
RESEARCH ARTICLE

Incorporating Canopy Cover for Airborne-
Derived Assessments of Forest Biomass in the
Tropical Forests of Cambodia
Minerva Singh1*, Damian Evans2, David A. Coomes1, Daniel A. Friess3, Boun Suy Tan4,
Chan Samean Nin5

1 Forest Ecology and Conservation Group, David Attenborough Building, Department of Plant Sciences,
Downing Street, University of Cambridge, Cambridge, CB2 3EA, United Kingdom, 2 École française
d’Extrême-Orient, Siem Reap, Cambodia, 3 Department of Geography, National University of Singapore, 1
Arts Link, 117570 Singapore, Singapore, 4 APSARA National Authority, Angkor International Research and
Documentation Centre, Siem Reap, Cambodia, 5 APSARA National Authority, Department of Forestry
Management, Cultural Landscape and Environment, Siem Reap, Cambodia

*ms2127@cam.ac.uk

Abstract
This research examines the role of canopy cover in influencing above ground biomass

(AGB) dynamics of an open canopied forest and evaluates the efficacy of individual-based

and plot-scale height metrics in predicting AGB variation in the tropical forests of Angkor

Thom, Cambodia. The AGB was modeled by including canopy cover from aerial imagery

alongside with the two different canopy vertical height metrics derived from LiDAR; the plot

average of maximum tree height (Max_CH) of individual trees, and the top of the canopy

height (TCH). Two different statistical approaches, log-log ordinary least squares (OLS) and

support vector regression (SVR), were used to model AGB variation in the study area. Ten

different AGB models were developed using different combinations of airborne predictor

variables. It was discovered that the inclusion of canopy cover estimates considerably

improved the performance of AGBmodels for our study area. The most robust model was

log-log OLS model comprising of canopy cover only (r = 0.87; RMSE = 42.8 Mg/ha). Other

models that approximated field AGB closely included both Max_CH and canopy cover (r =

0.86, RMSE = 44.2 Mg/ha for SVR; and, r = 0.84, RMSE = 47.7 Mg/ha for log-log OLS).

Hence, canopy cover should be included when modeling the AGB of open-canopied tropical

forests.

Introduction
Tropical forests sequestered 2.4 ± 0.4 pentagrams of carbon annually from 1990–2007, making
them an important terrestrial carbon sink [1]. However, tropical land use changes, especially
those leading to deforestation can contribute to carbon emissions from these carbon stocks [1].
From 2001–14, at 14.4%, Cambodia had the fastest acceleration in the annual forest rate per
annum [2]. This potentially leaves behind a largely degraded landscape containing fragments
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of forest that have lower aboveground biomass (AGB) storage [3]. The development of meth-
ods to accurately quantify AGB is important in the context of carbon cycle studies and also for
conservation policies that monetize the carbon held in the forests of developing tropical coun-
tries [4]. Traditional field based approaches for estimating AGB have provided the core data
for forest carbon monitoring, but are limited their spatial scale, so are increasingly comple-
mented by remote sensing data to generate maps of AGB [5].

Light detection and ranging (LiDAR) is a powerful tool for mapping AGB in tropical
regions [6]. LiDAR-estimated top of the canopy height (TCH) has been found to relate closely
to field-estimated AGB in some tropical forests [7]. LiDAR data have been extensively used for
AGB monitoring of different types of tropical forests at different temporal and spatial scales.
LiDAR data have been employed for mapping AGB across forests that have undergone varying
levels of degradation in Indonesia [8] and across selectively logged forests of Brazil [9]. These
data have also been employed for mapping variation in AGB at different spatial scales across
different time periods in a closed canopy forest in French Guiana [10]. In addition to lowland
tropical forest ecosystems, LiDAR derived metrics have produced robust AGB estimates for
tropical sub-montane forests [11], open canopied forests [12] and tropical peat swamp forests
[13].

Increasingly, LiDAR and aerial data are being used in combination with an image segmenta-
tion technique, Object Based Image Analysis (OBIA) to study forest structure variables and
AGB in tropical forests [14]. A recent study used a combination of airborne LiDAR and aerial
imagery for characterizing the horizontal structure of a tropical forest in the Comoros Islands
using OBIA [15]. Canopy height and horizontal structure variables were employed for delin-
eating the dominant vegetation classes in the study area and generating a vegetation structure
based land cover map [15]. During the OBIA, image segmentation is achieved by defining indi-
vidual, non-overlapping objects (tree crowns in this case) and extracting the relevant spatial
and spectral attributes of these features [16]. OBIA predicted that the variables had a strong
positive correlation with the field measured values of these attributes, in addition to producing
tree crown polygons that closely resembled the real forest tree crowns [17]. However, OBIA
based approaches have not been used extensively for the monitoring of forest biophysical
parameters in the tropics, even though they can produce more robust AGB estimates, at least
in temperate coniferous forests [18].

We hypothesize that horizontal canopy cover influences AGB stocks in human modified
open-canopied forest ecosystems [19], in addition to TCH [7], which is a plot aggregate allom-
etry only [20], LiDAR based tree height estimates scaled up from individual trees to plot scale
will potentially provide more robust AGB estimates [21,22,23]. With this in mind, the research
has made use of three predictor variables–percentage canopy cover, TCH, and Max_CH. The
percentage canopy cover (derived from aerial imagery) is used to represent the horizontal
structure of the canopy while the TCH represents the vertical structure of the canopy.
Max_CH is a new metric that has been synthesized as a part of this research. This metric is
based on maximum heights of individual trees derived by segmenting individual trees (from
LiDAR using OBIA) and scaling up these maximum heights to the plot scale. Individual
LiDAR tree heights have been employed for AGB estimation in the past [24].

The main aim of the research was to build an AGB estimation model for Angkor Thom
using a combination of field to calibrate airborne LiDAR data. In particular, we highlight the
role horizontal canopy cover plays in influencing AGB, alongside vertical canopy metrics. In
addition to using the two different vertical canopy structure for AGB modeling, this study has
compared field measured plot scale heights with the two LiDAR derived height metrics
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Materials and Methods

Study area
The Angkor Thom complex within the World Heritage Site of Angkor (Siem Reap Province,
Cambodia) covers 9 km2 (red box, Fig 1) and comprises of several important archaeological
sites, including the iconic Bayon temple. Angkor Thom is an important heritage site, character-
ized as a “living landscape” within which management to conserve biological diversity must be
reconciled with supporting cultural/religious beliefs and livelihoods [25]. Angkor Thom is one
of 33 tropical sites, covering 26 million hectares of land that have been designated as World
Heritage Sites (WHSs) since 1999. The forests of Angkor Thom and the wider Angkor Archae-
ological Park are moist tropical forests that experience strong seasonal variations in rainfall.
These forests lie within the Central Indochina Dry Forest eco-region characterized by dry Dip-
terocarp forests and are vital components of this ecological province [26], but have come under

Fig 1. Map of the study area. Location of the Angkor World Heritage Site/ Angkor Archaeological Park, background data courtesy of NASA-SRTM/
JICA-MPWT. Insert: Aerial view of the walled city of Angkor Thom showing the 25 one-hectare forest monitoring plots (IKONOS data courtesy of Space
Imaging LLC).

doi:10.1371/journal.pone.0154307.g001
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pressure from increasing human population density, large-scale resource extraction, deforesta-
tion and degradation [27].

Field data
Twenty five one-hectare plots were established randomly within the forested portion of Angkor
Thom (see Fig 1). A one-hectare plot size was selected because the RMSE of LiDAR-derived
AGB estimates decreases exponentially with increasing plot size, and previous work suggests
that uncertainty reaches acceptable level at this area [28,29,6]. Stratification was conducted
based on the four forest quarters created by the north, south, east and west roads of Angkor
Thom. The forested areas leading towards Angkor Thom have faced different levels of anthro-
pogenic disturbance owing to their varying distances from human settlements. Plots were ran-
domly located within each of the quadrants. A preliminary survey of the forests indicated
significant anthropogenic disturbance.

Plots were sampled in December 2013 using the procedures of Marthews et al. [30]. Stem
diameter at breast height (DBH, in cm) was recorded for all trees where DBH� 10 cm (see S1
Table). Total tree height (H, inm) of 150 randomly selected trees was measured using a cli-
nometer [31], which can produce robust results even when the crown top is not visible [32],
and log-log linear regression was used to derive the following relationship between DBH and H
(Eq 1), as recommended by Feldpausch et al. [33], with R2 = 0.75, p<0.01:

lnðHÞ ¼ 0:292� lnðDBHÞ þ 2:1 ð1Þ

This equation was then used to estimate the heights of all remaining trees in the plots, from
their measured DBHs. The aboveground biomasses of all individual trees in the plot (AGBtree
in kg) were then calculated using the standard allometric equation (Eq 2) for moist forests of
Chave et al. [34]:

AGB ¼ 0:0673� r� ðDBH2 � HÞ0:976; ð2Þ
where, ρ is specific wood density; a mean value of 0.57 Mg/m3 was used as the value for individ-
ual tree species in the study area [35].

Airborne imagery
LiDAR data were acquired in April 2013, when there was the least amount of leaf cover on the
trees, using a helicopter-mounted Leica ALS60 laser system. A Honeywell CUS6 inertial mea-
surement unit was used to register aircraft orientation at 200 Hz [36], and absolute positional
information was acquired using a Novatel L1/L2 GPS antenna. A flying height of 800 m above
ground level and an average speed of 80 km/h were chosen, with a field of view of 45° for the
laser scanner and 46° for the camera equipped with a 60-mm lens. The pulse rate of the ALS60
was 120 kHz, with full waveform acquired across a swath width averaging 650 m. The aircraft
flew adjacent flight lines in opposing directions with a significant overlap between swaths,
resulting in about four returns/pulses and a point density of about 12 points m-2. The LiDAR
data were divided into ground and vegetation returns, using method [36]. Ground returns
were used to derive a Digital Elevation Model (DEM) (Fig 2), while vegetation returns were
used to generate a Canopy Height Model (CHM) giving the upper boundary of the canopy
[37]. The CHM and DEM were generated using FUSION/LDV v.3.42 [38] at a resolution of
1m. TCH was obtained from the CHM clipped for each plot, as described by Mascaro et al. [7].

Object Based Image Analysis (OBIA) was used to delineate individual tree crown from the
LiDAR data. The approach divides the image into non-overlapping regions or segments,
extracts multiple pieces of information from each segment (e.g. shape, size, texture), and uses
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this information in conjunction with spatial context to categorize and collate individual seg-
ments into discrete objects [14]. Multi-resolution segmentation was conducted using eCogni-
tion software [14], where significant objects such as tree crowns were segmented one at a time,
instead of attempting to segment the entire image simultaneously [17]. Individual tree crown-
delineation of the entire LiDAR survey produced maximum tree heights of individual trees
within each plot, which were averaged to give a plot-scale maximum canopy height estimate
(henceforth referred to as Max_CH). This is more of an individual tree approach as compared
to TCH which is a plot scale metric.

Aerial Imagery
Very High Resolution (VHR) imagery was acquired concurrently with the LiDAR data using a
40-megapixel Leica RCD105 medium-format camera. The imagery comprised of three bands
(red, green and blue), with a spatial resolution of 8cm. Radiometric correction and orthorectifi-
cation were conducted by the data provider.

Manual digitization was employed to estimate percentage canopy cover from the VHR
imagery, which is suitable for the delineation of individual trees as solid objects providing com-
plete cover [39]. The summed area of all the digitized tree crowns within a plot, divided by the
area of the plot, gives fractional canopy cover [40]. This method allows us to extract trees cano-
pies accurately and leave aside bushes, shrubs (small vegetation) and shadows. The canopy
cover extracted from the VHR imagery was obtained by taking 20–25 densitometer readings at
random locations within each plot [39] (See S2 Table).

Fig 2. The Digital Elevation Model and the Canopy Height Model of the study area.

doi:10.1371/journal.pone.0154307.g002
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Statistical Modeling
Multiple linear regression is the most common methods used to generate LiDAR-based bio-
mass estimation equations. Arguably, however, relationships like these arise from fundamen-
tally complex processes, with a number of interacting and intertwined drivers behind them. In
contrast, machine learning methods are based on assumption that processes are unknown and
likely to be complex. Support vector regression (SVR) is generally considered to produce robust
results in the context of remote sensing. SVR deals with the inherent complexity and non-lin-
earity of the data by using kernel functions to map the original input space into a new feature
space with higher dimensions [41,42].

Previous work suggests the relationship between field-estimated AGB and LiDAR-estimated
TCH is best described by a power law relationship [43]. In order to implement this, a log-log
linear regression model was fitted, of the form [10]

lnðAGBÞ ¼ aþ b x LnðPredictor VariableÞ þ e; ð3Þ

where a and b are parameters and the residuals e are normally distributed and homogeneous.
This relationship was extended by including additional variables such canopy cover and
Max_CH in the linear model [10]. Alternative regression models were explored that included
Max_CH instead of TCH; five log-log linear models were developed including different combi-
nations of the three predictor variables. In all these cases, back-transformation was carried out
using the Baskerville correction which produced the following model (Eq 4) [10] where RSE is
the residual standard error.

AGB ¼ exp aþ RSE2

2
þ b � Ln predictor variableð Þ

� �
ð4Þ

In addition, SVR modeling was carried out (with radial bias function or RBF as the kernel)
using the caret package of the R statistical framework [44]. In all, five SVR based models were
developed which used different combinations of the three predictor variables under consider-
ation. A total of ten models were compared—five utilizing OLS regression (log-log) and five
utilizing SVR.

In order to assess the performance of the ten AGB models developed as a part of this
research, leave one out cross validation (LOOCV) was implemented. The basic principle of this
technique is that one observation is sequentially removed from the dataset and the model is fit-
ted to the remaining data points. The model thus developed is implemented on the datum that
was left out in order to produce a predicted value [45]. LOOCV was implemented in order to
reduce overfitting and to provide unbiased error estimates [41]. The technique then averages
the test error rate observed in each of the k iterations so as to get the cross-validation of the test
error rate [46]. For implementing this technique in predictive regression models, regression is
conducted with AGB values of the remaining plots (n-1) and the predicted AGB is obtained for
the plot that was left out. This is conducted for all the data points [47]. Pearson correlation
coefficient (between field and predicted AGB), Root Mean Square Error (RMSE), %RMSE,
Mean Absolute Error (MAE), lower and upper RMSE and %bias were used to evaluate predic-
tive AGB model performance. Models with relatively low MAEs, %RMSE, %bias and high
Pearson’s correlation coefficient are considered preferable. Percent bias was evaluated by evalu-
ating the percentage overestimation or underestimation of predicted AGB compared with field
AGB values [48]. In order to determine the independent and joint contribution of the explana-
tory variables as predictors of field AGB, hierarchical partitioning analysis was implemented
through the hier.part package of R [49]. Hier.part uses % RMSE as a goodness of fit measure
and allows the calculation of both the independent and joint contributions of the predictor
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variables. The former quantifies the % contribution of independent variables in explaining var-
iance while the latter quantifies the relative contribution of predictor variables. Additionally,
Random Forest (RF) was also used for identifying the % contribution of individual variables

The research examined whether field measured tree height, Max_CH and TCH are signifi-
cantly different using a Friedman test; a non-parametric test which is appropriate for paired
data.

Results
Field measured tree heights (19.53±0.2m), TCH (18.84±1.17m) and Max_CH (20.2 ± 1.03m)
were not statistically different from each other (Friedman test, p>0.05). The mean height of
trees delineated within the LiDAR imagery (i.e. Max_CH) and average field tree heights had a
mean difference of 60 cm. The average difference between field-measured height and TCH was
slightly greater, at 69 cm, which is to be expected because TCH was integrated over the entire
canopy, not just the tree tops.

Performance of the AGB estimation models
Aboveground biomass (dry mass) ranged between 49–346 Mg/ha over the 25 plots (see S3
Table). Comparison of five least-square-regression models and five SVR models indicated that
the best-supported model used log-log regression and had canopy cover as the only explana-
tory variable, closely followed by the SVR model that included both Max_CH and canopy
cover (Table 1, Fig 3). The coefficient estimates, p values and R2 of the five log-log linear regres-
sion models are provided in S4 Table.

Fig 3 graphically compares the performance of the ten models, showing the regression lines
for the field and LiDAR-predicted AGB using least squares regression (Fig 3A) and SVR (Fig
3B). The lines depict deviation of predicted AGB values from field AGB values. The lines were
compared with the 1:1 relation (black dashed lines). From the ten models, the most parsimoni-
ous model was log-log OLS model comprised of canopy cover only. This model approximated
the field AGB values with highest accuracy. After the log-log OLS canopy cover only model,
the SVR regression and log-log OLS regression with Max_CH and canopy cover gave the clos-
est prediction of field AGB values. Further, the predictive model with canopy cover only had a

Table 1. Summary of statistical performance of the ten alternative models used to predict AGB from aerial remote sensing data. The statistics
include Pearson’s correlation coefficient (r) between 25 observed and predicted AGB values, Root Mean Square Error (RMSE), % RMSE percent bias, MAE,
lower and upper RMSE.

Model r RMSE %RMSE %Bias MAE RMSE lower RMSE upper

OLS Regression (log-log)

TCH 0.54 74.2 48.4 2.7 58.4 54.7 96.7

Max CH 0.66 65.1 37.0 1.6 48.7 48.6 81.3

Canopy Cover 0.87 42.8 33.8 1.6 31.8 31.0 55.5

TCH+Canopy Cover 0.84 48.4 35.8 1.1 35.9 34.7 62.9

Max CH+Canopy Cover 0.84 47.7 34.7 1.6 35.4 33.6 62.2

SV Regression

TCH 0.23 84.5 85.3 -0.6 67.9 64.1 106.7

Max CH 0.40 77.8 83.6 3.6 67.4 59.9 95.9

Canopy Cover 0.82 50.7 51.4 6.2 39.8 39.7 62.3

TCH +Canopy Cover 0.82 48.2 50.9 1.9 38.2 36.1 62.2

Max CH+Canopy Cover 0.86 44.2 40.1 2.0 34.9 30.5 55.1

doi:10.1371/journal.pone.0154307.t001
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low value of percent bias (+1.6%), indicating small deviation from the expected AGB values.
Variable importance analysis carried out using hier.part showed that in terms of % individual
contribution canopy cover was more important than Max_CH and TCH (46.4, 24.8 and
13.1%, respectively) in explaining the variation in field AGB respectively. Canopy cover,
Max_CH and TCH have a joint contribution of 29.7%, 29.8% and 21.6%. Random Forest (RF)
% contribution of variable importance was 32.46%, 25.00% and 21.55% for aerial canopy cover,
Max_CH and TCH respectively.

Discussion

AGBModeling in Angkor Thom
The canopy cover–an index of horizontal variation in canopy structure–has the highest % inde-
pendent contribution in explaining AGB variation. The best performing model was the log-log
OLS model with canopy cover only. Additionally, the predictive models containing canopy
cover have performed better than those with LiDAR height measures only. This research has
established the importance of canopy cover for estimating AGB values in an open canopied
forest. Recent works used combinations of vertical height and canopy cover metrics to improve
AGB estimations such as in the works of Singh et al. [12] and Li et al. [50] and suggest the
inclusion of horizontal canopy structure estimates (such as canopy cover) improves AGB pre-
diction models for more open canopied ecosystems. These results may be explained on the
basis of Drake et al. [19] according to which horizontal variables, such as canopy cover, play an
important role in explaining AGB variation in open-canopied tropical forests. This maybe cor-
roborated by research done by Coomes et al. which demonstrated that canopy cover and

Fig 3. LiDAR predicted AGB estimates compared with the field estimates for the ten models.

doi:10.1371/journal.pone.0154307.g003
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structure related variables (such as NDVI) are effective for modeling AGB in open shrub-lands
[51]. The role of horizontal canopy structure in complementing LiDAR derived vertical struc-
ture for landscape scale forest structure has been previously reported [19,15,50]. Horizontal
variables are important in explaining variation in AGB stocks and their exclusion from AGB
estimation models can reduce accuracy [52]. Future AGB modeling in moist tropical ecosys-
tems would benefit by using horizontal variables such as canopy cover either alone or in con-
junction with vertical structure variables to produce robust AGB models.

While the difference between the five top performing models is not very high, they do pres-
ent interesting insights which maybe be used to inform future research. For both categories
(log-log regression and SVR), models with Max_CH produced slightly better results than
Asner’s TCHmetric. Scaling up from individual tree level to plot scale is a more intuitive
approach as it closely follows the process of plot scale field AGB estimation. The latter also
involves calculating the AGB of individual trees and scaling up to plot scale. Research by Col-
gan et al. [53] indicates that inclusion of OBIA derived maximum height metrics significantly
reduces error in the AGB models as compared to an average height metric. Our research estab-
lishes the utility of individual tree height metrics in approximating average field tree heights
and producing robust AGB predictive models. Upper layers of the canopy intercept most of the
laser shots, hence it is expected individual LiDAR trees heights will correspond more strongly
with the field measured tree heights and AGB estimates [24]. These results are in agreement
with a similar study based in the temperate forests of Canada, which also utilized OBIA derived
parameters from aerial and LiDAR data to develop AGB models [54]. The said model was
developed using LiDAR data that covered 8.8% of the study area to produce a landscape wide
estimate of AGB and volume in Canada [54]. In this research, Max_CH has been synthesized
using pre-existing algorithms (OBIA in this case), for future research it would be informative
to examine different ways of extracting individual tree characteristics, such as 3D segmentation
directly from LiDAR point clouds and relating them with field data [17]. The top 5 AGB mod-
els predicted AGB values accurately with slight over estimation. However these values are well
within range of AGB biases reported for other ecosystems [43].

It must be noted that the canopy metrics deployed here are not the only horizontal and ver-
tical metrics that can be used for AGB modeling. Hansen et al. [11] discovered that variables
representing lower parts of the canopy and canopy density predicted AGB density better than
height metrics in a sub-montane tropical forest in Tanzania. Two vertical height metrics- first
quartile heights and variance of heights above ground returns were used to model AGB varia-
tion in a selectively logged forest in Brazil [9]. Caution is needed when interpreting these results
as more data are needed before being scaled in order to identify the environmental and bio-
physical factors which influence AGB stocks and which models are more appropriate for the
wider ecological province of Central Indochina Dry Forests. For instance, while a canopy cover
only model has produced robust AGB estimates for this ecosystem, it is important to test the
ability of canopy cover based AGB models in predicting the AGB values of other forest types,
including forest types with varying canopy covers and heights.

Limitations of AGB modeling
There are several sources of uncertainty in remote sensing forest AGB monitoring studies.
These include field measurement errors, plot location errors and errors stemming from the
selection of allometric equations. These in turn can reduce the accuracy of the AGB estimates
[55]. Many forest remote sensing studies suffer from the lack of differential GPS geo-located
plot locations. The use of a handheld GPS (such as the one used in this study) can produce
inaccurate plot locations in dense, close canopied forests [21]. However, in this work, the forest
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plots did not have a dense canopy cover and the plot locations were visually cross-checked
with the locations of important monuments and other easily identifiable structure.

This study applied the general allometric equation recommended by Chave et al. [34]. How-
ever, AGB estimates are often hindered by a lack of site- and species-specific equations.
Although local allometric models can produce more accurate AGB estimates, the development
of such allometry needs substantial field data [56].

Both field measured and LiDAR predicted tree heights have associated measurement errors,
which in turn can affect the efficiency of the AGB prediction model [6,57]. For instance, the
precision of individual tree height measurements can vary between 3%-20% which in turn
translates into 5%-9% uncertainty in AGB estimates at 1ha scale [58]. This study has used cli-
nometers for measuring tree heights in the field. A recent comparison of ground-based meth-
ods found that clinometer based- trigonometric methods resulted in no systematic bias (non-
laser method), or resulted in a small underestimate of actual tree height (ground laser-based
methods) compared to heights measured from an observational tower [32]. Clinometer mea-
sured tree heights essentially produces 1:1 correspondence with actual tree heights, but the
height of taller trees can significantly be overestimated. This approach produces low systematic
error but high random errors [32]. Including height (whether field measured or DBH-height
equation derived) can significantly reduce uncertainty in field AGB measures [33]. These
meta-scale findings are further corroborated by Rutishauser et al. who argue that while measur-
ing tree heights in tropical ecosystems (such as Indonesia) is fraught with uncertainties, includ-
ing them reduced uncertainty in the overall AGB model [59]. This certainly builds a case for
developing site specific H-DBH relationships. In this research at a plot scale, field measured
tree heights, Max_CH and TCH did not vary significantly. However, the impact of high ran-
dom errors produced as a result of taller trees needs to be evaluated in detail, as forests of SE
Asia on an average have trees taller than those found in other tropical regions [33].

Comparison to other LiDAR-based studies of tropical forest AGB and
structural dynamics
The present study area encompasses a wide range of AGB values. In spite of a ban on logging,
illegal resource extraction persists in many parts of the study area which explains such a wide
variation in AGB values. Previous findings in Borneo indicate that selective logging can lead to
55%–66% AGB loss [60]. The wide range of AGB values in the study area is similar to the
range of AGB values for mixed evergreen and semi-evergreen forests identified in the national-
scale assessments of AGB in Cambodia [61]. This study confirms that local spatial variation in
forest cover and AGB is fraught with uncertainty, which in turn has implications for carbon
conservation activities such as REDD+ [62]. Such wide variation of AGB in a relatively small
area indicates the need to build high resolution AGB maps at a local scale (based on locally rel-
evant predictor variables) and scaling these to landscape or regional scale.

The mean AGB of the semi-evergreen forests of Angkor Thom was 194.53 Mg/ha, or 97.265
Mg C/ha (above ground carbon stocks are half of total AGB). This value of above ground car-
bon stocks is comparable to the carbon stock values reported for other sites in continental and
insular SE Asia [63,64]. It also showed that the airborne data derived variables had a strong
strength of association with field measured AGB [13]. Furthermore, both AGB variation and
the effect of spatial patterns of degradation on AGB variation were quantified to a high level of
accuracy using LiDAR data collected over lowland and peat-swamp forests in Indonesia [8].
On the basis of the research presented in this paper and previous studies, airborne data such as
LiDAR are appropriate in examining forest structure, AGB variation and degradation patterns
in tropical forest ecosystems, including those in Cambodia.
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Conclusions
This study develops an AGB-estimation method for the temple forests around Angkor Thom.
Two distinct approaches are used for AGB modeling—log-log regression and the support vec-
tor regression. The canopy cover-only AGB model and the models that included of canopy
cover along with height produced robust estimates AGB in the open canopied tropical forests
of Angkor Thom compared to height only models. Inclusion of the two height metrics (the
plot scale TCH and individual tree height based Max_CH) in the different models confirm the
role of the latter, an individual scale metric scaled up to plot level in predicting AGB variation
with a higher level of accuracy compared to the plot scale TCH. It is expected that scaling these
models will produce improved AGB estimates at landscape scales for ecosystems that suffer
from high levels of anthropogenic disturbance. This study has provided valuable insights into
the structural variation present in the said ecosystem and the ability of airborne data to predict
this. Conservation instruments like the REDD+ require highly accurate quantification of
parameters such as AGB and carbon, which can be obtained by using a combination of field
and airborne data. Further works will extend airborne data-based approaches to open-cano-
pied tropical forests
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