
presentation could not be ruled out. For this reason, in
Experiment 2B we employed a (precued) task-switching
design to disentangle the contribution of perception
and decision processes.

Methods

The methods of these experiments were similar to
those of Experiment 1, with exceptions as follows.

Stimuli

All stimuli were presented on the center of the screen
(where a fixation cross was displayed), and eye tracking
was not performed, as visual eccentricity was not under
examination.

Procedure

Experiment 2A had a practice block with 72 trials
and 10 experimental blocks with 60 trials each; the
same was true for Experiment 2B, except that the
practice block was longer (90 trials), due to the
additional demands of the task-switching design (see
later). In Experiment 2B nine participants (out of 16)
performed a session twice as long (10 blocks), due to
differential availability of different participants. For
both experiments, two thirds of the trials in each block
required randomness scores as described for Experi-
ment 1. In Experiment 2A, the remaining one third
were no-response trials: After stimulus presentation,
instead of the response bar only a blank screen
appeared, for a randomized interval between 1,000
and 3,000 ms, after which the next trial started.
Participants were told in advance that they should
expect a certain number of no-response trials, but they
did not know the proportion and these trials were not
precued in any way. In Experiment 2B, one third of
trials required participants to report the mean
direction of the motion of the RDK, by adjusting a
rotating arrow with the mouse (see Figure 1). The
required task was precued at the beginning of the trial:
One three-letter string, either ‘‘RAN’’ (randomness
report required) or ‘‘DIR’’ (mean direction report
required), was displayed for 1 s before the appearance
of the fixation cross. The rest of the trial structure was
the same as in Experiment 1 (only the response scale
differed in RAN and DIR trials).
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Results

Experiment 2A: Effect of response execution on serial
dependence in variance reports

Fifteen psychology students (13 female, two male;
mean age¼ 20.4 years, standard deviation¼ 5.3)
volunteered in exchange for course credits, under the
conditions described previously. The total number of
trials collected across all participants was 9,000, out of
which 3,000 were no-response trials.
Serial dependence of previous StD is not affected by
response processes: Figure 3A shows the distribution of
normalized variance reports (zREn) as a function of the
previous trial’s StD (StDn�1) and type—that is, whether
n� 1 was a response or a no-response trial. The

ascending and roughly parallel plots for each trial (n�
1) type suggest that serial dependence in relation to
StDn�1 was similar in magnitude and sign (i.e.,
attractive effect) regardless of whether Trial n� 1 was a
response or a no-response trial. To formally test this
observation, we conducted a Bayesian repeated-mea-
sures ANOVA on the effect of StDn�1 and Trial n� 1
type (as within-subject factors) on zREn. A comparison
of all possible models based on the results of this
analysis is shown in Table 2A. The best model includes
only StDn�1 (BF10 ¼ 2.386 3 106). There was strong
evidence against the inclusion of the StDn�1 3Trial n�
1 type interaction: BFinclusion ¼ 0.051. In a direct
comparison between the main-effects model and the
full model, the ratio was given by BFmain/full ¼ 10.75.

Figure 3. Experiment 2. (A, B) Normalized relative error in current response (zREn) as a function of the StD presented in the previous

trial (StDn�1), plotted separately by Trial n � 1 type: (A) response versus no-response (Experiment 2A); (B) RAN versus DIR

(Experiment 2B). The error bars represent the between-subjects standard error. Both response and no-response trials are associated

with a positive bias by Trial n� 1, as suggested by the ascending plot lines in (A), whereas in (B), only RAN trials elicit such positive

serial dependence. (C, D) Fixed-effects coefficient estimates in 20 Bayesian linear mixed-effects models with StDn�t (t¼ 1, . . ., 10) as
predictor of current response (zREn), modeled separately by Trial n � t type: (C) response versus no-response (Experiment 2A); (D)

RAN versus DIR (Experiment 2B). Since the dependent variable is the current variance (randomness) judgment, Trial n is always a

response (C) or RAN (D) trial. The error bars represent the 95% credible intervals for the true value of the coefficient.
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This lack of interaction confirmed that the effect of
StDn�1 on current reports was independent of response
execution.

Figure 3C shows the fixed-effects coefficient estimates
and 95% credible intervals for 20 Bayesian LMMs for
zREn, with StDn�t (t¼ 1, . . ., 10) as putative predictor,
split by Trial n� t type and modeled separately. A
similar pattern in terms of effect size and direction can
be seen regardless of whether previous trials required
response or not: an attractive bias in relation to the latest
two trials (weaker for n� 2), a roughly zero effect of
Trial n� 3, and a reversal toward a negative effect
peaking around Trials n� 5 to n� 9, with a similar
magnitude and timescale as for Experiment 1.

Having established that serial dependence does not
arise from response itself, we questioned whether
intermediate responses (i.e., responses made in past
trials between the current one, n, and a Trial n � t
whose serial effect is considered) could affect the degree
to which the effect of further trials carried through. For
simplicity, we considered only the case of serial
dependence related to Trial n � 2 (for the sake of
homogeneity, we limited the analysis to those response
trials wherein Trial n� 2 was also a response trial) and
classified the data set according to whether the
intermediate trial (n � 1) was a response or a no-
response trial. We ran a Bayesian repeated-measures
ANOVA on the effect of StDn�2 and Trial n � 1 type
(as within-subject factors) on zREn. The best model
contained only StDn�2 (BF10¼ 30.045), outperforming
the full model (two factors and interaction) by a factor
of 12.87. However, when the comparison was made
between the full model and the equivalent model
stripped of the effect of interest (i.e., the StDn�2 3Trial
n� 1 type interaction), the latter outperformed the

former by a factor of only BFmain/full ¼ 1.98. Overall,
the Bayes factor for inclusion of the interaction term
indicated moderate evidence against it (BFinclusion ¼
0.261), suggesting that the attractive bias related to
previous trials is not disrupted (nor boosted) by the
participant providing a response on the intermediate
trials.

Experiment 2B: Effect of decision on serial dependence in
variance reports

Experiment 2A demonstrated that serial dependence
in visual variance is not due to response execution;
however, as trials were not precued as to whether a
response would be required, these results do not
disambiguate between perception and decision making
(response preparation). Therefore, in Experiment 2B
we deployed a precued task-switching design in which
participants needed to prepare and respond to two
different perceptual tasks: reporting the variance (RAN
trials) or the mean (DIR trials) of the motion of the
RDK.

Fifteen first-year psychology students (13 female,
two male; mean age¼ 21.4 years, standard deviation¼
8.8) participated in this experiment in exchange for
course credits, under the conditions already described.
In total they performed 7,200 trials, out of which 2,400
were DIR-trials (alternative task).
Serial dependence is related to dimension-specific deci-
sion making: We analyzed the data in a similar manner
to Experiment 2A, ascertaining the influence of trial
type in the observed serial dependence on variance
judgments. Figure 3B presents the distribution of
variance reports (zREn) as a function of StDn�1 and
Trial n� 1 type—that is, whether it required a decision

Models P(M) P(Mjdata) BFM BF10 Error %

(a) Response (Experiment 2A)

Null model 0.200 3.575 3 10�7 1.430 3 10�6 1.000

StDn�1 0.200 0.853 23.192 2.386 3 106 0.393

Trial n � 1 type (response vs. no-response) 0.200 5.551 3 10�8 2.220 3 10�7 0.155 0.772

StDn�1 þ Trial n � 1 type 0.200 0.135 0.622 376,281.756 1.178

StDn�1 þ Trial n � 1 type þ StDn�1 3 Trial n � 1 type 0.200 0.013 0.051 35,151.882 2.835

(b) Dimension-specific judgment (Experiment 2B)

Null model 0.200 0.012 0.048 1.000

StDn�1 0.200 0.023 0.095 1.964 0.360

Trial n � 1 type (variance vs. mean estimation) 0.200 0.109 0.489 9.202 1.348

StDn�1 þ Trial n � 1 type 0.200 0.283 1.578 23.921 2.994

StDn�1 þ Trial n � 1 type þ StDn�1 3 Trial n � 1 type 0.200 0.573 5.371 48.459 2.705

Table 2. Serial dependence and task requirements—model comparison: Experiment 2, serial dependence (associated with Trial n� 1)
and Trial n � 1 type (task requirements in that trial). The panels present model performance on Experiment 2A and 2B data sets,
respectively, according to the results of a Bayesian repeated-measures ANOVA on zREn, with two within-subject factors: StDn�1 and
Trial n� 1 type (response/no-response in Experiment 2A, RAN/DIR in Experiment 2B). Notes: P(M)¼ prior probability of each model,
assumed to be equal for all; P(Mjdata)¼posterior probability of the model (given the data); BFM¼Bayes factor for the model; BF10¼
Bayes factor for the alternative hypothesis relative to a null model (expressed by each model). All models include subject.
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about variance (RAN) or mean (DIR). Only when
successive decisions were both regarding variance do
we see an ascending slope in relation to increasing
StDn�1, suggesting that the attractive bias associated
with StDn�1 was only exerted if a decision on that
dimension had been made.

Table 2b presents a Bayesian repeated-measures
ANOVA with StDn�1 and Trial n� 1 type (RAN/DIR)
as within-subject factors. The most explanatory was the
full model including both main effects and their
interaction (BF10¼ 48.459), although the evidence in its
favor compared to the model with only the main effects
was anecdotal (BFfull/main ¼ 2.026). However, evidence
in favor of the interaction term was larger when taking
into consideration all possible models: BFinclusion ¼
5.371, which is moderate evidence. Thus, results point
to serial dependence by StDn�1 being dependent on
which dimension participants had to judge in the
previous trial.

We noted that the average time between onsets of
consecutive trials was longer if the first was a RAN trial
(4.63 vs. 4.48 s, Bayesian pair-samples t test: BF10 ¼
29.63). We therefore wondered whether time could be
confounding the interaction between StDn�1 and Trial
n� 1 response type, since it has been shown to influence
serial dependence in previous studies (Bliss, Sun, &
D’Esposito, 2017; Fritsche et al., 2017; Kanai &
Verstraten, 2005). To test this possibility we defined
timen�1,n as the interval between consecutive stimulus
onsets, binned into two levels, either below or above the
participant’s median. This variable was added as a
third within-subject factor to the Bayesian repeated-
measures ANOVA described in the previous para-
graph. We sought to directly compare two explanatory
hypotheses for the cause of the observed difference in
serial dependence by StDn�1 when n� 1 was a RAN
compared to a DIR trial: Trial n� 1 type or
interstimulus time. Thus, we compared the explanatory
power of a model with StDn�1, Trial n � 1 type, and
their interaction against a model with StDn�1, timen�1,n,
and their interaction. The former outperformed the
latter by a factor of 105.37, indicating extreme evidence
in its favor. Overall, analysis of each separate effect
indicated extreme evidence against inclusion of the
StDn�1 3 timen�1,n interaction (BFinclusion ¼ 6.668 3
10�4). This indicated that the difference between serial
dependence driven by RAN compared to DIR trials
was better explained by the trial type itself rather than
by the intertrial time. There was no support for an
independent contribution of time to the observed
difference between RAN and DIR trials.

As in previous experiments, we also examined serial
dependence within a broader span of trial history.
Figure 3D presents the fixed-effects coefficient esti-
mates and 95% credible intervals for the association
between StDn�t (t¼ 1, . . ., 10) and zREn, after splitting

the data set according to the trial type at each position;
thus, the influence of RAN and DIR trials is modeled
separately by 20 Bayesian LMMs. As expected from
the previous analysis, the positive effect related to
StDn�1 is present only when those trials required
participants to report variance; this is also the case for
StDn�2. As for the negative effect appearing at longer
timescales, it is clearly present in RAN trials, while for
DIR trials, although the credible intervals for the
coefficient contain zero at all trial positions (likely due
to the smaller number of DIR trials), the negative effect
seems to appear as early as Trial n� 1 (B ¼�0.0021
[�0.0051, 0.0009]), peak at Trial n � 5 (B¼�0.0023
[�0.0052, 0.0007]), and decrease afterward. The ap-
pearance of a negative serial dependence regardless of
the task suggests that it may be sensory in origin—an
adaptation aftereffect.

If we ask why there is a serial-dependence effect at n
� 1, we should also ask why there is no such effect at n
� 3. Thus, having established that positive serial
dependence arises from feature-specific decision mak-
ing, we investigated the inverse question: What is the
contribution of feature-specific decision making to the
fading of positive serial dependence for trials located
further away in history? Is this decline affected in a
different way by subsequent decisions made on the
same, compared to a different, feature dimension? Like
for Experiment 2A, we considered all those RAN trials
for which Trial n � 2 was also of type RAN, and
examined the association between StDn�2 and current
report in relation to the intermediate trial’s (n� 1) task.
An explanatory role for the StDn�2 3 Trial n� 1
response type interaction would indicate that the
intermediate trial type influenced serial dependence
related to n� 2. In a Bayesian two-factor repeated-
measures ANOVA, the best model included only Trial
n� 1 response type (BF10 ¼ 41.799), suggesting that
there was no interaction with serial dependence related
to StDn�2.

Experiment 3: Influence of
confidence in serial dependence

Results of Experiments 1 and 2 indicate that positive
serial dependence in visual variance involves mid- to
high-level processes, namely decision making about the
same feature dimension. In light of this, we questioned
how confidence in those decisions modulates serial
dependence. We were especially interested in the
modulation of the positive (Bayesian-like) bias exerted
by very recent trials, in the light of Bayesian accounts
of confidence as a measure of the precision of neural
representations (Meyniel et al., 2015).
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Methods

Stimuli

Stimulus presentation was identical to Experiment 1;
we again used foveal and peripheral (208) presentations,
as we considered that the interplay between decision
making, confidence, and serial dependence might vary
at different degrees of sensory precision.

Procedure

Experiment 3, like Experiment 1, had a 72-trial
practice block and eight 60-trial experimental blocks,
half of which were foveal and half peripheral. Eye
tracking was performed in the same manner as in
Experiment 1.

During the response phase of each trial, two identical
visual analogue scales were displayed on the screen: the
upper one for scoring randomness (variance) and the
lower one for confidence (see Figure 1). The initial
position of each sliding bar was randomized separately,
and the time allowed for responding to both items was
6 s. For data analysis, we obtained the numerical scores
as a linear translation from the selected positions; for
confidence, the score was expressed as a 0-to-1
proportion of the overall length of the line.

Results

Twenty-two participants (17 female, five male; mean
age¼19.6 years, standard deviation¼2.42) volunteered
for this experiment. All except for three members of the
laboratory were first-year psychology students. As in
Experiment 1, trials without valid fixation during
stimulus presentation were removed from the analysis,
as well as data about trial history of valid trials
involving any invalid trial. In total, 8,880 trials were
included in the analyses.

Confidence reports correlate with the accuracy and
precision of variance judgments

Figure 4A presents the distribution of confidence
scores (Cn) plotted by current-stimulus StD (StDn) and
eccentricity. For both foveal and peripheral trials, a
trend toward decreasing Cn for larger StDn is observed,
except for the maximal StD (608). For each StD value,
confidence scores are lower in the periphery. To test
these observations, we conducted a Bayesian repeated-
measures ANOVA on the effect of StDn and eccen-
tricity (as within-subject factors) on Cn. The best model
was the one including both main effects only (BF10 ¼
6.657 3 1026), outperforming the full model with the
StDn3Eccentricity interaction by a factor of BFmain/full

¼ 9.615. This indicates that despite the overall lower

confidence scores in peripheral blocks, the relationship
between different stimulus levels and confidence is the
same regardless of eccentricity.

Subsequently we explored whether confidence re-
ports were differentially shaped by response accuracy
or precision, and considered the role of eccentricity.
Regarding accuracy, we defined error size as the
absolute value of the difference between real and
reported StD: En ¼ jStDn� Rnj. In a Bayesian LMM
with Cn as dependent variable and En, StDn, and their
interaction as independent variables, Cn reports are
inversely associated with error size (B¼�0.0083, 95%
credible interval [�0.0103,�0.0062]) and StDn (B ¼
�0.0056 [�0.0071,�0.0040]) and positively associated
with the interaction between both (B¼ 0.0003 [0.0002,
0.0003]). The inverse association between error size and
Cn suggests that participants’ reports of confidence are,
at least in part, grounded in task accuracy. Further-
more, the positive sign of the coefficient estimate for the
En 3 StDn interaction suggests that confidence tracks
relative rather than absolute error: The inverse
association between error size (defined as an absolute
value) and confidence is weighted down for large StD
values. Considering both error size and eccentricity, the
negative association with error size remains (Berror ¼
�0.0078 [�0.0102,�0.0055]), whereas foveal presenta-
tions are associated with higher confidence reports
independent of task accuracy (Beccentricity ¼ 0.0510
[0.0080, 0.0908]). However, the interaction term does
not show evidence of a different evaluation of increases
in error size in low compared to high eccentricities
(Berror3eccentricity ¼�0.0013 [�0.0040, 0.0016]).

As for precision, we calculated the standard devia-
tion of each participant’s responses per StD value (rR)
as a measure of response dispersion. We subsequently
modeled confidence by rR; StD, and their interaction.
As expected, response dispersion shows a negative
correlation with confidence: B¼�0.0101 (95% credible
interval [�0.0160,�0.0045]). When we add eccentricity
to this model, the main effect for rR is close in value (B
¼�0.0105 [�0.0162, �0.0050]), whereas the rR 3
Eccentricity interaction (B¼�0.0003 [�0.0067, 0.0062])
suggests that the interaction between response disper-
sion and confidence is similar in fovea and periphery. In
summary, our results indicate that confidence is a
measure of response precision, and to the extent to
which the latter can be considered a proxy for
perceptual precision, they are in agreement with
Bayesian accounts of metacognition (Meyniel et al.,
2015).

Interestingly, we observed a very strong serial
dependence for confidence reports. Modeling reported
confidence (by a Bayesian LMM) as a function of the
report provided in the previous trial (Cn�1), we find that
the coefficient for the latter is B ¼ 0.1874 [0.1445,
0.2307], with R2¼ 0.3188. Importantly, if we add the

Journal of Vision (2018) 18(7):4, 1–24 Suárez-Pinilla, Seth, & Roseboom 14



error size of the previous trial (En�1) to the model, as
well as the En�1 3 Cn�1 interaction, the coefficient
estimate for Cn�1 has a similar (even larger) value: B¼
0.2197 [0.1698, 0.2720]. This is also the case when

StDn�1 is included in the model, suggesting that the
serial dependence in confidence scores is due not only
to accuracy or attention fluctuating at timescales of
several trials, nor to the direct influence of the StD in

Figure 4. Experiment 3. (A) Confidence scores (Cn) by StDn plotted separately by eccentricity. (B, C) Normalized relative error in

current response (zREn) as a function of the StD presented in the previous trial (StDn�1), plotted separately by confidence reported in

(B) the current or (C) the previous trial. Confidence scores have been binned into tertiles according to each participant’s distribution

of reports. The error bars represent the between-subjects standard error. The plots in (B) are all ascending and roughly parallel,

indicating that current confidence does not modulate serial dependence by previous-trial StD. Conversely, when considering

confidence reported in the previous (n� 1) trial (C), we observe drastically different slopes: While the high-confidence plot (upper

tertile) has a clear ascending slope indicative of a positive bias, the middle-tertile plot is only mildly positive, and the lower-tertile plot

is slightly descending, suggesting a negative bias away from low-confidence n� 1 trials. (D) Fixed-effects coefficient estimates in 30

Bayesian linear mixed-effects models with StDn�t (t ¼ 1, . . ., 10) as predictor of current response (zREn), modeled separately by

confidence reported in Trial n� t (Cn�t), binned into tertiles. The error bars represent the 95% credible intervals for the true value of

the coefficient. As suggested for Trial n� 1 in (C), the size and direction of the bias associated with each trial position depends on the

confidence reported in that position, so that the bias will be more negative (or less positive) the lower the reported confidence,

within the general trend of an increasingly negative (less positive) bias as we move backward in history.
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the previous stimulus, but rather may be an expression
of response inertia or ‘‘confidence leak’’ as described by
Rahnev, Koizumi, McCurdy, D’Esposito, and Lau
(2015).

Confidence in a past trial determines the direction of
serial dependence in variance reports

According to Bayesian accounts of perceptual
decision making, reliance on prior information is
greater when the current sensory input is noisy or
imprecise, or when the prior itself is highly precise
(Cicchini et al., 2014; Petzschner & Glasauer, 2011;
Summerfield & de Lange, 2014). Within this frame-
work, confidence is often regarded as a measure of the
precision of the sensory signal (Meyniel et al., 2015), a
consideration that is in agreement with our data. Thus,
we hypothesized that high reported confidence in the
current trial (Cn) would decrease any attractive pull
toward previous history (with respect to variance
judgments), whereas confidence in past trials (Cn�t)
would have the opposite effect. We further reasoned
that such effect of confidence in the past trials would
apply mostly to very recent trials, whose information
represents a more important contribution when priors
are iteratively updated. Indeed, this second hypothesis
is in agreement with our observation of a positive bias
in variance judgments exerted by only the most recent
trials (see Figure 2C for an example).

Figure 4B and 4C depicts zREn as a function of
StDn�1, plotted separately by confidence in the current
(4b) and previous (4c) trial. Confidence scores have
been binned into tertiles on a per-participant basis. In
Figure 4B, all three plots present an ascending, roughly
parallel slope: It appears that serial dependence exerted
by Trial n � 1 takes place independently of the

confidence placed in the current judgment, contrary to
our initial hypothesis. However, when we consider the
influence of confidence in the previous response, we do
see a striking interaction, in line with what would be
expected within a Bayesian framework: Low-confi-
dence n� 1 judgments do not exert any positive serial
dependence—quite the opposite, the plot has a slightly
descending slope, pointing toward a negative bias in
relation to StDn�1. This slope is mildly ascending for
medium confidence and neatly positive only for high-
confidence past decisions.

In order to validate these observations, we first
performed a Bayesian repeated-measures ANOVA on
the effect of StDn�1 and Cn (confidence score in the
current trial, binned into tertiles) on zREn. Results are
presented in Table 3a. The best model contains both
main effects but not the interaction (BF10 ¼ 349.668),
outperforming the model with the interaction term by a
factor of BFmain/full¼ 93.544. This provides very strong
evidence against the inclusion of the interaction term
and indicates that confidence in the current judgment
does not modulate serial dependence from the previous
trial.

Subsequently we performed an analogous analysis,
but with StDn�1 and Cn�1 as within-subject factors.
Table 3b presents the results of this analysis. Evidence
is in favor of the null model by a large margin (31.25
times more explanatory than the second best, which
includes only Cn�1). Nevertheless, when we consider the
term of interest for our hypothesis, namely the StDn�1
3 Cn�1 interaction, there is strong evidence in favor of
its inclusion compared to the model stripped of that
effect (including only the two main factors): BFfull/main

¼ 26.989. Still, because neither competing model was
superior to the null model, this result must be taken
with caution.

Model P(M) P(Mjdata) BFM BF10 Error %

(a) Current-trial confidence

Null model 0.200 0.002 0.010 1.000

StDn�1 0.200 0.011 0.043 4.437 0.393

Cn 0.200 0.137 0.637 57.150 0.642

StDn�1 þ Cn 0.200 0.841 21.088 349.668 1.213

StDn�1 þ Cn þ StDn�1 3 Cn 0.200 0.009 0.036 3.738 5.208

(b) Previous-trial (n � 1) confidence

Null model 0.200 0.923 47.768 1.000

StDn�1 0.200 0.025 0.102 0.027 0.535

Cn�1 0.200 0.030 0.123 0.032 1.097

StDn�1 þ Cn�1 0.200 8.080 3 10�4 0.003 8.757 3 10�4 1.439

StDn�1 þ Cn�1 þ StDn�1 3 Cn�1 0.200 0.022 0.089 0.024 1.099

Table 3. Serial dependence and reported confidence—model comparison: Experiment 3, serial dependence (associated with Trial n�
1) and confidence reported in the current and previous trial. The panels report the results of a Bayesian repeated-measures ANOVA
on zREn, with two within-subject factors: StDn�1 and current- or previous-trial confidence. Notes: P(M) ¼ prior probability of each
model, assumed to be equal for all; P(Mjdata)¼posterior probability of the model (given the data); BFM¼Bayes factor for the model;
BF10 ¼ Bayes factor for the alternative hypothesis (expressed by each model). All models include subject.
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We next asked to what degree confidence in trials
located further back in history, up to n� 10, influenced
serial dependence of variance judgments. We split the
data set according to the confidence scores reported in
each past position (Cn�t, discretized into tertiles within
each participant’s scores), and ran three Bayesian
LMMs per position (30 models in total) for the
association between StDn�t and zREn at each level of
past confidence. Figure 4D presents the B coefficient
estimates and 95% credible intervals for each Trial n� t
(t ¼ 1, . . ., 10). A marked influence of past confidence
on the size and direction of serial dependence is
observed, such that when high confidence was reported
in very recent trials (n� 1, n � 2), an attractive pull
toward recent StD values is manifest, although this bias
fades rapidly, being absent by Trial n� 3 and
thereafter. Note that trials with highest confidence
(upper tertile) do not exert a clear, unambiguous
negative bias at any point of trial history, although
some traces seem to be present from Trial n � 4
onward. The largest negative bias is driven by low-
confidence trials, for which it seems to appear as
recently as Trial n� 1 (although the credible intervals
contain zero), becomes unambiguous at n� 2, and
peaks at n� 4, decreasing afterward—in contrast with
the slower buildup of the negative bias seen for past
trials with intermediate confidence. Thus, the reversal
from positive to negative bias seen in this and previous
experiments seems related to the rapid decay of the
positive bias of high-confidence trials. As for the
negative effect, it seems to appear as early as whenever
such competing (positive) bias is not manifest, but
fades more slowly. Results were similar when we
considered foveal and peripheral blocks separately.

At first glance, the early appearance of the negative
effect (after exposure to a single subsecond presenta-
tion) and its association with low confidence could
suggest that it is at least in part of decisional origin
rather than exclusively a product of sensory adapta-
tion. However, some amount of negative bias was
observed in relation with past DIR trials in Experiment
2B (trials in which participants were not making a
decision on variance). Thus, it seems more likely that
the apparent relationship between the negative effect
and confidence is due to concealment of the effect in the
presence of the positive bias, the latter being associated
with high-confidence decision making.

On average, response times for variance reports in
low-, medium-, and high-confidence trials were 1.59,
1.46, and 1.30 s, respectively (Bayesian repeated-
measures ANOVA: BF10 ¼ 22,288, extreme evidence
for the alternative hypothesis), presumably related to
subjective trial difficulty. Therefore, we sought to rule
out the possibility that the effect of past confidence on
serial dependence was related only to the difference in
response times, and consequently in interstimulus

times. For each trial up to n� 10, we performed a
three-way Bayesian repeated-measures ANOVA for
zREn (as dependent variable) with three within-subject
factors: StDn�t, Cn�t (in tertiles), and timen,n�t (time
between stimulus onset of Trials n� t and n, binned in
two levels with respect to the median). In all cases, the
evidence for inclusion of the StDn�t 3 timen,n�t
interaction was extremely low—that is, the Bayes factor
for this specific effect was always below 0.01. This
suggests that time was not confounding the reported
interaction between confidence and serial dependence.

Time and the additional confidence report might
promote an earlier reversal toward negative serial
dependence in variance judgments

Experiment 3 had an identical design to Experiment
1 except for the requirement of an additional report
(about confidence) per trial. Consequently, an addi-
tional difference was introduced: The intertrial time
was longer in Experiment 3 that in Experiment 1 (5.06
vs. 3.69 s, Bayesian independent samples t test: BF10 .
6.6903 107). As previous work has strongly implicated
time between successive stimuli or stimuli and response
as critical contributors to serial dependence (Bliss et al.,
2017; Fritsche et al., 2017; Kanai & Verstraten, 2005),
we sought to take advantage of this circumstance to
inquire (post hoc) about the factors that drive the
decrease and eventual shift toward negative of the
serial-dependence effect as we move backward in trial
history.

Figure 5A presents the Bayesian LMM coefficients
and 95% credible intervals for the effect of StDn�t (t¼
1, . . ., 10) in current variance report as found for
Experiments 1 and 3. An extension of this comparison
for more distant trial positions is presented and
discussed in the Supplementary Materials, section 4
(see Supplementary Figure S3). While the positive bias
exerted by StDn�1 is similar in magnitude in both
experiments (B¼ 0.0034 [0.0017, 0.0051] in Experiment
1, B ¼ 0.0030 [0.0018, 0.0042] in Experiment 3), such
attraction is still present at StDn�2 in Experiment 1 (B¼
0.0014 [0.0003, 0.0026]) but has virtually disappeared in
Experiment 3 (B ¼ 0.0003 [�0.0009, 0.0015]). Thus, in
Experiment 3 the reversal to negative bias occurs as
early as Trial n � 3 and peaks at n� 5 (B ¼�0.0023
[�0.0036,�0.0010]), with a similar effect size as the
maximum negative bias in Experiment 1, which is seen
at n� 8 (B¼�0.0021 [�0.0032,�0.0010]). As shown in
the Supplementary Materials, negative serial depen-
dences also decline and disappear earlier than in
Experiment 1. This earlier buildup of the negative bias
could be related to the longer interstimulus intervals in
the present experiment: Time might, hypothetically,
drive the reversal to repulsive serial effects and
posterior fading. Results of Experiment 2B (concerning
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the effect of DIR trials) and on low-confidence trials in
Experiment 3 seem to suggest that the negative bias
appears as early as whenever the conditions for the
arising of a positive bias are not met. If, hypothetically,
positive serial dependence declines with time, the
negative effect could become evident in an earlier trial
in relation to the longer interstimulus times observed in
Experiment 3. Another explanation for the earlier shift
toward negative in Experiment 3 would be a disruption
of the positive bias caused by the additional confidence
report—especially if such Bayesian-like pull is caused
by decision processes or depends upon memory to some
extent.

To further examine this issue, we pooled all valid
trials from Experiments 1 and 3. To ascertain the
influence of an additional decision made per trial beside
the variance judgment, we defined a binary variable,
named C-reportn�t, indicating whether or not all
intermediate trials between n and n� t had a confidence
report in addition to a variance report. Note that the
content of the reports (i.e., the amount of confidence)
did not affect this definition. When participants missed
at least one confidence report in the considered
historical span of a certain trial, that trial was excluded
from the model, in order to make the comparison
unambiguous. Subsequently we built 10 Bayesian

LMMs for zREn (as dependent variable) in relation
with three variables defined at each considered point of
trial history, namely StDn�t, timen,n�t, and C-reportn�t,
and all interactions. The fixed-effects B coefficients of
the StDn�t 3 timen,n�t and StDn�t 3 C-reportn�t
interactions are plotted in Figure 5B, for Trials n� 1 to
n� 10 as predictors of current variance judgment. A
negative interaction coefficient would indicate a com-
paratively less positive (more negative) serial-depen-
dence effect at that position in relation to longer time
or the extra report, respectively.

At all positions, credible intervals for both interac-
tion terms contain zero (except for StDn�t3C-reportn�t
at n� 5). However, there is a predominance of negative
values for both interaction terms within the recent half
of the considered span of trial history, up to Trial n� 5.
Thus, although results are inconclusive regarding the
causes of the different patterns of serial dependence in
Experiments 1 and 3, the mostly negative StDn�t 3
timen,n�t and StDn�t 3 C-reportn�t interactions suggest
that both time and the additional confidence report
might promote a less positive (more negative) serial
dependence in variance and thus contribute to the
observed earlier reversal in the direction of the bias. An
interesting possibility would be that the dimension-
specific, decision-based positive serial dependence is

Figure 5. Comparison between Experiments 1 and 3. Both experiments have the same design except for the requirement of a

confidence report (in addition to a variance report) per trial in Experiment 3. This also makes the interstimulus time longer, on

average, for Experiment 3 compared to Experiment 1. (A) Fixed-effects coefficient estimates in 20 Bayesian linear mixed-effects

models with StDn�t (t¼ 1, . . ., 10) as predictor of current response (zREn), with the data of Experiments 1 and 3 modeled separately.

The error bars represent the 95% credible intervals for the true value of the coefficient. The shift toward negative coefficient

estimates takes place at earlier trial positions in Experiment 3. (B) Fixed-effects coefficient estimates for the StDn�t 3 timen,n�t and

StDn�t 3C-reportn�t interactions in 10 Bayesian linear mixed-effects models for prediction of zREn, with StDn�t, timen,n�t, C-reportn�t,

and all interactions as putative predictors. The variable timen,n�t reflects the time between onsets of the stimuli in Trials n� t (t¼ 1,

. . ., 10) and n. C-reportn�t is a binary factor indicating whether confidence reports were made in all trials between n� t and n or in

none, regardless of the content of the reports (i.e., the amount of confidence). A negative interaction term with StDn�t indicates a less

positive (more negative) serial-dependence effect in relation with longer time or the requirement of an additional confidence report

per trial. While credible intervals contain zero in most instances, there is a predominance of negative estimates up to n� 5, which

could suggest a causal role for both time and the additional confidence report in terms of promoting an earlier reversal of the bias in

Experiment 3 compared to Experiment 1.
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subject to memory decay as well as a decision-capacity
bottleneck. The presented data do not conclusively
support a particular interpretation, so future experi-
ments are required to elucidate the relative contribution
of time itself and additional judgments in shaping the
effects of trial history.

Discussion

The examination of serial dependence provides a
valuable window into perceptual processing. In a series
of experiments, we applied this approach to visual
statistics rather than to individual perceptual features—
specifically, to variance, a basic trait in the interpreta-
tion of noisy information about complex visual scenes.
We found evidence for two opposite serial-dependence
effects operating on different timescales: an attractive
(positive) bias associated with very recent variance
presentations, which is exerted only when a judgment
about that dimension was made in the most recent one
or two trials and high confidence was placed in that
decision, and a repulsive (negative) bias which appears
even for the most recent trial history for low-confidence
variance presentations but generally becomes manifest
several trials into history and persists for at least 10
trials.

Several studies on serial dependence have found a
positive (attractive) bias toward recent perceptual
history, which is modulated by attention, is enhanced
by spatial proximity yet not specific to retinal location,
takes place in the fovea as well as the periphery, and
fades after 5–15 s but does not require explicit memory
(Fischer & Whitney, 2014). While control experiments
support the proposition that this effect does not require
a motor response, there is an ongoing debate about
whether its basis is perceptual or postperceptual: The
results of a two-alternative forced-choice discrimina-
tion task (with a sample size of three participants;
Fischer & Whitney, 2014), a recent behavioral study
(Cicchini, Mikellidou, & Burr, 2017), and a V1-based
fMRI study (John-Saaltink et al., 2016) have been used
in support of a perceptual origin, while another study
employing a combination of appearance and perfor-
mance tasks has made the case for a postperceptual
(decisional) source (Fritsche et al., 2017). All four
studies examining the mechanistic basis of serial
dependence have used a low-level feature like orienta-
tion; nevertheless, serial dependence has also been
described for high-level features, including facial
appearance (Liberman et al., 2014; Xia et al., 2015),
relative timing (Roseboom, 2017), and statistical
properties such as numerosity (Cicchini et al., 2014)
and ensemble mean (Manassi, Liberman, Chaney, &
Whitney, 2017).

In our experiments on visual variance (a high-order
visual statistic), we found a positive bias that shares
many of these characteristics but differs in others: In
terms of similarities, it operates on a similar timescale
(temporal tuning seems to be slightly shorter for high-
level domains, as shown in our data and a study with
face perception; Liberman et al., 2014), occurs similarly
across presentation eccentricities, and is not related to
response execution. It also exhibits other characteristics
suggesting that for visual variance, the bias depends on
decisional rather than perceptual processes. First, it is
entirely independent of retinal location, appearing with
similar magnitude for successive stimuli displayed at
the same position or at an angular distance of 408, as
shown in the peripheral trials in Experiment 1. Second,
it is independent of the closely related statistical
property of mean direction (previous studies have
highlighted a strong relationship between mean and
variance, showing that variance plays an important role
in the accuracy and confidence of mean judgments;
Fouriezos et al., 2008; Maule & Franklin, 2015).
Together, these properties make a low-level, perceptual
origin very unlikely. Note that priming of mean
judgments by visual variance, as described by Michael
et al. (2014), is also independent of the similarity of
means and retinal location.

The most compelling argument in favor of a
decisional origin for the positive serial dependence in
our results is that in a task-switching design, the bias
disappears entirely when participants are engaged in a
decision about a different feature dimension than
variance. This is shown in our Experiment 2B, where
participants made decisions about either the variance
or the mean direction of the RDK stimuli. This is
particularly notable, since mean judgments are strongly
dependent on ensemble variance (Fouriezos et al., 2008;
Maule & Franklin, 2015), and the stimulus is identical
for both tasks. Even so, the possibility remains that the
absence of serial dependence in this alternative task
may be related to a withdrawal of feature-specific
attention (withdrawal of attending to the feature of
variance), since serial dependence is enhanced by
attention (Fischer & Whitney, 2014). Characterizing
the precise effect of attention on serial dependence of
variance judgments, and its interaction with task,
remains an opportunity for future studies.

From a predictive perception perspective, the fact
that only high-confidence trials drive the positive serial
dependence may be considered supportive of both
perceptual and decisional origin, as a more precise
prior would give rise to a stronger reliance on sensory
or decisional history (Meyniel et al., 2015). However,
an interpretation based on sensory precision might also
predict two associations that are not found in our data:
an inverse association of positive serial dependence
with current-trial confidence, and an inverse associa-
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tion with eccentricity, given lower sensory precision in
the peripheral field. To the contrary, our experiments
strongly support a lack of association of serial
dependence with these two factors. In broader terms,
serial dependence in variance judgments could be
regarded as part of a generic strategy of mirroring or
transferring trusted decisions. This explanation could
also encompass the negative serial dependence associ-
ated with low confidence (as a repulsion away from
judgments deemed unreliable); however, the different
timescales over which the positive and negative biases
operate suggest that they are independent mechanisms
rather than two aspects of a confidence-based strategy
(Alais, Ho, & Han, 2017).

Finally, several pieces of evidence in our experiments
suggest that the positive serial dependence is disrupted
by additional decision making, regardless of the
domain on which the subsequent decisions operate
(variance, mean, confidence). In other words: In all our
experiments, the attractive effect of StDn�2 stimulus on
the current response (which arises only when a high-
confidence judgment about variance was made in Trial
n� 2) is much weaker, on average, than that of StDn�1.
When inquiring into the factors (interposed between
StDn�2 and the current response) that might explain
this decline, we failed to find any difference based on
the type of decision that was made in the following trial
(n� 1): In Experiment 2B, the magnitude of the effect
of StDn�2 (when a variance judgment was made at that
point) did not appear to depend upon whether a
decision in Trial n� 1 was made about the variance or
the mean of the stimulus. However, if the number of
interposing decisions was increased, and an additional
decision (about confidence) was required in Trial n� 1,
the positive effect of Trial n� 2 was greatly diminished.
This apparent relationship with quantity but not
quality of subsequent decisions (made after the one that
exerts the bias and before the one that is biased)
suggests that serial dependence may be limited by an
amodal decision-capacity bottleneck. The apparent
fading of the effect with time also points to some sort of
memory limitation. Note, however, that these consid-
erations arise from post hoc analyses which revealed
only suggestive trends, although the evidence was not
conclusive in any case. The factors contributing to the
disruption or fading of positive serial dependence in
relation with more remote presentations are deserving
of further research.

In summary, it is likely that variance-related positive
serial dependence is driven by high-level perceptual
decision-making processes. In this respect, our findings
are in agreement with those of Fritsche et al. (2017),
who assert the same for orientation judgments. Those
authors propose that working-memory representations
are biased toward previous (dimension-specific and
task-specific) decisions, a hypothesis that is supported

by the potentiation of the bias when several seconds are
allowed between stimulus offset and response. A recent
study by Bliss et al. (2017) provides converging
evidence, reporting that serial dependence is absent at
the moment of perception but increases in visual
working memory, reaching a maximum when a 6-s
delay between stimulus offset and response is imposed
(a similar study, however, has reported evidence for
serial dependence at the time of perception; Wittmann,
Simmons, Aron, & Paulus, 2010). Interestingly, Kanai
and Verstraten (2005) have also found a decision-based
positive bias on the reported direction of ambiguous
motion, appearing only when the stimulus was
presented several seconds after the adaptor; they called
this effect perceptual sensitization.

In our study, participants could respond immedi-
ately after the stimulus offset, but due to the relatively
long duration of stimulus presentation (500 ms), it is
likely that they made an initial decision before that
time—as suggested by the results of Experiment 2,
wherein the bias exerted by the previous trial was
unaffected if a response had not been required
(Experiment 2A), but disrupted if a different decision
had been indicated by a precue (Experiment 2B). Thus,
it is likely that at the moment of response, the
representational content produced for the current
decision had been already distorted by the memory of
previous decisions. More broadly, our results suggest
that memory representations of not only the current
but also previous perceptual decisions may be subject
to similar limitations related to time and informational
capacity. While the specific mnemonic processes
involved are unclear—our methodology was not
designed to operationalize specific instances of memory
(such as working memory)—Kiyonaga, Scimeca, Bliss,
and Whitney (2017) have noted, in line with our
observations, the similarities between serial-dependence
effects and well-studied disruptions related to working-
memory limitations (such as proactive interference).
They suggest that the latter might be a maladaptive
aspect of a generally beneficial and widespread brain
mechanism for stabilizing internal representations at
different levels of processing, including perception,
attention, and memory.

Our conclusion of a high-level mechanism of
variance processing is also in line with the conclusions
of Payzan-LeNestour et al. (2016) regarding variance-
driven adaptation aftereffects, which suggest that
variance is an abstract property that works indepen-
dently from its sensory origin and generalizes across
domains. Michael et al. (2014) have also proposed
variance as an independent property from ensemble
average, but suggest that, regarding priming, it
operates through feature-specific channels. In our
experiments we used a single formalization of vari-
ance—dispersion of a dot-motion cloud—so the degree
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to which our results will generalize to other variance-
related serial dependences requires further investiga-
tion.

What are the perceptual or neural mechanisms
underlying the observed positive serial dependence?
Although this is still uncertain, previous works have
proposed exposure-related gain changes or shifts in the
neural tuning (Fischer & Whitney, 2014). Furthermore,
its behavior resembles that implied by Bayesian
frameworks of information processing, in which
judgments about a certain dimension are attracted
toward prior information. Several studies have recog-
nized that the observed systematic errors in magnitude-
estimation tasks, across diverse dimensions, can be well
accounted for by assuming an iteratively updated prior,
in which recent information is given more weight
compared to the overall statistical properties of the
environment (Cicchini et al., 2014; Luca & Rhodes,
2016; Petzschner & Glasauer, 2011; Roach, McGraw,
Whitaker, & Heron, 2017). Variance-related positive
serial dependence indeed shares many characteristics
with recursive Bayesian dynamics, including the greater
weight of more recent information and the association
with high confidence in past trials. Positive serial
dependence is probably Bayesian-like in many aspects,
but there are some nuances to perceptual decision
making that demand further investigation.

The basis of the longer-lasting negative bias is less
conclusive, but may be related to adaptation afteref-
fects, like the variance adaptation described by Payzan-
LeNestour et al. (2016). The facts that the negative
effect is observed in relation with individual presenta-
tions lasting only 500 ms, appears as early as the
following trial, and remains even for Trial n� 9 could
seem unusual for a sensory aftereffect. However,
negative aftereffects in response to subsecond stimuli
have been described previously (Fritsche et al., 2017;
Kanai & Verstraten, 2005), and sometimes lasting for
several seconds (Fritsche et al., 2017). Fritsche et al.
(2017) have proposed that it is not the stimulus itself
but a memory trace that causes the negative aftereffect
on orientation. It is likely that the observed relationship
between the current trial and a specific trial in history
(e.g., n � 5) is actually driven by a broader, averaged
contextual representation and not by the individual
stimuli several trials removed from the present. In our
case, as we dealt with a more abstract dimension, we
might not consider this high-level aftereffect strictly
sensory in the first place (Storrs, 2015). As stated
previously, some aspects of this negative bias could
point to a decisional component, including its inde-
pendence of retinal location, predominance in low-
confidence trials, and seemingly smaller size when a
different decision was required in the past (DIR trials in
Experiment 2B; note, however, that the interaction with
trial type was not significant). In any case, the line

between perceptual and postperceptual aftereffects may
be blurred with respect to statistical properties (Payzan-
LeNestour et al., 2016; Storrs, 2015).

Some previous studies on different features—both
low level (namely motion, Kanai & Verstraten, 2005;
and orientation, Fritsche et al., 2017) and high level
(such as face attributes; Taubert, Alais, & Burr,
2016)—have reported concomitant positive and nega-
tive biases exerted by the same stimulus. Kanai and
Verstraten (2005) elicited a negative rapid motion
aftereffect of sensory origin by a short, subsecond sine-
wave luminance grating presented immediately before.
However, when the interstimulus interval was long
enough (.3 s), a positive bias was elicited instead, in
response to the percept and not the low-level sensory
signal (as proven by the use of ambiguous motion
adaptors). Fritsche et al. (2017) found opposite effects
of recent history on orientation judgments exerted by
perception (negative bias) and decision (positive serial
dependence), very much in line with our findings. They
have proposed that each of these effects has a different
biological function, namely increasing sensitivity to
changes within the current sensory context and
promoting perceptual stability. Taubert et al. (2016)
have suggested the same duality in their study of serial
dependences in face attributes, although in their case
positive and negative biases are exerted concomitantly
by different high-level features of the same visual
stimulus (faces): Stable traits such as gender would be
subject to positive biases in order to smooth away
noise, whereas negative aftereffects maximizing sensi-
tivity would predominate in changeable attributes such
as facial expresion.

In summary, our study on visual variance reveals
two opposite intertrial dependences that operate at
different timescales and likely arise at different levels of
perceptual decision making: a positive serial depen-
dence in relation to high-confidence, dimension-specific
decisions, and a longer lasting negative bias of likely
sensory origin. Further investigations are needed to
elucidate the precise mechanistic basis of variance-
related serial dependence, whether it generalizes to
other instances of variance, its relationship to other
instances of serial dependence, and the extent to which
its properties can be modeled within an iterative
Bayesian framework.

Keywords: serial dependence, visual variance,
ensemble processing, adaptation aftereffects
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