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Wild-type baculovirus isolates typically consist of multiple strains. We report the full genome sequences of seven alphabaculovi-
rus strains derived by passage through tissue culture from Helicoverpa armigera SNPV-AC53 (KJ909666).
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Wild-type baculovirus isolates typically consist of multiple
strains (1). Seven strains were isolated from a single nucle-

opolyhedrovirus (SNPV), HaSNPV-AC53 (KJ909666) (2), using a
modified tissue culture plaque assay (3, 4). Larvae of Helicoverpa
armigera were infected with HaSNPV-AC53. Strains were isolated
from hemolymph of infected larvae either by plaque purification
in HzAM1 cells, one passage through tissue culture, and one pas-
sage through larvae (“C-strains”), or by passage through tissue
culture cells and then one passage of occlusion bodies produced
through larvae, followed by plaque purification, passage in cell
culture, and one passage through larvae as above (“T-strains”).
Viral DNA was extracted from occlusion bodies using a Bioline
Isolate II Genomic DNA kit (Bioline, USA) following published
methods (2, 5, 6).

Isolated strains and HaSNPV-AC53 were prepared using a
NexTera kit (Illumina, USA) and sequenced using the Illumina
NextSeq 500 with 150-bp paired-end reads. Trimming was com-
pleted using the FASTX-Toolkit version 0.0.13 (7). An eight-step
technique to assemble the genomes without gaps was established
using a combination of open-source and commercial software.
The strains were initially mapped to the HaSNPV-AC53 reference
using the Burrows-Wheeler aligner “mem” algorithm (BWA-
mem) version 0.7.12 (8) and converted and sorted into the BAM
format using SAMtools version 1.2 (9). A gapped-consensus se-
quence was produced using SAMtools version 1.2, BEDtools2
(10), BCFtools (as part of SAMtools), Picard Tools version 1.140
(http://broadinstitute.github.io/picard) and the Genome Analysis
Toolkit version 3.4-46 (11–13). The mapped reads were filtered
using bam2fastx as part of TopHat version 2.1.0 (14) and loaded
into KmerGenie version 1.6982 (15) to determine the k-mer size
of the mapped data and then assembled de novo using Tadpole
(BBMap 35.59 package) (16). The mapped reads, de novo-
assembled contigs, and the consensus sequence (with gaps) were
merged into a single fasta file and mapped against the HaSNPV-
AC53 reference using the Geneious R9 mapper with medium-low
sensitivity and 5� iterations (17). The final consensus sequence
and annotations were completed using Geneious R9.

The HaSNPV-AC53 sequence produced had 100% sequence
identity to the published HaSNPV-AC53 reference sequenced on

the Ion Torrent PGM (2). One strain was identical in length to
the parent HaSNPV-AC53 sequence (130,442 bp): HaSNPV-
AC53-C5 (130,442 bp). Four strains were between 5 bp and
7 bp shorter; HaSNPV-AC53-C6 (130,435 bp), HaSNPV-
AC53-C9 (130,437 bp), HaSNPV-AC53-T2 (130,437 bp), and
HaSNPV-AC53-T5 (130,439 bp). Two strains, HaSNPV-
AC53-C3 (130,443 bp) and HaSNPV-AC53-C1 (130,460 bp)
were, respectively, 1 bp and 18 bp longer. All the strains con-
tain the 138 open reading frames (ORFs) and 5 homologous
repeat regions found within HaSNPV-AC53 (2). Comparison
of strain and parent HaSNPV-AC53 sequences shows differ-
ences within HOAR, ORF5, ORF7, ORF61, BRO-A, DNA-
polymerase, ORF78, 38.7-K protein, ORF128, and PKIP-1, and
in all 5 homologous repeat regions. Nonsynonymous muta-
tions were identified in ORF5 (HaSNPV-AC53-C3), BRO-A
(HaSNPV-AC53-T2), and DNA-polymerase (HaSNPV-AC53-
T2 and HaSNPV-AC53-C5).

Nucleotide sequence accession numbers. The complete se-
quences of HaSNPV-AC53C1, HaSNPV-AC53C3, HaSNPV-
AC53C5, HaSNPV-AC53C6, HaSNPV-AC53C9, HaSNPV-
AC53T2, and HaSNPV-AC53T5 were deposited to GenBank
under the accession numbers KU738896, KU738897, KU738898,
KU738899, KU738900, KU738901, and KU738904, respectively.
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