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During this last decade, nonlinear analyses have been used to characterize the irregularity that exists in the neuronal data stream of
the basal ganglia. In comparison to linear parameters for disparity (i.e., rate, standard deviation, and oscillatory activities), nonlinear
analyses focus on complex patterns that are composed of groups of interspike intervals with matching lengths but not necessarily
contiguous in the data stream. In light of recent animal and clinical studies, we present a review and commentary on the basal
ganglia neuronal entropy in the context of movement disorders.

1. Introduction

Characterization of the neuronal data stream of basal ganglia
neurons has been the foundation of most of the functional
models for movement disorders. The divergences (or com-
plementarities) between these models mostly result from the
analytical strategy used to characterize and to model the
data stream of the basal ganglia (BG) neurons. The analysis
of the firing rate has forged the “rate hypothesis” while
the frequency analysis has forged the “oscillatory model.”
Briefly, the rate hypothesis and oscillatory model suggest
that increasing activity and/or beta oscillations in the output
nuclei of the BG (the globus pallidus internal (GPi)) reduces
motor selection and leads to hypokinesia in Parkinsonism.

Since this last decade, different groups have integrated
new mathematical tools to characterize and/or model the
activity of the BG neurons including nonlinear analyses
which describe complex patterns in the neuronal data stream.
After reviewing the recent findings from the nonlinear
analysis of the BG neurons, we present a review on the
avenues and hypotheses brought by these newly integrated
mathematical tools and their possible impacts on the next
generation of functional models of the basal ganglia.

2. Linear Model for Basal Ganglia and
Movement Disorders

The basal ganglia are part of corticocortical loops (via the
thalamus) [1–7] and have connections with the brainstem [8].
The striatum (Str) and subthalamic nucleus (STN) are the
main input nuclei of the basal ganglia and receive excitatory
glutaminergic input from the cortex. At the striatal level,
this glutaminergic drive exerts a tonic excitatory control on
the striatal efferent neurons (medium spiny neurons (MSN))
[9, 10] which project, via two pathways, to the basal ganglia
output nuclei (the internal segment of the pallidum (GPi)
and the pars reticulata of the substantia nigra (SNr)). The
“direct” pathway is a GABAergic monosynaptic projection
to these output nuclei, while the “indirect” pathway is a
GABAergic multisynaptic projection via the globus pallidus
external. An additional cortico-STN-GPi pathway provides
a “hyperdirect” excitatory drive from STN to the GPi [11].
Therefore, neuronal activities in the basal ganglia output
nuclei are dependent on the synergic activity between these
pathways [12].

The sequential and convergent arrangement of excitatory
and inhibitory neurons in these nuclei has forged the concept
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that basal ganglia and, inherently, information processing
rely on the summation of excitatory and inhibitory inputs
and are therefore linear in nature. To compare neuronal
activity in the basal ganglia to the model predictions, the
measurements of the firing rate and other linear markers in
the time domain have been examined in animal and clinical
studies. Data from these studies have contributed to the
“rate model” for movement disorders. This model is founded
upon the assumption that the direct pathway (Str-GPi/SNr)
is up-regulated by the D1 dopaminergic receptor and indirect
pathway (Str-GPe-GPi/SNr) is down-regulated by the D2
dopaminergic receptor. The dynamic balance between these
two pathways contributes in motor selection and motor
inhibition, respectively [13]. The “rate model” predicts that
dopamine depletion leads to an imbalance in favor of the
indirect pathway resulting in increased activity in GPi and
excessive motor inhibition in Parkinsonism [14–22]. In dys-
tonia, the model predicts a decreased activity in the GPi and
increased selection of motor programs [23, 24]. In contrast to
a large body of experiments in animal models that favor the
rate hypothesis, measurement of neuronal firing rates in the
basal ganglia of patients with hypokinesia or hyperkinesia has
given conflicting data with some studies supporting [25–31]
and others not supporting the rate hypothesis [32–36].

In addition to time domain analyses which are based
on the probability distribution of interspike intervals (ISIs),
other studies have characterized the firing activity of basal
ganglia neurons in the frequency domain. In a majority
of studies, differences in oscillatory activities have been
identified between normal and pathological conditions [37–
42]. In PD patients, oscillations in the beta range of 11–30Hz
have been reported to occur in approximately 30% of GPi
neurons, while, in dystonia patients, lower beta frequencies in
the 8–20Hz are dominant but present in approximately 10%
of GPi neurons [43].

3. Evidence for Nonlinear Dynamic in
the Neuronal Data Stream of BG Neurons

The linear analyses used to characterize the basal ganglia
activities in time and frequency domains measure the
resultant linear combinations of independent patterns in
the data stream. These analyses characterize the interspike
interval (ISI) series by the summation of probability
distributions for different durations of ISIs (i.e., firing rate,
its range, or standard deviation) or several frequencies
(power spectrum). However, the irregularity in the neuronal
firing activity is not linear [44–51] since complex patterns
can occur more often than predicted due to the probability
distribution of the ISI series. In the last decade there has
been a growing body of evidence that linear analysis does
not fully describe the activity of neuronal networks and has
justified the use of nonlinear analyses to further characterize
the ISIs series [52–57].These studies have identified neuronal
patterns composed of either nonadjacent ISIs occurring
nonperiodically, or patterns similar in shape but repeatedly
occurring in different time scale (or size). The term “non-
linear temporal organization” has been introduced to define

patterns identified by nonlinear analyses in the neuronal
data stream. An initial finding by our group is that nonlinear
temporal organization is present in a series of consecutive
ISIs recorded from basal ganglia neurons in the awake
normal primate [55] and in Parkinsonian patients [57].These
analyses have established that the temporal organization of
ISIs in the time series results in the replication of complex
patterns that cannot be statistically explained by random
trials from the probability distribution of the ISIs [55–57].

4. Sensitivity of Nonlinear Markers Regarding
Pathological Conditions

The clinical relevance of these nonlinear features in neuronal
discharge is not yet clear. Specifically, it is unknown whether
the nonlinear dynamics of basal ganglia neurons are affected
by the conditions of parkinsonism or dystonia. In retrospec-
tive analyses of a database of PD and dystonia neurons with
temporal organizations (as defined in [55]), Sanghera et al.
[58] found a higher neuronal entropy (as estimated by the
Approximate Entropy (ApEn) [59]) in the GPi of PD patients
comparatively to dystonia patients. Currently, a major diffi-
culty in the interpretation of these data, regarding the effects
of the disorder per se, is the lack of comparison to the normal
state of the basal ganglia. Nevertheless, these last data, in line
with the decreases in neuronal entropy observed following
deep brain stimulation (DBS) treatment in animal models
for Parkinsonism [52] or apomorphine administration in PD
patients [56], suggest that high neuronal entropy (at least in
the GPi) is associated to lower kinetic activity. It is worth
noting that, by construction, Approximate Entropy (ApEn)
remains unchanged under uniform process magnification,
reduction, and translation [59]. Therefore, changes in overall
firing rate (per se) cannot explain the changes in neuronal
entropy reported following treatments or between disorders.

Pharmacological studies in primate models for move-
ment disorders are needed to further investigate this hypoth-
esis as their basal ganglia neuronal activity exhibits similar
patterns to those seen in patients [14]. In addition, it would
be relevant to investigate whether similar markers can be
identified in global signals, such as the EEG, which could
provide a strategy to compare healthy condition to conditions
with movement disorders in humans.

5. The ‘‘Entropy Hypothesis’’

Since anti-Parkinsonian treatments decrease entropy and
hyperkinetic conditions are associated with lower entropy,
it is time to include the basal ganglia neuronal entropy as
a putative interfering factor in the current model for the
selection and the inhibition of motor information in the
basal ganglia circuitry. Through exploring the current data
framework available, we present a primary hypothesis on
the nature of the GPi neuronal entropy regarding abnormal
movement production.

From the data discussed above, we hypothesize that
high entropy in the GPi neuronal data stream is associated
to an increased motor inhibition (i.e., parkinsonism) while
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Figure 1: This figure shows a hypothetical relation between neu-
ronal entropy and the aptitude of the downstream of information
to generate movement regarding the conditions of hypokinesia
and hyperkinesia. Low neuronal complexity could result in a
hyperlegible signals and increased motor production. In contrast,
high neuronal complexity could result in an indecipherable signal
reducing motor production. Anti-Parkinsonian treatments reduce
both hypokinesia and complexity. Since the comparisons between
movement disorders and control remain unestablished, the healthy
condition is envisaged with an adequate degree of GPi complexity
allowing the emergence of noticeable information related to volun-
tary movement.

reduced entropy in the GPi neuronal data stream is envisaged
as a feature for increasing motor selection (i.e., dystonia or
anti-Parkinsonism treatments) (see Figure 1).This hypothesis
underlies the idea that high entropy in the GPi neuronal
data stream would correspond to a network condition
generating a large number of different pattern possibilities
leading to a signal with limited order or “organization” and
reduced information. Therefore, the higher GPi neuronal
entropy reported in parkinsonism can be conceptualized
under Shannon-Brillouin’s interpretation [60] as a measure
of disorder, unpredictability, and reduced motor information
leading to hypokinesia. This hypothesis is not opposed to the
current model of selection and inhibition of motor programs
along the basal ganglia circuitry [11] but introduces the
GPi neuronal complexity as a factor which enhances the
inhibition of motor program by decreasing the informative
nature of the neuronal data stream.The “entropy hypothesis”
predicts that lower entropy would increase information in
the data stream and motor program selection resulting in
hyperkinesia.

6. Biological Substrata for
the ‘‘Entropy Hypothesis’’

The relation between the entropy theory and the functions
of the basal ganglia can be substantiated by the intrinsic
(and logarithmic) relation between entropy and the cor-
relation dimension [61]. Since the correlation dimension
is a measure of the dimensionality of the space occupied
by a data series, neuronal entropy can be envisaged as a
related measurement of dimensionality of the neuronal data
stream. The concept that correlated information from large

population of neurons can be compressed into a selected
number of neurons has been suggested to be an important
mechanism for information encoding in the brain [62] and
the basal ganglia especially [63]. High GPi neuronal entropy
can underlie an inadequate compression (or reduction of the
dimensionality [64]) of upstream population activity into the
output neurons of the BG circuitry [63]. Alternatively, some
circuitry reorganization such as increased interconnections
between elements of the motor circuitry [65] may have the
potential to increase the correlation dimension of the stream
of information to the GPi neurons. Experimental research
in animal models for movement disorders is warranted to
explore these avenues.

7. Conclusion

The use of nonlinear domain analyses to describe the
neuronal and network activities inside the basal ganglia
may provide new qualitative and quantitative information
regarding the nature of the sensory-motor processing as well
as its distortion in pathological conditions. It is expected
that the inclusion of key nonlinear features into silicone-
based models of the basal ganglia could better reproduce
complex and nonstationary signals recorded in normal and
pathological conditions. To date, the “entropy hypothesis”
may be useful to initiate a debate on nonlinear dynamics
in basal ganglia activity and their roles in the selection
and inhibition of motor programs. Most importantly, these
nonlinear analyses may contribute to reduce the gap between
the basal ganglia models and the theories on the processing
of motor information.
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