

INTESTINAL RESEARCH

pISSN 1598-9100 • eISSN 2288-1956 https://doi.org/10.5217/ir.2024.00005 Intest Res 2025;23(2):157-169

Early resolution of bowel urgency by budesonide foam enema results in improved quality of life in patients with ulcerative colitis: a multicenter prospective observational study

Taku Kobayashi¹, Kei Moriya², Toshimitsu Fujii³, Shigeki Bamba⁴, Shinichiro Shinzaki^{5,6}, Akihiro Yamada⁷, Takashi Hisabe⁸, Shintaro Sagami^{1,9}, Shuji Hibiya³, Takahiro Amano⁵, Noritaka Takatsu⁸, Katsutoshi Inagaki¹⁰, Ken-ichi Iwayama¹¹, Toshifumi Hibi¹

¹Center for Advanced IBD Research and Treatment, Kitasato University Kitasato Institute Hospital, Tokyo, Japan; ²Department of Gastroenterology, Nara Medical University, Kashihara, Japan; ³Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan; ⁴Division of Digestive Endoscopy, Shiga University of Medical Science, Otsu, Japan; ⁵Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan; ⁶Department of Gastroenterology, Hyogo Medical University, Nishinomiya, Japan; ⁷Division of Gastroenterology and Hepatology, Department of Internal Medicine, Toho University Sakura Medical Center, Sakura, Japan; ⁸Department of Gastroenterology, Fukuoka University Chikushi Hospital, Chikushino, Japan; ⁹Department of Gastroenterology and Hepatology, Kitasato University Kitasato Institute Hospital, Tokyo, Japan; ¹⁰Medical Science Group, Medical Department, EA Pharma Co, Ltd., Tokyo, Japan; ¹¹Medical Department, Kissei Pharmaceutical Co., Ltd., Tokyo, Japan

Background/Aims: Bowel urgency is an important symptom for quality of life determination in patients with ulcerative colitis (UC). Few clinical studies have focused on bowel urgency as an efficacy endpoint. Budesonide foam enema has shown efficacy for clinical and endoscopic improvement in mild-to-moderate UC. We evaluated the improvement of clinical symptoms (bowel urgency), safety, and treatment impact of twice-daily budesonide foam enema on the quality of life in patients with UC. **Methods:** This open-label, multicenter, prospective observational study comprised a 4-week observation period assessing the effectiveness and safety of twice-daily budesonide foam enema. Mild-to-moderate UC patients who had bowel urgency were included. Patients collected data daily in an electronic patient-reported outcome system or logbooks. The primary endpoint was the rate of resolution of bowel urgency at the end of the 4-week observation period. The rate of bowel incontinence was also assessed. **Results:** Sixty-one patients were enrolled. Of patients with a final evaluation, the rate of resolution of bowel urgency was 58.5% (31/53; 95% confidence interval, 44.1%–71.9%). Bowel urgency decreased over time, with a significant difference observed on day 7 versus day 0. Bowel incontinence showed a decreasing trend from day 5, with a significant difference confirmed on day 12 versus day 0. The clinical remission rate was 64.4% (38/59; 95% confidence interval, 50.9%–76.4%). One adverse event not related to budesonide rectal foam occurred. **Conclusions:** The findings suggest that bowel urgency can be improved early with twice-daily budesonide foam enema. No new safety signals were observed. **(Intest Res 2025;23:157-169)**

Key Words: Bowel urgency; Colitis, ulcerative; Quality of life

INTRODUCTION

Received January 11, 2024. Revised April 17, 2024. Accepted April 29, 2024. Correspondence to Taku Kobayashi, Center for Advanced IBD Research and Treatment, Kitasato University Kitasato Institute Hospital, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8642, Japan. E-mail: drkobataku@gmail.com

Ulcerative colitis (UC) is an inflammatory bowel disease of unknown cause that affects the mucosa of the colon and rectum, with variable extension; it is characterized by frequent relapses and periods of remission.^{1,2} Typical symptoms include chronic abdominal pain, diarrhea, bloody stools, tenesmus, weight loss, fever, and malaise.^{2,4} Patients with distal lesions–even those with mild symptoms–may have severe mucosal damage and rectal function impairment (i.e., storing of stool, resulting in leakage and residual stool after defecation), which may reduce quality of life (QoL).^{5,6}

Bowel urgency is thought to be a sign of disabling rectal continence due to inflammation in patients with UC. Bowel urgency—a sense of the sudden or immediate need to have a bowel movement—is among the most commonly reported and distressing symptoms. Both bowel urgency and bowel incontinence are important triggers leading patients to seek medical attention. However, patients may find it difficult to discuss bowel urgency and may be hesitant to consult with their doctors regarding its symptoms. Furthermore, it has been noted that there is a gap in the perception of QoL between patients with UC and physicians. Despite bowel urgency being an important symptom in the management of UC, few clinical studies have focused on the improvement or resolution of bowel urgency.

The goals of UC treatment are to control symptoms promptly and induce remission during the active phase, to maintain remission of the disease for as long as possible, and to improve QoL. ^{2,3,11} Treatment approaches for UC largely depend on the site and severity of the disease. Topical therapy with 5-aminosalicylic acid (5-ASA) or corticosteroids may be useful in treating rectal inflammation. ¹² For proctitis, recent guidelines recommend mesalamine suppositories. Combinations of topical and oral 5-ASA can be used as the initial treatment for left-sided and extensive UC. ^{13,14}

Budesonide is a highly potent corticosteroid with a low systemic effect.¹⁵ Its 2-mg rectal foam has been shown to be effective in reducing bloody stools and inducing clinical remission for mild-to-moderate UC.^{1,16-21} Its long-term safety has also been shown.²² Based on the efficacy of budesonide rectal foam on the rectal mucosa, we hypothesized that it might improve symptoms of bowel urgency and bowel incontinence in patients with UC and improve their QoL.

The objectives of this study were to evaluate the improvement of clinical symptoms (bowel urgency) and the impact of treatment with twice-daily budesonide foam enema among patients with UC, to investigate its efficacy in improving QoL per the Inflammatory Bowel Disease Questionnaire (IBDQ), ^{23,24} and to confirm its safety.

METHODS

1. Ethics

We conducted this study in compliance with the principles of the Declaration of Helsinki. The study's protocol was reviewed and approved by the Institutional Review Board of Kitasato Institute Hospital, Research Ethics Committee (No. 19057). The study was reviewed and approved by the ethical review boards of each participating institution (Supplementary Table 1). All patients provided written informed consent to participate in the study. This trial was registered with the UMIN Clinical Trials Registry, registration number UMIN000042027.

2. Study Design

This was an open-label, multicenter, prospective observational study conducted at 7 centers in Japan between October 2020 and May 2022. The study included a 4-week observation period, during which patients received remission induction therapy (Supplementary Fig. 1). This study observed the effectiveness of remission induction therapy with twice-daily budesonide foam enema as prescribed by the treating physicians for patients with UC who had bowel urgency. Patients were centrally registered and were allowed to withdraw from the study at any time.

3. Patients

Patients diagnosed with mild-to-moderate UC according to the diagnostic criteria of the Japanese Society of Gastroenterology²⁵ were eligible to participate. For inclusion, patients had to be aged ≥20 years with UC (any extent of disease) and to have answered sometimes, often, almost always, or always to the following question based on IBDQ (16 March 2018) Q11: "How often during the last 2 weeks have you been troubled because of fear of not finding a washroom?", which assessed bowel urgency. Additionally, patients must have received a stable dose of oral 5-ASA in the 2 weeks before starting the observation period and have been deemed appropriate for treatment with twice-daily budesonide rectal foam (approved dosage and administration). Finally, patients had to be able to record treatment administration and clinical symptoms in an electronic patient-reported outcome (ePRO) system or a logbook and attend all required outpatient visits.

Patients were excluded from the study if any of the following applied within the indicated time prior to starting the observation period: received budesonide rectal foam (within 3 months), 5-ASA topical formulations (suppositories, enema formula-

tions) (at the start), or corticosteroid enemas and corticosteroid suppositories (within 2 weeks) or had a dose change of immunomodulatory drugs (within 8 weeks). Patients were also excluded if they were being treated with systemic corticosteroids, Janus kinase inhibitors, or calcineurin inhibitors; cytapheresis; or currently or previously treated with biologics. Patients with a history of colorectal resection in the rectum and sigmoid colon or scheduled surgical treatment of the gastrointestinal tract during the study period, and those deemed inappropriate for study participation were excluded.

4. Data Collection

Collected data included the following patient background information: sex, age (date of birth), height, weight, smoking habit, and duration of illness. Data were also collected on whether patients were presenting with a first-onset or relapse of the active phase, the status of previous medications (within 8 weeks before the start of the observation period [week 0]), disease type, severity, site of active disease, and most recent administration of budesonide foam enema before the start of the observation period. The investigator determined the severity of the disease based on the diagnostic criteria of the Ministry of Health, Labour and Welfare. ^{25,26}

Patients were required to collect data daily and record it in an ePRO or a written logbook for the following items: the number of times budesonide foam enema was used, the number of times other drugs (oral formulations) were used, defecation presence and frequency (times/day), rectal bleeding status, assessment of bowel urgency, and evaluation of bowel incontinence. Patients recorded data in the ePRO or written logbooks from day 0. Day 0 before administration of the budesonide foam enema was used as baseline. Bowel urgency and bowel incontinence data were collected and evaluated according to IBDQ Q11 and Q26. The IBDQ scores were as follows: 1: always, 2: almost always, 3: often, 4: sometimes, 5: occasionally, 6: almost never, and 7: never.

For the QoL evaluation, the investigator applied the IBDQ at the beginning of observation (week 0) and at the end of observation (or at the time of discontinuation of observation). For clinical symptoms, the investigator recorded the following items at the beginning of observation (week 0) and at the end of observation (or at the time of discontinuation): the number of bowel movements per day before UC or at the time of the most improved UC signs and symptoms at the recent lesion (normal frequency; times/day); and partial Mayo score (stool frequency, rectal bleeding score, and physician's global assessment).

5. Study Endpoints

The primary endpoint was the rate of resolution of bowel urgency at the end of the 4-week observation period (percentage of patients who reported a bowel urgency score [IBDQ question 11] of 6 or 7 at the final evaluation).

The secondary endpoints were as follows: items related to bowel urgency, which included time to resolution of bowel urgency (time to when the bowel urgency score on defecation [IBDQ question 11] reached 6 or 7); items related to bowel incontinence, which included the rate of resolution of bowel incontinence (percentage of patients who reported a bowel incontinence score [IBDQ question 26] of 6 or 7 at the final evaluation), time to resolution of bowel incontinence (time to when the bowel incontinence score regarding defecation [IBDQ question 26] reached 6 or 7); changes in IBDQ scores and subscales, change in partial Mayo score, and clinical remission rate (clinical remission is defined as a blood stool score = 0 and defecation frequency score = 0 or a decrease of at least 1 point from 0 weeks using the partial Mayo subscore); time to resolution of defecation (time to when the stool frequency score reached 0); and time to resolution of blood stools (time to when the rectal bleeding score reached 0).

Safety was assessed by the occurrence of adverse events (AEs) and adverse drug reactions (ADRs) classed according to the Common Terminology Criteria for Adverse Events version 5.0, coded using the Medical Dictionary for Regulatory Activities, and tabulated by system organ class and preferred term.

6. Statistical Analysis

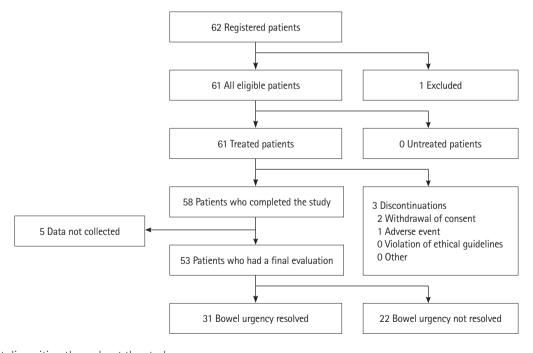
To avoid potential sources of bias, patients receiving budesonide rectal foam within the past 3 months were excluded. For the sample size calculations, it was assumed that the rate of resolution of bowel urgency and the rate of resolution of bowel incontinence were 30%, which is equivalent to the rate of complete mucosal healing based on the results of phase III clinical trials.¹⁷ With a power of 90% and a significance level of 0.05, the number of cases required to demonstrate the rate of resolution of bowel urgency was 28 cases. From the survey of chief complaints in patients with UC, 10 approximately 60% of patients with a bowel urgency score of 1-4 (enrollment criteria for this study) have symptoms of bowel incontinence. However, because 30% of patients find it difficult to discuss bowel incontinence with their healthcare providers, we estimated that 67 cases (28 cases/0.6 [prevalence of bowel urgency score of 1-4]/0.7 [reporting rate of bowel incontinence]) were needed, assuming a 70% reporting rate of bowel incontinence symp-

toms in this study. Furthermore, if approximately 20% of patients would drop out because of medication noncompliance and other reasons, the target sample size was 80 cases.

The analytical populations were the full analysis set comprising all eligible patients, the medication compliance population comprising all eligible patients with a compliance of $\geq 50\%$, the population of patients who completed the study, and the safety analysis population.

Regarding the statistical measures used, number of cases, mean (standard deviation), median, quartiles (interquartile range) and range (minimum value–maximum value) were calculated for continuous variables, and frequencies and percentages for categorical data. The rate of resolution (or the primary endpoint) and its 95% confidence interval (CI) were calculated.

Secondary endpoints were evaluated according to the analysis plan. Significance was defined as P < 0.05. The number of patients in clinical remission at the last evaluation, the clinical remission rate and the 95% CI (based on the Clopper-Pearson method) were calculated. Stool frequency score and a rectal bleeding score of ≥ 1 at the final evaluation were defined as non-normalization. Other stratified analyses, such as by disease type and exploration of factors affecting the primary evaluation, were also conducted. For safety, the frequency and incidence of AEs and ADRs were calculated for patients who received budesonide rectal foam at least once. Missing data


were not imputed. SAS version 9.4 (SAS Institute Inc., Cary, NC, USA) was used for statistical analysis.

RESULTS

1. Patient Characteristics

Of the 62 registered patients with active UC and bowel-urgency symptoms, 61 were enrolled, 58 completed the study, and 3 discontinued the study. Five patients were excluded from the analysis at the final evaluation because they did not submit the IBDQ. The reasons for discontinuation were withdrawal of consent (n=2) and AEs (n=1). Overall, 53 patients had a final evaluation (Fig. 1). Although the enrollment goal of 80 patients was not achieved, the enrollment period was not extended because the total number of patients enrolled was close to the minimum required sample size of 67. Fifty-two patients (85.2%) had a medication compliance rate of \geq 50%.

Table 1 summarizes the main background characteristics of patients. In total, 52.5% of patients were female, the median (interquartile range) age was 41.0 (30.0–54.0) years, and 91.8% of patients had no smoking habit. Nearly 60% (57.4%) had UC for more than 5 years, and 72.1% had moderate disease severity. The extent of the disease was most commonly pancolitis (28 patients, 45.9%), followed by left-sided colitis (26 patients, 42.6%). Forty-six patients (75.4%) had no prior history of budesonide rectal foam use.

Fig. 1. Patient disposition throughout the study.

INTESTINAL RESEARCH

Table 1. Patient Background Characteristics

Characteristic	Value (n = 61)		
Sex			
Male	29 (47.5)		
iemale 32 (52.5)			
Age (yr)	41.0 (30.0-54.0)		
Height (cm)	165.0 (158.5–172.0)		
Body weight (kg)	59.0 (51.0-67.0)		
Partial Mayo score	5.0 (4.0-6.0)		
Smoking habit			
No	56 (91.8)		
Yes	5 (8.2)		
Duration of illness			
<12 wk	3 (4.9)		
12 wk to <1 yr	8 (13.1)		
1 to < 5 yr	15 (24.6)		
≥5 yr 35 (57.4)			
First-onset and relapse in the active phase	,		
Initial	6 (9.8)		
Relapse	55 (90.2)		
Previous medications (within 8 wk before the start of observation)			
5-ASA rectal formulation			
No	52 (85.2)		
Yes	9 (14.8)		
5-ASA suppository formulation			
No	57 (93.4)		
Yes	4 (6.6)		
5-ASA oral formulation			
No	5 (8.2)		
< 3,600 mg/day	10 (16.4)		
3,600 to < 4,800 mg/day	17 (27.9)		
4,800 mg/day	29 (47.5)		
Immunomodulator			
No	56 (91.8)		
Yes	5 (8.2)		
Disease pattern			
Proctitis	7 (11.5)		
Left-sided colitis	26 (42.6)		
Pancolitis	28 (45.9)		
Disease severity			
Mild	17 (27.9)		
Moderate	44 (72.1)		
Severe	0		

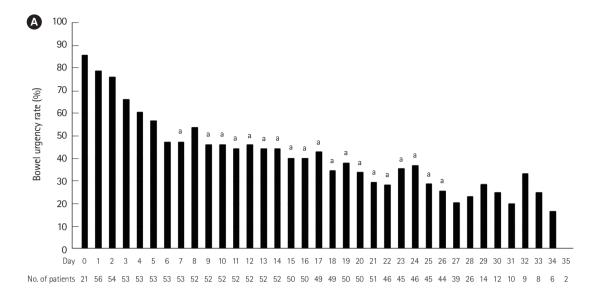
(Continued to the next)

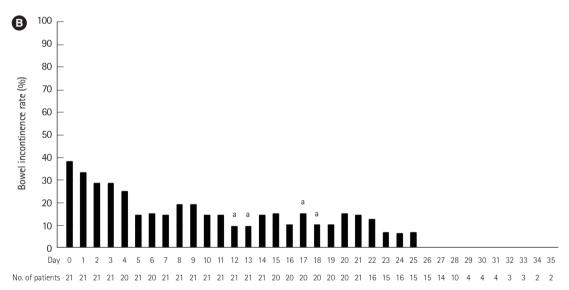
Table 1. Continued

Characteristic	Value (n = 61)
Active lesion site ^a	
Rectum only	11 (18.0)
Up to the sigmoid colon	25 (41.0)
Up to the descending colon	6 (9.8)
From the descending colon to the mouth	10 (16.4)
Unknown	9 (14.8)
No. of defecations per day (normal frequency)	1.5 (1.0-2.0)
History of administration of budesonide rectal foam	
No	46 (75.4)
Yes	15 (24.6)

Values are presented as number (%) or median (interquartile range). alndicates the extent of inflammation assessed during colonoscopies performed within the year prior to the start of the study. 5-ASA, 5-aminosalicylic acid.

2. Primary Endpoints


The rate of resolution of bowel urgency was 50.8% (31/61; 95% CI, 37.7%–63.9%). For patients who had a final evaluation, the rate of resolution of bowel urgency was 58.5% (31/53; 95% CI, 44.1%–71.9%).

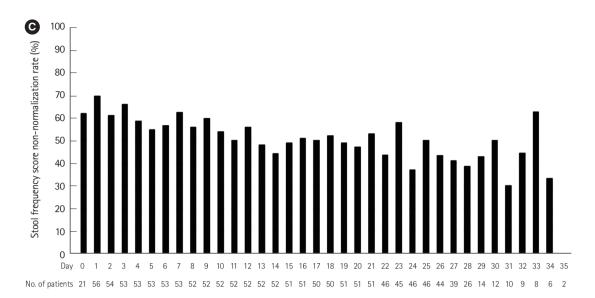

3. Secondary Endpoints

There were no significant differences in the rate of bowel urgency resolution according to disease type, with rates of 53.6% (15/28; 95% CI, 33.9%–72.5%) for pancolitis and 48.5% (16/33; 95% CI, 30.8%–66.5%) for the other types (P=0.80). There were also no significant differences in the rates of resolution of bowel urgency with or without budesonide rectal foam use (46.7% [7/15; 95% CI, 21.3%–73.4%] and 52.2% [24/46; 95% CI, 36.9%–67.1%]), respectively (P=0.77).

On day 0, the bowel urgency rate was 85.7% (18/21), which decreased to 47.2% (25/53) on day 7, and to 25.0% (3/12) on day 30 of budesonide foam treatment (Fig. 2A). Time to resolution of bowel urgency was estimated at 7 days after initiating budesonide foam treatment. Bowel urgency decreased over time, with a significant difference observed on day 7 compared with day 0 (P<0.05).

At baseline, 25 out of 61 patients (41.0%) had bowel incontinence. Bowel incontinence showed a decreasing trend from day 5, and a significant difference was confirmed on day 12 compared with day 0 (P<0.05) (Fig. 2B). From day 26 onwards, no patients reported fecal incontinence. The rate of resolution of bowel incontinence at the time of the final evalua-

Fig. 2. Proportion of patients experiencing (A) bowel urgency and (B) bowel incontinence, and without normalization of (C) stool frequency or (D) rectal bleeding throughout the study. (A, B) The vertical axis indicates the percentages of patients with bowel urgency and bowel incontinence scores of 1–5, respectively. (C, D) The vertical axis shows the percentages of patients with stool frequency and rectal bleeding subscores of 1–3, respectively. Day 0 is before the start of treatment, and day 1 and subsequent days are the number of days since the start of budesonide foam enema treatment. $^{\circ}P$ < 0.05 (compared with Day 0 by McNemar test). (Continued to the next page)


tion was 72.0% (18/25; 95% CI, 50.6%–87.9%).

Of the 61 patients with bowel urgency, 14 out of 25 patients (56.0%) who responded as having bowel incontinence on the IBDQ before administration had both bowel incontinence and bowel urgency resolved at the end of the observation period. Nevertheless, 4 patients still had bowel urgency despite the resolution of bowel incontinence.

The changes in IBDQ scores and subscales are shown in Table 2. Overall, the median (interquartile range) IBDQ total score at baseline was 141.0 (121.0–161.0), which increased to

181.0 (160.0–197.0) at the final evaluation, with a median change in the score (from baseline) at the final evaluation of \pm 29.0 points (P<0.001). Improvements were observed for all dimensions, but changes were more marked for bowel symptoms (\pm 1.3).

Among patients whose bowel urgency resolved, the median change in IBDQ total score (from baseline) at the final evaluation was +43.0 points, which represented a significant increase in the score (P=0.006). All IBDQ subscale scores except social function increased significantly from baseline at the final eval-

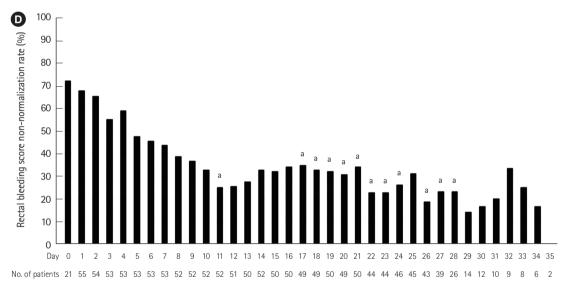


Fig. 2. Continued.

Table 2. Changes in Quality of Life per Changes in IBDQ Total Score and Subscale (n = 61)

	IBDQ total score				
IBDQ total scol	IDDU total score	Bowel symptoms	Emotional function	Systemic symptoms	Social function
Baseline (n = 59)	141.0 (121.0–161.0)	4.3 (3.5-5.1)	4.8 (4.0-5.4)	4.0 (3.4-4.6)	5.0 (3.6-6.0)
Final $(n = 53)$	181.0 (160.0-197.0)	5.9 (5.2-6.2)	5.6 (4.9-6.1)	5.2 (4.6-5.8)	5.8 (5.4-6.8)
Change (n = 53)	29.0 (13.0-55.0) ^a	1.3 (0.4–2.2)	0.8 (0.3-1.3)	0.8 (0.2–1.8)	0.8 (0.4–1.8)

Values are presented as median (interquartile range).

IBDQ, Inflammatory Bowel Disease Questionnaire.

uation (Table 3). In contrast, there was no significant increase in the IBDQ total score or any of the IBDQ subscale scores among patients whose bowel urgency did not resolve. A comparison of patient background characteristics in patients

whose bowel urgency did or did not resolve showed no significant differences between the 2 groups except for the distribution of disease patterns (proctitis, left-sided colitis, and pancolitis) (Supplementary Table 2).

^aP<0.001 (Wilcoxon test).

Table 3. Changes in Quality of Life per Changes in IBDQ Total Score and Subscale by Whether Bowel Urgency Resolved (n = 53)

	IBDQ total score	IBDQ subscale score			
	ושטע נטנמו גכטופ	Bowel symptoms	Emotional function	Systemic symptoms	Social function
Bowel urgency not resolved $(n = 22)$					
Baseline	135.5 (121.0–168.0)	4.2 (3.4–5.3)	4.7 (4.0-5.1)	4.0 (3.6-4.6)	4.4 (3.2-6.0)
Final	159.0 (146.0–179.0)	5.2 (4.6–5.7)	4.9 (4.3-5.8)	4.6 (3.8-5.2)	5.4 (4.8-5.8)
Change	15.0 (4.0-43.0)	0.7 (0.1–2.0)	0.3 (-0.1-0.8)	0.4 (0.0-1.0)	0.7 (0.0-1.4)
Bowel urgency resolved $(n = 31)$					
Baseline	154.0 (136.0–161.0)	4.4 (4.1–5.1)	4.8 (4.3-5.4)	4.2 (3.4-4.8)	5.4 (4.2-6.0)
Final	189.0 (178.0-203.0)	6.2 (5.8–6.6)	6.0 (5.4-6.4)	5.2 (5.0-6.2)	6.6 (5.8–7.0)
Change	43.0 (22.0-62.0)	1.4 (1.0-2.3)	1.2 (0.6–1.5)	1.2 (0.6–2.0)	1.0 (0.4–2.0)
P-value ^a	0.006	0.026	0.001	0.006	0.274

Values are presented as median (interquartile range).

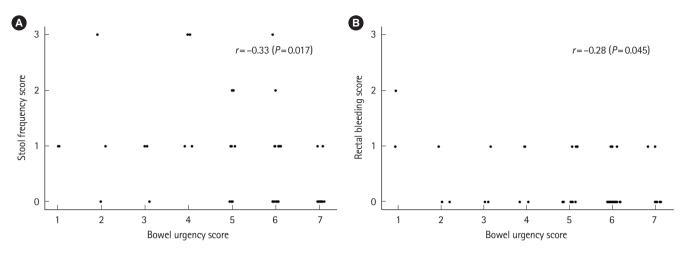
Table 4. Summary of Bowel Urgency Scores by Clinical Remission Status

Urgency measure	No clinical remission (n = 18)	Clinical remission (n = 35)	<i>P</i> -value
IBDQ question 11 score, No. (%)			
1	2 (11.1)	0 (0.0)	
2	1 (5.6)	2 (5.7)	
3	1 (5.6)	2 (5.7)	
4	3 (16.7)	1 (2.9)	
5	3 (16.7)	7 (20.0)	
6	6 (33.3)	17 (48.6)	
7	2 (11.1)	6 (17.1)	
Mean ± SD	4.7 ± 1.9	5.5 ± 1.3	
Median (IQR)	5.0 (4.0-6.0)	6.0 (5.0-6.0)	0.096 ^a
Bowel urgency status, No. (%)			0.150 ^b
Presence (score 1–5)	10 (55.6)	12 (34.3)	
Absence (score 6 or 7)	8 (44.4)	23 (65.7)	

^aWilcoxon rank-sum test.

Proportions of the partial Mayo scores for stool frequency are shown in Fig. 2C. Stool frequency scores varied throughout the observation period and tended to decrease. On day 31, patients reported the most marked changes in the stool frequency scores. No significant difference was observed.

The proportions of the partial Mayo scores for rectal bleeding are shown in Fig. 2D. In contrast to the observations related to stool frequency, the rectal bleeding score decreased over time, with a significant reduction observed on day 11 compared with day 0 (P<0.05).


The clinical remission rate was 64.4% (38/59; 95% CI, 50.9%–76.4%). Of the 18 patients who did not achieve clinical remission, 8 (44.4%) had improvements in bowel urgency (Table 4), and of the 35 patients who did achieve clinical remission, 12 (34.3%) still had bowel urgency. No statistically significant difference was found between the clinical remission group and the non-clinical remission group regarding the disappearance of bowel urgency (P=0.150). There was also no significant difference in the median urgency score between the 2 groups (P=0.096).

^aWilcoxon test.

IBDQ, Inflammatory Bowel Disease Questionnaire.

^bFisher exact test.

IBDQ, Inflammatory Bowel Disease Questionnaire; SD, standard deviation; IQR, interquartile range.

Fig. 3. Association between bowel urgency scores (IBDQ question 11) and stool frequency (A) and rectal bleeding (B) scores at the final evaluation. IBDQ, Inflammatory Bowel Disease Questionnaire; *r*, Spearman's rank correlation coefficient.

Bowel urgency showed weak correlations with stool frequency (Fig. 3A) and rectal bleeding (Fig. 3B) (a lower bowel urgency score indicates more severe bowel urgency), with Spearman rank correlation coefficients of r=-0.33 (P=0.017) and r=-0.28 (P=0.045), respectively. Bowel urgency also correlated with physician's global assessments and partial Mayo scores, with Spearman rank correlation coefficient values of r=-0.48 (P<0.001) and r=-0.43 (P=0.001), respectively (data not shown).

AEs and ADRs were evaluated. Only one AE occurred, which was a case of worsening UC (1.6%, 1/61). No ADRs were observed.

DISCUSSION

Few clinical studies have focused on the improvement/resolution of bowel urgency among patients with UC. This study of bowel urgency and bowel incontinence using daily recordings of IBDQ questions by patients undergoing UC treatment with budesonide rectal foam enema revealed that bowel urgency decreased by 50.8%, with improvement in bowel urgency on day 7. Budesonide foam enema led to the resolution of bowel urgency in nearly 60% of patients and the resolution of bowel incontinence in over 70%. Furthermore, numerical improvements in IBDQ total and bowel symptom scores suggest that budesonide foam enema contributed to improving QoL. In this study, treatment with twice-daily budesonide foam enema was considered safe as no ADRs, and only 1 AE (1.6%), were reported.

The clinical remission rate in the phase III placebo-con-

trolled trial of budesonide 2-mg rectal foam in patients with mild-to-moderate UC was 40.6%,¹⁷ whereas it was 64.4% in the current study. In contrast to the phase III trial,¹⁷ in which all cases were naïve to budesonide foam enema, 24.6% had a prior history of its use in the present study. This may explain why the remission rate was high.

The incidence of AEs was substantially lower in this study compared with that of the phase III trial, and no ADRs were observed.¹⁷ The incidence of ADRs in the phase III trial was 17.2% at week 6 and 5.0% from week 6 to week 12, and that of AEs was 45.3% at week 6 of treatment and 30.0% from week 6 to week 12¹⁷; none of the AEs were unexpected. The shorter observation period in the present study (4 weeks) compared with the phase III trial (12 weeks) might be an explanation for the observed difference in safety findings between the studies.¹⁷

It has been reported that half of patients with UC have inflammation limited to the distal colon (proctitis or proctosigmoiditis) that primarily causes urgency. We believe budesonide rectal foam targets inflammation in the distal colon and rectum. In fact, there were no differences in the background characteristics between patients who did or did not have their bowel urgency resolved. Similar to our study, other rectal enemas have also been reported to contribute to the resolution of bowel urgency. A report of improvement in bowel urgency with a rectal formulation of 5-ASA 2 g plus L-1 butyrate 80 mL twice daily for 6 weeks in patients with mild-to-moderate UC showed an improvement (P<0.05) in bowel urgency and bowel incontinence. Conversely, the group receiving 5-ASA 2 g plus 80 mL saline twice daily did not particularly show improvements in bowel urgency. UC may also lead to changes in smooth

muscle tone, sensitization within the wall, and increased contractile response of the rectum, as well as the development of submucosal fibrosis. Some patients achieved clinical remission but still had bowel urgency, which remained despite the resolution of bowel incontinence. In addition, although the correlation was weak, some patients' bowel urgency did not resolve, even when their stool frequency score or rectal bleeding score improved to 0. This aligns with a Japanese internet survey that investigated the symptoms, impact, and treatment of UC, and communication between patients and medical professionals, in which there was still a relatively high incidence of bowel urgency, even in participants with stool frequency and rectal bleeding scores of 0. This suggests that underlying pathological conditions other than inflammation may be present.

A report examining the clinical value of QoL indicates that an improvement in IBDQ total scores of > 20 points is clinically significant.³² The median change in the IBDO score measured in this study was +29 points in total. Additionally, IBDO total score increased significantly in patients whose bowel urgency resolved but not in those whose bowel urgency did not resolve, indicating that bowel urgency affects QoL. Our findings suggest that budesonide foam enema therapy resulted in a clinically significant improvement in QoL. This is relevant, as a recent online survey confirmed that bowel symptoms-specifically bowel urgency and bowel incontinence-were among the most burdensome and correlated with decreased QoL.¹⁰ Furthermore, patients mentioned that, while they wanted these symptoms to improve, they were embarrassed to discuss them with their healthcare providers and seek treatment.¹⁰ Thus, physicians must be mindful of communicating with patients about bowel urgency and bowel incontinence, which can negatively impact daily life, and openly discuss safe and effective treatment alternatives to ensure symptom management and improve patient QoL.

The relevance of the results of this study to clinical practice is that patients' bowel urgency can be improved early during treatment with budesonide rectal foam; thus, the use of budesonide rectal foam is useful for improving bowel urgency in patients with mild-to-moderate UC during the remission induction period. Furthermore, the effects of budesonide rectal foam can be expected regardless of disease type and whether or not budesonide rectal foam is used.

The main limitations of this study were the single-arm, before-and-after comparative design and small sample sizes, 61 patients were enrolled against a target of 80 cases. As colonoscopies were not performed as part of this study, the extent of inflammation could only be assessed on the basis of colonoscopies performed within the year prior to the start of the study. Additionally, data on biomarkers³³ were not collected because we focused on patient-reported outcomes such as bowel urgency. Data collected in the logbooks were collected according to the IBDQ questionnaire and were not validated. Many patients started entering data on day 1 (the first day of budesonide use) but not on day 0 (the day before); therefore, the "true" baseline data on bowel urgency were not accurately collected for some patients.

In conclusion, budesonide foam enema is effective for bowel urgency as assessed by IBDQ Q11 and helps improve QoL in patients with UC. $\,$

ADDITIONAL INFORMATION

Funding Source

This work was supported by EA Pharma and Kissei Pharmaceutical Co., Ltd.

Conflict of Interest

Kobayashi T reports personal fees from AbbVie GK, Janssen Pharmaceutical K.K., Takeda Pharmaceutical Co., Ltd., Mitsubishi-Tanabe Pharma Corporation, Pfizer Japan Inc.; research grants from AbbVie GK, Activaid, Alfresa Pharma Corporation, JMDC Inc., Gilead Sciences Inc., Nippon Kayaku Co., Ltd., Eli Lilly Japan K.K., Mochida Pharmaceutical Co., Ltd., Janssen Pharmaceutical K.K., Pfizer Japan Inc., Takeda Pharmaceutical Co., Ltd., Bristol-Myers Squibb, Google Asia Pacific Pte, Ltd.; scholarship grants from Mitsubishi-Tanabe Pharma Corporation, Zeria Pharmaceutical Co., Ltd., Nippon Kayaku Co., Ltd., EA Pharma Co., Ltd.; endowed chair from JIMRO Co., Ltd., Zeria Pharmaceutical Co., Ltd., Alfresa Pharma Corporation, Kyorin Pharmaceutical Co., Ltd., Mochida Pharmaceutical Co., Ltd., Miyarisan Pharmaceutical Co., outside the submitted work. Fujii T reports personal fees from AbbVie GK, Janssen Pharmaceutical K.K.; research grants from AbbVie GK, Alfresa Pharma Corporation, Boehringer Ingelheim, Bristol-Myers Squibb, Celgene Corporation, EA Pharma Co. Ltd., Eisai Co. Ltd., Gilead Sciences, Janssen Pharmaceutical K.K., Kissei Pharmaceutical Co., Ltd., Eli Lilly and Company, Mebix Inc., Sanofi K.K., Takeda Pharmaceutical Co., Ltd., outside the submitted work. Shinzaki S reports personal fees from EA Pharma Co., Ltd., outside the submitted work. Yamada A reports research grants from AbbVie GK, Mitsubishi-Tanabe

Pharma Corporation, EA Pharma Co., Ltd., Mochida Pharmaceutical Co., Ltd., outside the submitted work. Sagami S reports personal fees from AbbVie GK, Janssen Pharmaceutical K.K., Takeda Pharmaceutical Co., Ltd., Mitsubishi-Tanabe Pharma Corporation, Nippon Kayaku Co., Ltd., Zeria Pharmaceutical Co., Ltd.; endowed chair from AbbVie GK, JIMRO Co., Ltd., Zeria Pharmaceutical Co., Ltd., Kyorin Pharmaceutical Co., Ltd., Mochida Pharmaceutical Co., Ltd., EA Pharma Co., Ltd., outside the submitted work. Inagaki K is an employee of EA Pharma Co., Ltd. Iwayama K is an employee of Kissei Pharmaceutical Co., Ltd. Hibi T reports personal fees from AbbVie GK, EA Pharma Co., Ltd., Jansen Pharmaceutical K.K., JIMRO Co., Ltd., Mitsubishi-Tanabe Pharma Corporation, Mochida Pharmaceutical Co., Ltd., Pfizer Japan Inc., Sand K.K., Takeda Pharmaceutical Co., Ltd., Zeria Pharmaceutical Co., Ltd.; research grants from AbbVie GK, Activaid, Alfresa Pharma Corporation, JMDC Inc., Gilead Sciences, Nippon Kayaku Co., Ltd., Eli Lilly Japan, K.K., Mochida Pharmaceutical Co., Ltd., Jansen Pharmaceutical K.K., Pfizer Japan Inc., Takeda Pharmaceutical Co., Ltd., Bristol-Meyers Squibb, Google Asia Pacific Pte., Ltd.; scholarship grants from Mitsubishi-Tanabe Pharma Corporation, Zeria Pharmaceutical Co., Ltd., Nippon Kayaku Co., Ltd., EA Pharma Co., Ltd.; endowed chair from JIMRO Co., Ltd., Zeria Pharmaceutical Co., Ltd., Alfresa Pharma Corporation, Kyorin Pharmaceutical Co., Ltd., Mochida Pharmaceutical Co., Ltd., Miyarisan Pharmaceutical Co., outside the submitted work; is the Editor in Chief of Intestinal Research. Moriya K, Bamba S, Hisabe T, Hibiya S, Amano T, and Takatsu N have no conflicts of interest to declare.

Data Availability Statement

The data underlying this article will be shared on reasonable request to the corresponding author.

Author Contributions

Concept and design of the study: Kobayashi T, Hibi T, Bamba S, Shinzaki S, Moriya K, Fujii T, Yamada A, Inagaki K, Iwayama K. Conduct of the study: Kobayashi T, Hibi T, Bamba S, Shinzaki S, Moriya K, Fujii T, Yamada A, Hisabe T, Sagami S, Amano T, Hibiya S, Takatsu N. Interpretation of data: Kobayashi T, Hibi T, Bamba S, Shinzaki S, Moriya K, Fujii T, Yamada A, Hisabe T. Drafting of the manuscript: Kobayashi T, Inagaki K, Iwayama K. Manuscript review and editing: Kobayashi T, Hibi T, Bamba S, Shinzaki S, Moriya K, Fujii T, Yamada A. All authors had full access to all the data in the study and had final responsibility for the decision to submit for publication.

Additional Contributions

The authors wish to thank Keyra Martinez Dunn, MD, of Edanz (www.edanz.com) for providing medical writing support, which was funded by EA Pharma and Kissei Pharmaceutical Co., Ltd., in accordance with Good Publication Practice (GPP 2022) guidelines (https://www.ismpp.org/gpp-2022). Use of the Inflammatory Bowel Disease Questionnaire, authored by Dr. Jan Irvine et al., was done under license from McMaster University, Hamilton, ON, Canada. EPS Corporation, Tokyo, Japan, performed the statistical analyses.

ORCID

Kobayashi T	https://orcid.org/0000-0002-2073-4234
Moriya K	https://orcid.org/0000-0002-7500-6728
Fujii T	https://orcid.org/0000-0003-3048-7270
Bamba S	https://orcid.org/0000-0002-4108-5894
Shinzaki S	https://orcid.org/0000-0002-7051-618X
Yamada A	https://orcid.org/0000-0002-3196-2558
Hisabe T	https://orcid.org/0000-0001-7308-1030
Sagami S	https://orcid.org/0000-0002-1202-8161
Hibiya S	https://orcid.org/0000-0001-8823-7755
Amano T	https://orcid.org/0000-0002-0489-7519
Takatsu N	https://orcid.org/0000-0002-1967-5169
Inagaki K	https://orcid.org/0009-0009-9170-0494
Iwayama K	https://orcid.org/0009-0009-0506-690X
Hibi T	https://orcid.org/0000-0002-6256-1204

Supplementary Material

Supplementary materials are available at the Intestinal Research website (https://www.irjournal.org).

REFERENCES

- Hibi T, Naganuma M, Oda E, et al. Predictive factors for achievement of mucosal healing by budesonide 2-mg foam in ulcerative colitis: a pooled analysis of data from two clinical trials. Intest Res 2020;18:56-68.
- 2. Kobayashi T, Siegmund B, Le Berre C, et al. Ulcerative colitis. Nat Rev Dis Primers 2020;6:74.
- Rubin DT, Ananthakrishnan AN, Siegel CA, Sauer BG, Long MD. ACG clinical guideline: ulcerative colitis in adults. Am J Gastroenterol 2019;114:384-413.
- 4. Ungaro R, Mehandru S, Allen PB, Peyrin-Biroulet L, Colombel JF. Ulcerative colitis. Lancet 2017;389:1756-1770.
- 5. Petryszyn PW, Paradowski L. Stool patterns and symptoms of disordered anorectal function in patients with inflammatory

- bowel diseases. Adv Clin Exp Med 2018;27:813-818.
- Norton C, Dibley LB, Bassett P. Faecal incontinence in inflammatory bowel disease: associations and effect on quality of life. J Crohns Colitis 2013;7:e302-e311.
- Dubinsky MC, Irving PM, Panaccione R, et al. Incorporating
 patient experience into drug development for ulcerative colitis: development of the Urgency Numeric Rating Scale, a patient-reported outcome measure to assess bowel urgency in
 adults. J Patient Rep Outcomes 2022;6:31.
- Newton L, Randall JA, Hunter T, et al. A qualitative study exploring the health-related quality of life and symptomatic experiences of adults and adolescents with ulcerative colitis. J Patient Rep Outcomes 2019;3:66.
- Nóbrega VG, Silva IN, Brito BS, Silva J, Silva MC, Santana GO.
 The onset of clinical manifestations in inflammatory bowel disease patients. Arq Gastroenterol 2018;55:290-295.
- 10. Hibi T, Ishibashi T, Ikenoue Y, Yoshihara R, Nihei A, Kobayashi T. Ulcerative colitis: disease burden, impact on daily life, and reluctance to consult medical professionals: results from a Japanese internet survey. Inflamm Intest Dis 2020;5:27-35.
- Ahmad H, Kumar VL. Pharmacotherapy of ulcerative colitis: current status and emerging trends. J Basic Clin Physiol Pharmacol 2018;29:581-592.
- Probert C. Steroids and 5-aminosalicylic acids in moderate ulcerative colitis: addressing the dilemma. Therap Adv Gastroenterol 2013;6:33-38.
- Harbord M, Eliakim R, Bettenworth D, et al. Third European evidence-based consensus on diagnosis and management of ulcerative colitis. Part 2: current management. J Crohns Colitis 2017;11:769-784.
- Ko CW, Singh S, Feuerstein JD, et al. AGA clinical practice guidelines on the management of mild-to-moderate ulcerative colitis. Gastroenterology 2019;156:748-764.
- 15. O'Donnell S, O'Morain CA. Therapeutic benefits of budesonide in gastroenterology. Ther Adv Chronic Dis 2010;1:177-186.
- Omori T, Saruta M, Nagaki A, et al. Real-world safety and efficacy of twice-daily budesonide 2-mg foam in patients with ulcerative colitis: interim analysis of post-marketing surveillance. Expert Opin Pharmacother 2021;22:1505-1511.
- 17. Naganuma M, Aoyama N, Tada T, et al. Complete mucosal healing of distal lesions induced by twice-daily budesonide 2-mg foam promoted clinical remission of mild-to-moderate ulcerative colitis with distal active inflammation: doubleblind, randomized study. J Gastroenterol 2018;53:494-506.
- Naganuma M, Aoyama N, Suzuki Y, et al. Twice-daily budesonide
 goam induces complete mucosal healing in patients with

- distal ulcerative colitis. J Crohns Colitis 2016;10:828-836.
- Sandborn WJ, Bosworth B, Zakko S, et al. Budesonide foam induces remission in patients with mild to moderate ulcerative proctitis and ulcerative proctosigmoiditis. Gastroenterology 2015;148:740-750.
- 20. Kruis W, Siegmund B, Lesniakowski K, et al. Novel budesonide suppository and standard budesonide rectal foam induce high rates of clinical remission and mucosal healing in active ulcerative proctitis: a randomised, controlled, non-inferiority trial. J Crohns Colitis 2022;16:1714-1724.
- Zeng J, Lv L, Mei ZC. Budesonide foam for mild to moderate distal ulcerative colitis: a systematic review and meta-analysis. J Gastroenterol Hepatol 2017;32:558-566.
- 22. Iborra M, Alvarez-Sotomayor D, Nos P. Long-term safety and efficacy of budesonide in the treatment of ulcerative colitis. Clin Exp Gastroenterol 2014;7:39-46.
- 23. Yarlas A, Maher S, Bayliss M, et al. The inflammatory bowel disease questionnaire in randomized controlled trials of treatment for ulcerative colitis: systematic review and meta-analysis. J Patient Cent Res Rev 2020;7:189-205.
- Hashimoto H, Green J, Iwao Y, Sakurai T, Hibi T, Fukuhara S. Reliability, validity, and responsiveness of the Japanese version of the inflammatory bowel disease questionnaire. J Gastroenterol 2003;38:1138-1143.
- Nakase H, Uchino M, Shinzaki S, et al. Evidence-based clinical practice guidelines for inflammatory bowel disease 2020. J Gastroenterol 2021;56:489-526.
- 26. Ministry of Health, Labour and Welfare Grant-in-Aid for Scientific Research on Intractable Diseases, "Research on Intractable Inflammatory Bowel Disorders" (Suzuki Group). Diagnostic criteria and treatment guidelines for ulcerative colitis and Crohn's disease (revised version) [Internet]. c2022 [cited 2023 Dec 11]. http://www.ibdjapan.org
- 27. Christophi GP, Rengarajan A, Ciorba MA. Rectal budesonide and mesalamine formulations in active ulcerative proctosigmoiditis: efficacy, tolerance, and treatment approach. Clin Exp Gastroenterol 2016;9:125-130.
- 28. Vernia P, Annese V, Bresci G, et al. Topical butyrate improves efficacy of 5-ASA in refractory distal ulcerative colitis: results of a multicentre trial. Eur J Clin Invest 2003;33:244-248.
- Rao SS, Read NW, Davison PA, Bannister JJ, Holdsworth CD. Anorectal sensitivity and responses to rectal distention in patients with ulcerative colitis. Gastroenterology 1987;93:1270-1275.
- 30. Drewes AM, Frøkjaer JB, Larsen E, Reddy H, Arendt-Nielsen L, Gregersen H. Pain and mechanical properties of the rec-

- tum in patients with active ulcerative colitis. Inflamm Bowel ${\rm Dis}\,2006;12:294\text{-}303.$
- 31. Limdi JK, Vasant DH. Anorectal dysfunction in distal ulcerative colitis: challenges and opportunities for topical therapy. J Crohns Colitis 2016;10:503.
- 32. Higgins PD, Schwartz M, Mapili J, Krokos I, Leung J, Zimmermann EM. Patient defined dichotomous end points for remis-
- sion and clinical improvement in ulcerative colitis. Gut 2005; 54:782-788.
- 33. Shinzaki S, Matsuoka K, Tanaka H, et al. Leucine-rich alpha-2 glycoprotein is a potential biomarker to monitor disease activity in inflammatory bowel disease receiving adalimumab: PLANET study. J Gastroenterol 2021;56:560-569.