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Background. This study was aimed at elucidating the molecular biological mechanisms of microRNA-1 (miR-1) in nasopharyngeal
carcinoma (NPC).Method. In this study, we performed a pooled analysis of miR-1 expression data derived from public databases,
such as GEO, ArrayExpress, TCGA, and GTEx. The miRWalk 2.0 database, combined with the mRNA microarray datasets, was
used to screen the target genes, and the genes were then subjected to Kyoto Encyclopedia of Genes and Genomes (KEGG) and
Gene Ontology (GO) enrichment analysis using the DAVID 6.8 database. We then used the STRING 11.0 database and
Cytoscape 3.80 software to construct a protein-protein interaction (PPI) network for screening hub genes.
Immunohistochemistry (IHC) was further used to validate the expression of hub genes. Finally, potential therapeutic agents for
NPC were screened by the Connectivity Map (cMap) database. Results. Pooled analysis showed that miR-1 expression was
significantly decreased in NPC (SMD = −0:57; P < 0:05). The summary receiver operating characteristic curve suggested that
miR-1 had a good ability to distinguish cancerous tissues from noncancerous tissues (AUC = 0:78). The results of GO analysis
focused on mitotic nuclear division, DNA replication, cell division, cell adhesion, extracellular space, kinesin complex, and
extracellular matrix (ECM) structural constituent. The KEGG analysis suggested that the target genes played a role in key
signaling pathways, such as cell cycle, focal adhesion, cytokine-cytokine receptor interaction, ECM-receptor interaction, and
PI3K/Akt signaling pathway. The PPI network suggested that cyclin-dependent kinase 1 (CDK1) was the hub gene, and the
CDK1 protein was subsequently confirmed to be significantly upregulated in NPC tissues by IHC. Finally, potential therapeutic
drugs, such as masitinib, were obtained by the cMap database. Conclusion. miR-1 may play a vital part in NPC tumorigenesis
and progression by regulating focal adhesion kinase to participate in cell mitosis, regulating ECM degradation, and affecting
the PI3K/Akt signaling pathway. miR-1 has the potential to be a therapeutic target for NPC.

1. Introduction

Nasopharyngeal carcinoma (NPC) is a malignant tumor
arising from the nasopharyngeal epithelium [1]. NPC is a
highly regionally related tumor. The incidence of NPC is

high in many provinces in southern China, Southeast Asian
countries, northern and northeastern Africa, Alaska in the
United States, western Canada, and so on [2–8]. According
to epidemiological statistics, the incidence of NPC in south-
ern China is remarkably higher than the average in the
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world [9–11]. NPC is sensitive to radiotherapy, and with the
development of radiotherapy technology, the five-year sur-
vival rate of early NPC is as high as 95%. However, due to
the insidious location of NPC and the difficulty in distin-
guishing NPC from benign diseases by symptoms, most
patients with NPC are diagnosed at a late stage, with neck
lymph nodes and/or distant metastasis. Therefore, elucidat-
ing the pathogenesis of NPC and determining new biomark-
ers and therapeutic targets are urgent.

MicroRNAs (miRNAs) are a class of small noncoding
endogenous RNAs, with a length of approximately 21 to 23
nucleotides [12–15]. Aberrant miRNA expression has been
associated with multiple pernicious tumors in humans,
reflecting their critical biological roles. miR-1 expression is
downregulated in various human tumors, including osteo-
sarcoma, bladder cancer, and gastric cancer [16–18]. Wu
et al. confirmed that miR-1 expression was downregulated
in colorectal cancer, and the overexpression of miR-1
enhanced the radiotherapy sensitivity of colorectal cancer
by inducing apoptosis and ultimately acted as a tumor sup-
pressor [19]. Our previous study also demonstrated that
the expression of miR-1 was significantly downregulated in
both prostate cancer and clear cell renal cell carcinoma,
and miR-1 affected the tumorigenesis and invasion of the
above tumors by regulating the expression of the target
genes [20, 21]. Besides, Jin et al. found that MALAT1 can
affect cancer stem cell activity and NPC radioresistance by
regulating the miR-1/slug axis [9].

To further investigate the expression and targeted thera-
peutic value of miR-1 in NPC, we performed immunohisto-
chemistry (IHC) and a comprehensive analysis, including
data from public databases. This analysis revealed that
miR-1 is downregulated in NPC and has the potential to
be a new therapeutic target.

2. Materials and Methods

2.1. Collecting Microarray Datasets. All mRNA and miRNA
microarray datasets included in this study were derived from
databases, such as GEO, ArrayExpress, TCGA, and GTEx.
Key search terms were ((mRNA OR messageRNA) AND
(tumor OR cancer OR tumour OR carcinoma OR neoplas
∗ OR malignan ∗) AND (nasopharynx OR nasopharyngeal
OR rhinopharyngeal OR NPC)) to obtain the mRNA micro-
array datasets. The retrieval formula of miRNA microarray
datasets was ((miRNA OR microRNA) AND (cancer OR
malignan ∗ OR neoplas ∗ OR tumor OR carcinoma) AND
(nasopharynx OR nasopharyngeal OR rhinopharyngeal OR
NPC)). The deadline for literature retrieval was October
2020. Each microarray dataset in this study must include
an NPC group and a noncancer group. The exclusion cri-
teria for the data were as follows: (1) animal-based studies
were eliminated and (2) studies with less than three samples
were culled. The processing of microarray datasets followed
the following principles: (1) expression data without nor-
malization processing was log2 transformed and (2) missing
values of the datasets were replaced with results calculated
by k-nearest neighbor (KNN).

2.2. Analyzing miR-1 Expression in NPC Tissues. All
included miRNA microarray datasets were summarized
and analyzed using Stata 16.0, and the standardized mean
difference (SMD) was calculated to obtain reliable results.
miR-1 expression was relatively low in cancer tissues if the
SMD was <0 and if the 95% confidence interval (CI) did
not cross the 0-point coordinate line; by contrast, miR-1
expression was high in cancer tissues. Sensitivity analysis
was then performed to measure the reliability and stability
of the pooled analysis results, and the publication bias was
detected by Begg’s method. The threshold for statistical sig-
nificance was P < 0:05.

In addition, to measure the ability of miR-1 to discrimi-
nate between cancerous and noncancerous tissues, we calcu-
lated the receiver operating characteristic (ROC) curve of
individual datasets and the summary ROC (SROC) curve of
all datasets and the area under the curve (AUC), respectively.

2.3. Searching for Potential Target Genes of miR-1 in NPC
Tissues. miRWalk is an integrative database that includes
the information of miRNA target genes in humans, mice,
and other species and integrates the data from miRBridge,
miRDB, miRanda, TargetScan, and other databases.

In this study, 12 databases, including miRWalk, miRDB,
miRBridge, and other databases in miRWalk2.0, were
applied to obtain the target genes of miR-1. Meanwhile, dif-
ferentially expressed genes (DEG) in the mRNA datasets of
NPC derived from the public databases were also screened
using the limma package of the R x64 3.6.2 software. Genes
with a |log2 (fold change)| of >1 and P < 0:05 were consid-
ered DEGs. Intersection was then obtained for all upregu-
lated DEGs, with genes present in at least two sets as the
candidate target genes. Finally, the selected upregulated
DEGs were intersected with the genes predicted by miR-
Walk2.0 to obtain target genes for downstream analysis.

2.4. Analyzing Target Gene Function by Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG). GO
is a database that can identify the gene and protein functions
of various species and elucidate the biological functions
involved in target genes from three aspects: biological process
(BP), molecular function (MF), and cellular component (CC).

KEGG is an integrative database that includes chemical,
genomic, and system functional data. It can identify the vital
signal transduction pathways and biochemical metabolic
pathways of target genes.

In this study, GO analysis and KEGG signaling pathway
analysis were conducted by the DAVID 6.8 database to
explore the biological functions and cellular signaling path-
ways of miR-1 during NPC tumorigenesis and progression.

2.5. Constructing the Protein-Protein Interaction (PPI)
Network. STRING is a database that searches for interactions
between proteins, which includes 2,031 species, 9.6 million
proteins, and 13.8 million interaction relationships between
proteins. Cytoscape 3.80 is bioinformatic analysis software
for constructing molecular interaction network diagrams.
Each node of the diagram represents a gene, protein, or mol-
ecule, and the lines between nodes indicate interaction.
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We constructed a miR-1 target gene PPI network
(high confidence > 0:70) using the STRING 11.0 database
and calculated the degree number by the Centiscape2.2 plu-
gin of Cytoscape [22–24]. In the PPI network, the most
highly connected genes were identified as hub genes.

2.6. Validating Target Gene Expression by In-House IHC.
Thirty-six NPC tissues and twenty-eight chronic inflamma-
tory tissues of the nasopharynx mucosa collected from the
First Affiliated Hospital of Guangxi Medical University were
subjected to IHC staining to detect the expression of target
genes. Two experienced pathologists assessed the differences
in stained areas by the immunoreactivity score (IRS).

Ten typical high magnification fields were randomly
observed under an optical microscope. The IRS was calcu-
lated from the staining intensity and the percentage of
stained cells in each sample. The scores of staining intensity
were classified into four grades: 0, 1, 2, and 3, representing
none, weak, medium, and strong staining, respectively. The
staining range was divided into five grades. For example,
NPC tissues without staining were recorded as 0, <25%
stained cells were recorded as 1, 25%–49% stained cells were
recorded as 2, 50%–74% stained cells were recorded as 3,
and more than 74% stained cells were recorded as 4. The
scores of staining intensity and staining range were subse-
quently multiplied to generate IRS [25].

Finally, the IRS of NPC tissues and chronic inflamma-
tory tissues of the pharyngeal mucosa was compared using
an independent sample t-test using SPSS 26.0. The threshold
for statistical significance was P < 0:05. The Ethics Commit-
tee of the First Affiliated Hospital of Guangxi Medical Uni-
versity approved the above experiments.

2.7. Screening Candidate Therapeutic Agents. The Connectiv-
ity Map (cMap) is an online database for exploring the rela-
tionship between molecule drugs, gene expressions, and
diseases [26–29]. The above upregulated and downregulated
DEGs screened by the limma package were entered into the
cMap database and compared with the reference datasets.
The degree of similarity is assessed by score. The value range
of the score is between −100 and 100. The closer the value is
to 100, the more similar the gene list is to this small-
molecule processing record. The closer the value is to −100,
the more opposite the gene list is to this small-molecule pro-
cessing record, suggesting that this small-molecule compound
exhibits an antagonistic effect on NPC and has the potential to
be a targeted therapeutic agent for NPC.

3. Results

3.1. Expression of miR-1 in NPC. According to the screening
process shown in Figure 1, in this study, seven miRNA
microarray datasets (GSE22587, GSE32906, GSE32960,
GSE36682, GSE43329, GSE43039, and GSE46172) and five
mRNA microarray datasets (GSE12452, GSE13597,
GSE34573, GSE53819, and GSE64634) were selected from
databases, such as GEO, ArrayExpress, TCGA, and GTEx.
Figure 2 visualizes the expression of miR-1 in the individual

Sc
re

en
in

g
In

clu
de

d

⁎:
 Databases (n = 80)
 Registers (n = 0)

Records removed before screening:
 Duplicate records removed (n = 
 0)
 Records marked as ineligible by
 automation tools (n = 21)
 Records removed for other
 reasons (n = 15)

Records excluded
(n = 10)

Records not retrieved
(n = 13)

Records excluded:
1. Double-channel arrays (n = 8)
2. single-cell sequencing (n = 6)
3. Duplicatc samples and private
datasets (n = 2)

Records screened
(n = 44)

Records sought for retrieval
(n = 34)

Records assessed for eligibility
(n = 21)

Studies included in review

miRNA of NPC screened flow:

(n = 5)

Sc
re

en
in

g
In

clu
de

d

⁎:
 Databases (n = 591)
 Registers (n = 0)

Records removed before screening:
Duplicate records removed 
(n = 87)
Records marked as ineligible by
automation tools (n = 273)
Records removed for other
reasons (n = 32)

Records excluded⁎⁎

(n = 97)

Records not retrieved
(n = 46)

Records excluded:
4. Double-channel arrays (n = 32)
5. single-cell sequencing (n = 14)
6. Duplicate samples and private
datasets (n = 3)

Records screened
(n = 199)

Records sought for retrieval
(n = 102)

Records assessed for eligibility
(n = 56)

Studies included in review
(n = 7)

Figure 1: The process of screening NPC-related datasets from
public databases. After screening, a total of five mRNA
microarray datasets and seven miRNA microarray datasets of
NPC were obtained.
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microarray datasets, which shows that miR-1 in some
microarray datasets is relatively downexpressed in NPC.

To obtain reliable results, we integratively analyzed miR-
1 expression in all miRNA microarray datasets. The results
using the random effects model (I2 = 43:5%, P = 0:101;
Figure 3(a)) showed that miR-1 expression was downregu-
lated in NPC (SMD = −0:33; 95% CI: −0.61, −0.06;
Figure 3(a)). Subsequently, we performed a sensitivity anal-
ysis (Figure 3(b)), which showed that the GSE32960 micro-
array dataset considerably affected the results. After
excluding the GSE32960 microarray dataset, the pooled
analysis result showed that miR-1 expression was still low
in NPC (SMD = −0:57; 95% CI: −0.91, −0.24; Figure 4(a)).
Figure 4(b) suggests that all included datasets had no publi-
cation bias. Figure 5 presents the SROC curve, with AUC of
0.78 (95% CI: 0.75–0.82) and sensitivity and specificity of
0.90 (95% CI: 0.77–0.96) and 0.45 (95% CI: 0.26~0.64),
respectively, indicating that miR-1 had an excellent ability
to distinguish cancerous tissues from noncancerous tissues.

3.2. Target Genes of miR-1. As shown in Figure 6(a), 143
candidate target genes were obtained after the intersection
of upregulated DEGs from five mRNA datasets of NPC.
These 143 candidate target genes were then intersected with
genes obtained from miRWalk 2.0, and finally, 130 potential
target genes, such as cyclin-dependent kinase 1 (CDK1),
ZNRF3, CDC45, CDCA2, and EZH2, were obtained for
downstream analysis (Figure 6(b)).

3.3. Results of GO and KEGG Analysis. We utilized GO and
KEGG analyses to identify the MFs, BPs, CCs, and cellular
pathways that miR-1 participates in NPC.

For BP, the terms that are most significantly enriched in
DNA replication, G1/S transition of mitotic cell cycle, cell
division, cell adhesion, and mitotic nuclear division. In
terms of CC, target genes mainly focused on extracellular
space, kinesin complex, and extracellular matrix. As for
MF, target genes were prominently enriched in extracellular
matrix (ECM) structural constituent, microtubule motor
activity, and microtubule binding. In addition, results of
KEGG analysis suggested that target genes mainly focused
on multiple cellular pathways, such as the PI3K/Akt signal-
ing pathway, cell cycle, ECM-receptor interaction, focal
adhesion, and cytokine-cytokine receptor interaction
(Figure 7).

3.4. PPI Networks of Target Genes. To further explore the
interaction among target genes and determine the core
genes in the regulatory network, we constructed a PPI net-
work using the STRING database. CDK1 interacted with
the largest number of genes (degrees ≥ 40) in the PPI net-
work; thus, we considered CDK1 to be the key target gene
(Figure 8).

3.5. Confirmation of CDK1 Expression by IHC. CDK1 pro-
tein expression in thirty-six NPC tissues and twenty-
eight nasopharyngeal mucosal chronic inflammation tis-
sues was detected by IHC (Figure 9). An independent
sample t-test of SPSS 26.0 was used to compare the IRS
between the two groups, and the results indicated that
the protein expression of CDK1 in NPC tissues
(9:1389 ± 2:8998) was significantly higher than that in
noncancerous tissues (0:7143 ± 1:0131, P < 0:05).

p = 0.032420
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Figure 2: Expression of miR-1 in NPC and noncancerous microarray datasets.
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3.6. Molecular-Targeted Therapeutic Drugs for NPC. Eleven
negatively correlated small-molecule compounds with the
greatest association were screened using the cMap database,
mainly including simvastatin, masitinib, droxinostat, myco-
phenolate-mofetil, and danusertib (Table 1). Among them,
masitinib has attracted great interest as the only tyrosine
kinase inhibitor (TKI). Masitinib, also known as AB1010,
has a molecular formula of C28H30N6OS and a molecular
weight of 498.6 g/mol. Figure 10 shows the structure of masi-
tinib. As a novel and elective TKI, it can not only block the
activity of c-Kit receptor, fibroblast growth factor receptor
3, Lck/Yes-related protein, and lymphocyte-specific kinase,

but it can also block the focal adhesion kinase (FAK) cell
pathway by inhibiting FAK phosphorylation [30].

4. Discussion

Through the present study, we were the first to determine
that miR-1 was targeted to regulate CDK1 in NPC, thereby
affecting tumorigenesis and progression, and we further
confirmed the upregulation of CDK1 by IHC. In addition,
we further explored the key BPs, CCs, MFs, and pathways
of miR-1 in NPC by GO analysis and KEGG pathway anno-
tation. Finally, we confirmed that miR-1 led to NPC
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Figure 3: Pooled expression of miR-1 was calculated using a random effects model: (a) forest plot and (b) sensitivity analysis.
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tumorigenesis and development by regulating ECM degra-
dation, affecting the PI3K/Akt signaling pathway and partic-
ipating in cancer cell mitosis.

Numerous studies have confirmed that miR-1 expression
is decreased in various tumors; thus, miR-1 is considered a
potential target for cancer therapy. In bladder cancer, miR-
1 can induce G-S cell cycle arrest and inhibit cell prolifera-
tion by regulating Foxo1 and targeting Golgi phosphopro-
tein 3 [18]. miR-1 was downregulated in osteosarcoma.
Overexpression of miR-1 can lead to increased p21 levels
by targeting PAX3 and ultimately induce G0/G1 phase arrest
and inhibit cell proliferation [17]. However, reports on the
expression of miR-1 in NPC are scarce, and the mechanism
has not been clarified.

In the present study, an overall analysis of seven
miRNA microarray datasets derived from GEO, ArrayEx-
press, TCGA, and GTEx databases was conducted to clar-
ify the low expression of miR-1 in NPC. A total of 130
target genes, including CDK1, ZNRF3, CDC45, CDCA2,
and EZH2, were then screened by the comprehensive anal-
ysis of the predicted target genes from the miRWalk 2.0
database and the upregulated DEGs from the public data-
base. Subsequently, the GO functional enrichment analysis
of target genes showed that miR-1 was involved in NPC
by regulating BPs, MFs, or CCs, such as mitotic nuclear
division, DNA replication, cell division, cell adhesion,
extracellular space, and kinesin complex. The results of
the KEGG analysis suggested that the target genes mainly
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Figure 4: Pooled expression of miR-1 was calculated by a fixed effects model after excluding GSE32960: (a) forest plot and (b) publication
bias.
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Figure 7: The top ten terms of GO and KEGG enrichment analysis of target genes.
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focused on multiple cellular pathways, such as PI3K/Akt
signaling pathway, cell cycle, ECM-receptor interaction,
focal adhesion, and cytokine-cytokine receptor interaction.
For the PPI network, CDK1 was the most connected gene,
and IHC confirmed the high CDK1 expression in NPC tis-
sues. Finally, small-molecule compounds with potential for
targeted treatment of NPC were screened by the cMap
database.

The ECM consists of the basement membrane and inter-
cellular substance and serves as a tissue barrier for carci-
noma metastasis [31]. Carcinoma cells degrade the matrix
by secreting or activating protein-degrading enzymes after
adhesion of their surface receptors to many components in
the ECM, forming a local lytic zone and constituting chan-
nels for metastasis; thus, tumor cells can metastasize to sec-
ondary sites and proliferate to form metastases [32, 33]. FAK
is a nonreceptor tyrosine kinase that not only regulates cell
development, growth, survival, and apoptosis but also regu-
lates cell adhesion to ECM [34, 35]. FAK is overexpressed in
various types of tumors and is associated with poor clinical
prognosis [36, 37]. Machackova et al. demonstrated that
miR-215-5p exerts a cancer-suppressive effect by affecting
colorectal liver metastasis through regulating focal adhesion
and ECM-receptor interaction [38]. Similarly, we suggest
that miR-1 affects distant metastasis of NPC by regulating
ECM and FAK. Besides, FAK is an upstream regulator of

the PI3K/Akt pathway [39]. PI3K/Akt is a classical tumor
signaling pathway [40]. Activation of this pathway can pro-
mote the proliferation of various tumor cells, including
hepatocellular carcinoma, bladder cancer, and cervical carci-
noma, inhibit tumor cell apoptosis, and resist sensitivity to
radiotherapy and chemotherapy [41–43]. Liu et al. demon-
strated that inhibition of the PI3K/Akt/NF-κB signaling
pathway reverses drug resistance in NPC [44]. Moreover,
activation of the PI3K/Akt signaling pathway decreases the
expression of the CDK inhibitors p21 and p27, thereby pro-
moting cell cycle progression, which causes the proliferating
cells to undergo uncontrollable proliferation by escaping
from the regulation of p21 and p27, ultimately causing
tumor progression [45–48]. CDK1, which is a member of
the CDK family, plays a vital part in cell proliferation by
regulating the G2/M transition in eukaryotic cell mitosis
[49]. In this study, we confirmed the upregulation of
CDK1 protein expression in NPC by IHC. Dysregulation
of CDK1 was confirmed to cause cell cycle disturbance,
which then leads to tumor production [50]. Numerous
studies have reported that CDK1 is abnormally expressed
in various tumors, such as melanoma, hepatocellular carci-
noma, and pancreatic ductal adenocarcinoma, and is
related to the degree of tumor malignancy [51–53]. Xie
et al. demonstrated that CDK1 can regulate cell cycle pro-
gression, apoptosis, radioresistance, and cell growth of

Figure 8: Protein-protein interaction network of 130 target genes was retrieved from the STRING database.
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NPC [54]. Wang et al. demonstrated that triptolide can
inhibit proliferation and induce apoptosis of NPC cells
by regulating the PI3K/Akt pathway [55]. Hence, we con-
clude that miR-1 regulates p21 and p27 by affecting FAK
and PI3K/Akt signaling pathways to affect CDK1 expres-

sion and ultimately lead to tumorigenesis. Masitinib, as a
novel and effective tyrosine kinase inhibitor, can block
the FAK cell pathway by inhibiting FAK phosphorylation
and thus has the potential to be a targeted therapeutic
agent for NPC [56].

NPC 200X NPC 400X NON-NPC 200X NON-NPC 400X

Figure 9: Expression of CDK1 in NPC tissues and noncancerous tissues was detected by immunohistochemistry.

Table 1: The top eleven negatively correlated small-molecule compounds from the cMap database. These small-molecule compounds have
the potential to be the targeted therapeutic agents for NPC.

Score ID Name Description

-99.79 BRD-A81772229 Simvastatin HMGCR inhibitor

-99.72 BRD-K71035033 Masitinib KIT inhibitor

-99.19 BRD-K11558771 Droxinostat HDAC inhibitor

-99.08 BRD-K92428153 Mycophenolate-mofetil Dehydrogenase inhibitor

-98.94 BRD-K07881437 Danusertib Aurora kinase inhibitor

-98.88 BRD-K35430135 SR-59230A Adrenergic receptor antagonist

-98.45 BRD-K57080016 Selumetinib MEK inhibitor

-98.01 BRD-K51313569 Palbociclib CDK inhibitor

-97.89 BRD-K00615600 AG-14361 PARP inhibitor

-97.85 BRD-K50836978 Purvalanol-a CDK inhibitor

-97.71 BRD-K13049116 BMS-754807 IGF-1 inhibitor
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In summary, our study concluded that miR-1 can regu-
late ECM adhesion function, activate the PI3K/Akt signaling
pathway to inhibit p21/p27 expression, and lead to the
upregulation of CDK1 by affecting FAK, ultimately prompt-
ing NPC tumorigenesis and progression. However, this con-
clusion, as well as the potential therapeutic ability of
masitinib, must still be further verified by cell and animal
experiments in future studies. Despite the limitations of
our study, the results strongly suggest that miR-1 plays an
important part in NPC and is expected to be a new thera-
peutic target.

5. Conclusion

This study was the first to determine that miR-1 may regu-
late ECM adhesion function, affect the PI3K/Akt signaling
pathway, and participate in cancer cell mitosis by affecting
FAK, thus playing an important part in NPC genesis, pro-
gression, and metastasis. This study will provide new thera-
peutic targets and insights for the treatment and tumor
mechanism research of NPC in the future.
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