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Abstract

After knee arthroplasty (KA) surgery, patients experience abnormal kinematics and kinetics

during numerous activities of daily living. Biomechanical investigations have focused primar-

ily on level walking, whereas walking on sloped surfaces, which is stated to affect knee kine-

matics and kinetics considerably, has been neglected to this day. This study aimed to

analyze over-ground walking on level and sloped surfaces with a special focus on transverse

and frontal plane knee kinematics and kinetics in patients with KA. A three-dimensional (3D)

motion analysis was performed by means of optoelectronic stereophogrammetry 1.8 ± 0.4

years following total knee arthroplasty (TKA) and unicompartmental arthroplasty surgery

(UKA). AnyBody™ Modeling System was used to conduct inverse dynamics. The TKA

group negotiated the decline walking task with reduced peak knee internal rotation angles

compared with a healthy control group (CG). First-peak knee adduction moments were

diminished by 27% (TKA group) and 22% (UKA group) compared with the CG during decline

walking. No significant differences were detected between the TKA and UKA groups,

regardless of the locomotion task. Decline walking exposed apparently more abnormal knee

frontal and transverse plane adjustments in KA patients than level walking compared with

the CG. Hence, walking on sloped surfaces should be included in further motion analysis

studies investigating KA patients in order to detect potential deficits that might be not obvi-

ous during level walking.

Introduction

In recent years, studies in the field of KA research have shown abnormal gait characteristics

during various activities of daily living (ADL)[1–3]. However, previous authors primarily

investigated level walking in patients after TKA surgery, revealing reduced knee flexion excur-

sion and knee flexion moment during the loading response phase compared with healthy
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controls [4,5]. Physically more demanding ADL, such as stair climbing tasks, showed inconsis-

tent results in terms of kinematics and kinetics due to methodological flaws [6]. In general,

biomechanical analysis of physically more demanding ADL, other than level walking, has been

addressed less often in the previous literature. In this regard, there are no motion analysis stud-

ies to this day investigating KA patients negotiating sloped surfaces [7]. These kinds of daily

barriers are common in urban areas and pose a challenge to the musculoskeletal system.

Healthy subjects show more ankle, knee and hip joint flexion during incline walking compared

with level walking, whereby greater demands occur in the hip [8–10]. On the other hand,

movement adjustments occur particularly at the knee joint during decline walking, revealing

increased eccentric knee extensor activity accompanied by enhanced mechanical power

requirement in the stance phase [10,11]. Furthermore, declined surfaces increase the risk of

slips and falls [12]. Hence, ramp negotiation could expose potential gait deficits which are

more apparent and meaningful than during level walking in patients after KA surgery. This

could be of great importance for the evaluation of KA patients’ rehabilitative progress.

However, besides the locomotion task, different types of prosthesis designs are considered

to have a significant effect on patients’ knee kinematics and kinetics. Andriacchi et al. [1]

emphasized the importance of cruciate ligament preservation in TKA which plays a major role

concerning proprioceptive joint control. UKA assumes the preservation of both cruciate liga-

ments whereby, in contrast to TKA, only medial or lateral femur and tibia compartments are

replaced. Several in vitro and in vivo studies based on fluoroscopic investigations reported that

UKA succeeds at restoring normal joint kinematics during kneeling tasks [13–15]. Preserva-

tion of the anterior cruciate ligament (ACL), however, seems to be a major reason for the nor-

mal movement pattern of the replaced condyles. Further potential reasons for normal knee

kinematics and kinetics in UKA patients, such as the preservation of the lateral knee compart-

ment or different bearing shapes compared with TKA, should be considered. Addressing the

question of whether UKA is able to restore normal knee mechanics compared with TKA,

UKA patients in a study by Jung et al. [16] performed stair climbing with similar knee internal

rotation in their operated knee to the non-operated knee (non-OP knee) in contrast to TKA

patients. A recent study [17] used a machine learning approach to classify and identify UKA

and TKA knees on the basis of recognized patterns. When applied to healthy controls their

decision tree algorithm classified 92% of the healthy controls as being UKA subjects, revealing

a more physiological gait than TKA subjects.

There has been a rising popularity of UKA in recent years and the aspect of a more natural

gait pattern has contributed to this popularity. Nevertheless, UKA still represents a small pro-

portion (8%) of all performed KAs [18]. Interestingly, studies have reported that 36%–48% of

all candidates fulfill the criteria for UKA [19,20]. The potential functional benefit of UKA has

not been studied sufficiently by means of comprehensive motion analysis, particularly under

the consideration of physically more demanding ADL and inclusion of TKA and UKA groups

as well as healthy controls [7]. A better understanding is necessary for better patient-specific

preoperative planning in daily clinical practice and could provide decision support regarding

the appropriate treatment.

Additionally, in the field of KA previous biomechanical studies have primarily focused on

sagittal plane parameters. Frontal plane and particularly transverse plane kinematics and

kinetics have by and large been neglected, although the clinical relevance of forces and

moments acting in these planes was highlighted, especially in the field of osteoarthritis [21,22].

In this regard, studies clarified that knee adduction and internal rotation moments are signifi-

cant discriminatory factors of osteoarthritic gait pattern. Furthermore, it has been shown that

patients with ACL-deficient knees reveal abnormal tibial rotation in the transverse plane dur-

ing gait and highly functionally demanding tasks, as the ACL restrains the tibia’s anterior-
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posterior translation, but also its internal rotation [23–25]. Moreover, aseptic loosening of

prosthesis components remains, among others, the leading reason for failure [26,27]. In this

regard, mechanical aspects, such as torsional micromotion contributing to component loosen-

ing, have not yet been adequately explained [28]. Investigation of transverse plane mechanics

might provide better insight into factors leading to KA failure. Therefore, non-sagittal plane

knee kinematics and kinetics are of particular interest concerning the influence of different

locomotion tasks and prosthetic design.

The purpose of this retrospective case control study was to analyze knee kinematics and

kinetics of patients with TKA and UKA with a special focus on the frontal and transverse

plane during level, incline and decline walking compared with a healthy CG. The first hypothe-

sis was that the UKA group would reveal more similar knee mechanics to the CG than to the

TKA group. The second hypothesis was that decline walking in particular exposes greater

abnormal kinematics and kinetics in the knee joint compared with level and incline walking in

either KA group.

Methods

Ethics statement

Ethical approval for the current study was granted by The Ethics Committee of the German

Sport University (ethical proposal no. 025/2014). All subjects signed a written informed con-

sent form according to The Declaration of Helsinki.

Participants

Thirty-seven subjects participated in the current study. All patients who underwent primary

unilateral UKA and TKA for knee degenerative osteoarthritis were recruited from ARCUS

Clinics Pforzheim (Germany). Initially, 210 TKA and 83 UKA patients were assessed for eligi-

bility. Forty-nine subjects consented to participate in the current study. After a telephone

interview 25 subjects had to be excluded. Ultimately, eleven patients formed the TKA-group

and 13 subjects represented the UKA group. A healthy age matched CG consisted of 13 sub-

jects who reported no knee pain and functional impairments for a period of one year prior to

testing. Exclusion criteria were (1) further joint arthroplasties, (2) musculoskeletal impair-

ments that affected ADL, (3) pain or functional impairment in the non-OP knee, (4) body

mass index (BMI) greater than 31 kg/m2, (5) cardiovascular disease, (6) neurological disorders,

(7) diabetes mellitus, (8) rheumatic diseases, limb-valgus deformity greater than 7˚ and limb-

varus deformity greater than 4˚ and (9) knee flexion contracture greater than 5˚. All UKA

patients received a medial cemented endoprosthesis (Unicompartmental High Flex Knee Sys-

tem, Zimmer, Warsaw, USA). Seven TKA patients received a cemented posterior stabilized

endoprosthesis (SIGMA, DePuySynthes, Warsaw, USA) and four patients received a cemented

posterior cruciate ligament preserved endoprosthesis (Genesis II, Smith and Nephew, Mem-

phis, USA). A minimally invasive approach was used in all UKA patients and a standard

medial parapatellar approach in all TKA patients. Gait analysis was performed on average

1.8 ± 0.4 years post-surgery.

Data acquisition

Gait analysis was performed by means of a 3D, 10-camera (100 Hz) motion analysis system

(VICON MX40, Vicon Motion Systems Ltd, UK). Simultaneously, ground reaction forces

were collected at 1000 Hz using three Kistler force plates (KistlerInstrumente AG, CH). Two

force plates were embedded in the floor and one under a three-step ramp (gradient: 21%). In
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order to create a lower-limb model consisting of nine rigid segments, 28 spherical, retroreflec-

tive markers were attached bilaterally to the anterior and posterior superior iliac spines, greater

trochanters, lateral and medial condyles of the femurs, tibias, lateral and medial malleoli,

heads of the first and fifth metatarsals, second proximal phalanges, lateral, medial and backside

of the calcanei. Data collection started with a standing reference trial. Subsequently, the CG,

which was tested before both KA groups, practiced level walking on a 15-m walkway. The cap-

tured valid trials were within 5% deviation of the practiced speed. After several practice trials

TKA and UKA subjects performed the level walking task at the CG’s comfortable average gait

velocity of 1.4 m/s ± 5%. Following level walking, all subjects performed incline or decline

walking tasks respectively. The order was randomly chosen by the examiners. In order to

avoid impairments of subjects’ habitual gait pattern, all subjects were asked to negotiate incline

and decline walking at their comfortable speed. Gait velocity was measured by means of a

time-gate system (WEKO, Weitmann & Konrad GmbH & Co KG., DE) and subsequently cal-

culated by means of the center of mass (CoM) course. A trial was valid if a clear contact with

only one foot on the appropriate force plate was detected. The subjects were asked to tell the

examiners if they needed a rest or felt any discomfort or pain during the measurements. All

participants accomplished the locomotion tasks free of pain.

Data analysis

Kinematic and kinetic raw data were filtered by means of a recursive Butterworth low-pass fil-

ter at a 6-Hz cutoff frequency. The Anybody™ Modeling System (AnyBody Technology, Aal-

borg, DK) was used to perform lower-limb inverse dynamics according to the anatomical

landmark scaled model of Lund et al. [29]. Standing reference trials were recorded for each

subject to create a stick-figure model that was used to scale a cadaver dataset into subject-spe-

cific joint parameters. The defined knee joint coordinate system was based on Pennock and

Clark [30]. The computed angles from standing reference trials were subtracted from the

appropriate dynamic captured trials. The modeled head and trunk were driven by the pelvis

markers. In order to determine inertial properties more accurately, subjects’ whole-body

anthropometrics were measured to adjust the inverse dynamic model. The mass of a segment

was assumed to be the product of the volume of a frustum and the segment’s density [31]. The

knee joint was modeled as a spherical joint including three degrees of freedom, which were

constrained using Anybody™’s Force-Dependent Kinematics method. A simple muscle model

was used with third degree polynomial muscle recruitment. Kinematic and kinetic data were

time-normalized to the stand phase, whereby the average of five valid trials was used for the

analysis. KA patients’ operated limbs were compared with the right limbs of the CG. Further

data processing was conducted with custom-built Matlab (2013b) routines (The MathWorks,

Natick, USA). Knee biomechanics were assessed through the use of 3D angles and moments

including peak varus angles, range of motion (RoM), peak adduction moments and knee

adduction moment impulses within the first 50% of the stance phase. Peak angles, RoM and

moments were extracted from the entire stance phase in the transverse plane. Joint moments

are presented as external moments normalized to each subject’s mass and height. In order to

detect increased lateral trunk sway indicating a potential compensatory mechanism, the dis-

tance between the ground projected CoM and the force application point (FAP) was calculated

in the medial-lateral direction at the moment of the first peak knee adduction moment (FAP-

CoMadd). The distance values were normalized to each subject’s height. Knee joint stiffness

(Kstiff) was calculated in the transverse plane as the change in rotational knee joint moment

(M), divided by the change in transverse plane knee joint angle (θ) between the initial ground
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contact and the instant of time when the knee joint was maximally internally rotated.

Kstiff ¼
DM
Dy

The step length and width were normalized to each subject’s height. Sagittal plane kinemat-

ics and kinetics were measured but are not presented nor discussed in the current article. The

authors added for the interested reader sagittal plane results as supporting information in the

form of the S1 and S2 Tables.

Statistical analysis

A test for normal distribution was performed using the Shapiro-Wilk Test. If the variables

were normally distributed, univariate ANOVA was used to examine group differences. Indi-

vidual between-group differences were clarified by means of a post hoc Tukey or Games-

Howell test if the condition of homogeneity of variances was not fulfilled. In order to deter-

mine the interlimb asymmetry in the TKA and UKA group, the paired t-test was used. If vari-

ables were not normally distributed, the non-parametric Kruskal-Wallis Test was performed

to detect between-group differences as well as the Wilcoxon-signed-rank test to determine

interlimb asymmetries. The alpha level was set at 0.05 to detect a significant difference in all

statistical tests. Effect size was calculated using eta-squared (η2) for ANOVA tests or Cohen’s d

for interlimb comparisons. The point-biserial correlation (rpb) was used to determine the effect

size for nonparametric tests [32]. An effect size value of 0.5 represents a large effect, 0.3 a

medium effect and 0.1 a small effect [33]. Power analysis was conducted by means of the

G�Power-software (G�Power Version 3.1.9.2, Kiel, Germany) in order to estimate the Type II

error between the three investigated groups. All statistical tests were performed using IBM

SPSS Statistics for Windows, Version 23.0 (IBM Corp., New York, USA).

Results

Subjects’ characteristics and time-distance parameters

Both KA groups weighed significantly more than the CG accompanied by significantly greater

BMI values. Further characteristics of all subjects are listed in Table 1 as mean

values ± standard deviation. No significant group differences were detected concerning time-

distance parameters (contact time, step length, step width, and walking velocity).

Transverse plane

No statistically significant differences were detected between the TKA and UKA groups,

regardless of the locomotion tasks and parameters investigated (Tables 2 and 3).

The TKA and UKA groups showed considerably lower peak internal rotation values for the

operated knee compared with the CG during decline walking [6.8˚ (TKA, p = 0.012) and 4.4˚

(UKA)], whereby the difference was statistically significant only between the TKA group and

the CG (Fig 1). The effect size of 0.28 indicates a moderate effect. Concerning the interlimb

differences, the operated (OP) knees in the KA groups revealed significantly diminished peak

internal rotation values than the non-OP knees which presented similar values to those in the

CG (1.8 ± 6.6˚). The peak knee internal rotation moments were nearly equal in all groups (Fig

2). In contrast, both KA groups revealed significant 25% (TKA, p = 0.041) and 12.5% (UKA,

p = 0.015) increases in internal rotation moments in their non-OP knees in comparison with

the OP knees.
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Furthermore, appreciable two-fold (TKA group) and six-fold (UKA group) higher joint

stiffness values were observed in both KA groups for the OP knee compared with the non-OP

knee during decline walking (Table 4). However, the difference was statistically significant

only for the TKA group, whereas rpb values (TKA = 1.12, UKA = 0.54) indicate a meaningful

difference between both KA groups and the CG. No significant difference was detected

between the non-OP knee and the CG regarding joint stiffness.

The TKA group tended to accomplish level walking with decreased peak internal knee rota-

tion in comparison with the UKA group and CG (CG: 3.0˚ ± 4.4; TKA: 0.49˚ ± 2.8; UKA: 4.5˚

± 5.4; p = 0.103). Nevertheless, the interlimb comparison revealed a slight but significant

decrease of 2.3˚ (p = 0.003, d = 0.76) peak internal rotation of the OP knee in the TKA group.

As shown in Table 3, similar results to those obtained with level walking were observed dur-

ing the incline walking task, except for the RoM which was significantly greater in both KA

groups compared with the CG.

Table 1. Subjects’ characteristics and spatial-temporal parameters.

Group Mass [kg] Height [m] BMI [kg/m2] Age Male/female Operated knee

CG 68.7 ± 10.4 1.67 ±0.1 23.6 ± 2.7 57.6 ± 6 6/7

TKA 82.1 ± 9.7*CG-TKA 1.73 ± 0.1 27.5 ± 1.9*CG-TKA 60 ± 8.8 7/4 4 left/7 right

UKA 80.4 ± 9.6*CG-UKA 1.7 ± 0.1 27.7 ± 2*CG-UKA 60.5 ± 7.8 7/6 5 left/8 right

Task Velocity [m/s] Contact time [s] Step length[cm] Step width[cm]

Level walking CG 1.4 ± 0.18 0.66 ± 0.06 37.3 ± 7.2 4.6 ± 1.5

TKA 1.4 ± 0.03 0.68 ± 0.03 39.1 ± 2.3 4.6 ± 1.2

UKA 1.4 ± 0.03 0.68 ± 0.03 38.9 ± 1.5 4.7 ± 1.7

Decline walking CG 1.2 ± 0.13 0.62 ± 0.06 29.5 ± 3.1 8.0 ± 2.9

TKA 1.2 ± 0.15 0.65 ± 0.06 29.3 ± 4.1 7.1 ± 2.2

UKA 1.1 ± 0.14 0.63 ± 0.04 27.8 ± 3.4 6.9 ± 0.7

Incline walking CG 1.2 ± 0.11 0.71 ± 0.06 40.9 ± 7.5 7.3 ± 2.8

TKA 1.2 ± 0.14 0.77 ± 0.06 40.0 ± 5.6 5.8 ± 2.6

UKA 1.2 ± 0.14 0.76 ± 0.06 40.0 ± 4.7 5.9 ± 1.7

*Indicates a significant difference between corresponding groups.

doi:10.1371/journal.pone.0168566.t001

Table 2. Between-group differences in peak knee joint angles, moments, adduction moment impulses, transverse joint stiffness and FAP-CoMadd

during level walking.

Locomotion task

Level walking

Parameter Group

Angle [˚] CG TKA UKA p-value Effect size Power

Varus 2.4 ± 1.6 2.4 ± 0.8 2.4 ± 1.4 0.897 0.01 0.05

RoM 2.3 ± 1.5 1.9 ± 0.6 2.1 ± 1.2 0.976 0 0.05

Int. rotation 3.0 ± 4.4 0.49 ± 2.8 4.5 ± 5.4 0.103 0.13 0.1

RoM 7.8 ± 2.7 11.3 ± 3.2 11.0 ± 5.4 0.062 0.16 0.12

Moment[Nm/(kg�m)]

Adduction 0.28 ± 0.05 0.27 ± 0.05 0.32 ± 0.08 0.109 0.12 0.09

Internal rotation 0.07 ± 0.03 0.07 ± 0.02 0.09 ± 0.04 0.378 0.08 0.07

Adduction mom. impulse [Nms/(kg�m)] 0.05 ± 0.02 0.04 ± 0.01 0.05 ± 0.02 0.101 0.13 0.10

Joint stiffness [Nm/˚] 0.008 ± 0.002 0.006 ± 0.001 0.007 ± 0.002 0.068 0.15 0.11

FAP-CoMadd [cm] 32.1 ± 8.0 33.9 ± 8.4 35.6 ± 5.6 0.503 0.04 0.05

doi:10.1371/journal.pone.0168566.t002
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Frontal plane

No statistically significant differences were detected between the TKA and UKA group consid-

ering the investigated locomotion tasks and parameters. The static knee varus angles extracted

from the KA subjects’ standing reference trials showed neither statistically significant inter-

group (TKA: −3.6˚ ± 1.7; UKA: −1.7˚ ± 3.4, p = 0.90, d = 0.7) nor interlimb differences (TKA

op: −3.6˚ ± 1.7; TKAnon op: −2.7˚ ± 4.4; p = 0.37, d = 0.27; UKA op: −1.66˚ ± 3.4; UKAnon

op: −2.1˚ ± 3.0; p = 0.73; d = 0.14).

According to Table 4, both KA groups conducted their trials with greater peak knee varus

angles in the non-OP knee compared with the OP knee, regardless of the locomotion task.

However, the decline walking task revealed the most substantial discrepancies showing, e.g.,

greater RoM in the non-OP knee as well as 2.1˚ (TKA, p = 0.016, d = 1.07) and 1.9˚ (UKA,

p = 0.008, d = 1.17) greater peak knee varus angles within the first 50% of the stance phase. No

group differences were detected with regard to peak knee varus angles within the first 50% of

the stance phase (Fig 3). Moreover, both KA groups negotiated decline walking with signifi-

cant 27% (TKA, p = 0.001) and 22% (UKA, p = 0.007) reductions in first-peak knee adduction

moments compared with the CG (Fig 4), accompanied by 14% lower adduction moment

Fig 1. Knee internal rotation angles during decline walking. Values are presented as mean curves (solid lines) ± standard deviations (SD, shaded

areas). Positive values indicate internal rotation. Dotted lines represent the non-OP knee of the TKA group (red) and UKA group (blue). The green

rectangle indicates significantly different peak values between the TKA-OP knee and the CG (p = 0.012), the TKA-OP knee and TKA non-OP knee

(p = 0.002), the UKA-OP knee and UKA non-OP knee (p = 0.007).

doi:10.1371/journal.pone.0168566.g001
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impulse values which did not reach statistical significance after post hoc analysis

(p = 0.093CG-TKA, p = 0.072CG-UKA). The non-OP knee adduction moments and impulses of

both KA groups were barely distinguished from the CG (Fig 4). No between-group or inter-

limb differences were observed concerning the FAP-CoMadd parameter, indicating that the

subjects did not employ compensatory mechanisms, such as the Trendelenburg gait pattern.

Discussion

It is stated that UKA provides several advantages over TKA in terms of, for example, better

function, faster rehabilitation and participation in more sporting activities, but first and fore-

most, UKA might provide kinematics similar to those of the native knee [34–36]. However,

there are only a few studies investigating patients after UKA, TKA, and healthy CGs by means

of optoelectronic systems based on stereophotogrammetry. The main focus of the research has

been on level walking and sagittal plane mechanics, whereas frontal and particularly transverse

plane evaluations are often neglected. Therefore, the current study aimed to address the men-

tioned aspects in order to expose potential differences that might be related to different

Fig 2. Knee internal rotation moments during decline walking. Values are presented as mean curves ± standard deviations (SD, shaded areas).

Positive values indicate internal rotation moments. Dotted lines represent the non-OP knee of the TKA group (red) and UKA group (blue). The green

rectangles indicate significantly different peak values between the TKA-OP knee and TKA non-OP knee, the UKA-OP knee and UKA non-OP knee for the

first 50% of the stance phase (TKA: p = 0.002, UKA: p = 0.003) as well as 50%–100% of the stance phase (TKA: p = 0.041, UKA: p = 0.015).

doi:10.1371/journal.pone.0168566.g002
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implant designs and locomotion tasks. To the author’s knowledge, this is the first study to

include ramp negotiation tasks with patients after KA surgery.

Transverse plane

The authors’ first hypothesis was not supported by the results: the selected parameters did not

show significant differences in the transverse plane between the UKA and TKA groups at any

time, irrespective of the locomotion task. However, the second hypothesis was supported by

the results. Both KA groups presented similar discrepancies in comparison with the CG

regarding certain parameters, particularly during decline walking. Nevertheless, the TKA

group showed more considerable abnormalities in the OP knee presenting reduced peak knee

Table 4. Interlimb differences in peak angles, moments, adduction moment impulses, transverse joint stiffness, FAP-CoMadd within the TKA and

UKA-group.

Group

Locomotion

Task

Parameter TKA UKA

Angle [˚] Op Non op p-

value

Effect

size

Op Non op p-

value

Effect

size

Level walking Varus 2.4 ± 0.8 3.6 ± 1.7 0.036 0.9 2.4 ± 1.4 4.0 ± 1.1 0.019 0.68

ROM 1.9 ± 0.6 3.2 ± 1.2 0.01 1.4 2.1 ± 1.2 3.5 ± 1.1 0.03 1.22

Int. rotation 0.49 ± 2.8 2.8 ± 3.3 0.003 0.76 4.5 ± 5.4 5.9 ± 4.4 0.375 0.28

ROM 11.3 ± 3.2 7.7 ± 3.0 0.018 1.16 11.0 ± 5.4 11.2 ± 5.5 0.807 0.04

Delcine walking Varus 2.0 ± 1.4 4.1 ± 2.4 0.016 1.07 1.8 ± 1.3 3.7 ± 1.9 0.008 1.17

ROM 2.3 ± 1.1 3.4 ± 1.6 0.061 0.8 2.3 ± 1.2 3.4 ± 1.5 0.035 0.78

Int. rotation -5.0 ± 3.2 0.1 ± 5.6 0.002 1.12 -2.6 ± 2.9 1.1 ± 4.1 0.007 1.04

ROM 6.0 ± 2.0 6.4 ± 2.9 0.772 0.16 6.0 ± 2.9 7.3 ± 3.3 0.16 0.42

Incline walking Varus 6.2 ± 2.7 8.4 ± 3.1 0.021 0.76 5.5 ± 2.7 7.8 ± 3.7 0.572 0.71

ROM 4.8 ± 2.3 3.8 ± 2.5 0.446 0.42 4.2 ± 2.2 5.0 ± 3.0 0.807 0.3

Int. rotation -1.2 ± 3.4 0.4 ± 3.3 0.058 0.48 3.2 ± 4.3 1.5 ± 4.7 0.187 0.38

ROM 8.9 ± 2.8 6.6 ± 1.8 0.023 0.98 9.2 ± 3.7 8.7 ± 2.8 339 0.15

Moment [Nm/(kg�m)]

Level walking Adduction 0.27 ± 0.05 0.31 ± 0.12 0.363 0.43 0.32 ± 0.08 0.36 ± 0.05 0.171 0.6

Int. rotation 0.07 ± 0.02 0.08 ± 0.04 0.41 0.09 ± 0.04 0.10 ± 0.02 0.48 0.32

Decline walking Adduction 0.27 ± 0.06 0.33 ± 0.15 0.299 0.53 0.29 ± 0.07 0.33 ± 0.07 0.086 0.57

Int. rotation 0.06 ± 0.02 0.08 ± 0.04 0.041 0.62 0.07 ± 0.03 0.08 ± 0.03 0.015 0.33

Incline walking Adduction 0.25 ± 0.13 0.32 ± 0.1 0.164 0.6 0.28 ± 0.1 0.36 ± 0.1 0.824 0.8

Int. rotation 0.05 ± 0.04 0.07 ± 0.03 0.182 0.57 0.07 ± 0.05 0.08 ± 0.04 0.439 0.22

Level walking Adduction mom. impulse[Nms/

(kg�m)]

0.05 ± 0.01 0.05 ± 0.03 0.51 0 0.06 ± 0.02 0.06 ± 0.01 0.556 0

Decline walking Adduction mom. impulse

[Nms/(kg�m)]

0.05 ± 0.01 0.06 ± 0.03 0.376 0.45 0.05 ± 0.02 0.06 ± 0.01 0.113 0.63

Incline walking Adduction mom. impulse

[Nms/(kg�m)]

0.05 ± 0.03 0.07 ± 0.02 0.146 0.78 0.06 ± 0.02 0.08 ± 0.02 0.61 1

Level walking Joint stiffness [Nm/˚] 0.006 ± 0.001 0.005 ± 0.002 0.187 0.63 0.007 ± 0.002 0.006 ± 0.002 0.55 0.5

Decline walking Joint stiffness [Nm/˚] 0.020 ± 0.014 0.010 ±0.003 0.008 0.8 0.065 ± 0.173 0.011 ± 0.003 0.06 0.54

Incline walking Joint stiffness [Nm/˚] 0.005 ± 0.002 0.007 ± 0.003 0.041 0.62 0.006 ± 0.003 0.008 ± 0.004 0.36 0.57

Level walking FAP-CoMadd [cm] 33.7 ± 8.4 34.4 ± 6.6 0.814 0.09 35.5 ± 5.5 33.9 ± 7.1 0.594 0.25

Decline walking FAP-CoMadd [cm] 60.5 ± 13.6 56.9 ± 16.1 0.364 0.24 58.9 ± 10.9 54.1 ± 9.3 0.192 0.47

Incline walking FAP-CoMadd [cm] 50.2 ± 13.9 48.4 ± 15.0 0.764 0.12 49.9 ± 14.0 46.4 ± 16.7 0.657 0.23

doi:10.1371/journal.pone.0168566.t004
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internal rotation angles during all tasks. Especially, decline walking exposed the most striking

deficits in the TKA group compared with the CG. Interestingly, all groups showed nearly

equal internal rotation moments, accompanied by greater, but not significantly different,

transverse knee joint stiffness values in both KA groups. Particularly noteworthy are the inter-

nal knee rotation curve shapes for the non-OP knees of both KA groups, which are similar to

the curve shape of the CG (Fig 1). These results illustrate, besides reduced peak values and

diminished RoM, significantly greater joint stiffness values in the TKA group’s OP knee than

in the non-OP knee. Indeed, the Wilcoxon signed-rank test exposed no statistical difference

(p = 0.06) due to the high standard deviation between the OP knee and non-OP knee of the

UKA group according to joint stiffness. Nevertheless, the values of 0.065 Nm/˚ (OP knee) ver-

sus 0.011 Nm/˚ (non-OP knee) and the corresponding effect size (0.54) suggest a meaningful

result. The results concerning the constrained internal knee rotation are in agreement with the

previous work of McClelland et al. [37] who reported decreased knee internal rotation angles

in TKA patients compared with a healthy CG during level walking. In this regard, Wünschel

et al. [38] also observed in a cadaveric study lower internal rotation values in TKA knees dur-

ing kneeling activities. The authors conjectured that TKA may impair tibial internal rotation

due to the concave shape of the inlay.

Fig 3. Knee varus angles during decline walking. Values are presented as mean curves ± standard deviations (SD, shaded areas). Positive values

indicate varus alignment. Dotted lines represent the non-OP knee of the TKA group (red) and UKA group (blue). The green rectangle indicates

significantly different peak values between the TKA-OP knee and TKA non-OP knee (p = 0.016), the UKA-OP knee and UKA non-OP knee (p = 0.008)

for the first 50% of the stance phase.

doi:10.1371/journal.pone.0168566.g003
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On the other hand, this aspect could not explain the reduced internal rotation in the UKA

group, neither in the current study during decline walking nor in the study by Argenson et al.

[39], because the UKA-tibial inlays were flat in both studies. The authors assumed that pro-

gressive laxity of the ACL may occur over time in UKA patients [39]. Hence, neuromuscular

factors could have a significant influence on the mentioned deficit, aside from different

implant designs. It has been shown, that the hamstrings are able to rotate the tibia externally as

well as inhibit anterior tibial translation in ACL-deficient knees by means of co-contraction

[40,41]. Thus, due to the sloped ramp surface in the current study, increased tibial acceleration

occurred in an anterior direction during decline walking compared with level walking (see

supporting information, S2 Table). Consequently, greater co-contraction of the hamstrings

was apparent during decline walking, particularly in the OP-knees of the TKA group, where

the ACL was absent. Finally, the higher transverse joint stiffness values in the OP knee in con-

trast to the non-OP knee provide support for the above mentioned mechanism.

Although not calculated, the authors presume that increased coefficients of friction, which

usually occur between a cobalt-chromium alloy and an ultra-high-molecular-weight polyethyl-

ene (UHMWPE) [42,43], might contribute to the impaired internal knee rotation of both KA

groups in comparison with the non-OP knee and CG. Moreover, due to increased friction

Fig 4. Knee adduction moments during level walking. Values are presented as mean curves (solid lines) ± standard deviations (SD, shaded areas).

Positive values indicate adduction moments. Dotted lines represent the non-OP knee of the TKA group (red) and UKA group (blue). The green rectangle

indicates significantly different peak values between the TKA-OP knee and CG (p = 0.001), the UKA-OP knee and CG (p = 0.007).

doi:10.1371/journal.pone.0168566.g004
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higher stress might occur on the interface between the tibial tray and bony structures. The

extent of rotational load transmitted to the bone-implant interface is directly proportional to

the frictional force. Due to rotational forces acting on the tibial tray, studies demonstrated tor-

sional micromotion [28,44]. Transverse plane moments probably act like an unscrewing

mechanism accompanied by axial and shear loads contributing to aseptic component loosen-

ing. In this regard, mobile-bearing TKA and UKA aim to improve survivorship rates providing

more natural tibial internal rotation and reducing contact stresses compared with fixed-bear-

ing implants by means of rotating platforms [45,46]. Nevertheless, mobile-bearing KA still

remains controversial in terms of enhanced survivorship and more natural kinematics, essen-

tially complicating the question to what extent the rotational behavior of the knee influences

the lifespan of KA [47,48].

Frontal plane

Similar to the results obtained in the transverse plane, the frontal plane results did not support

the first hypothesis. No statistically significant differences between the TKA and UKA groups

were observed concerning the selected parameters. In accordance with the second hypothesis,

clear discrepancies were apparent, in particular during decline walking in both KA groups

compared with the CG, where decreased first-peak knee adduction moments were present in

the KA groups. The effect size of 0.36 clarifies a moderate clinical relevance in terms of reduced

load in the medial compartment of the replaced knee, as the knee adduction moment is stated

to be a surrogate indicator of load redistribution to the medial knee compartment [49,50].

Additionally, polyethylene wear primarily occurs in the medial compartment of the implants

[51,52], although it should be considered that UHMWPE wear rates have been reduced in

recent years due to improved mechanical properties of UHMWPE [26,27,53]. In the current

study, knee adduction moments of both KA groups were significantly lower during decline

walking but not different during the other investigated tasks compared with the CG. This

suggests that a premature endoprosthesis failure due to wear of the medial implant compart-

ment is unlikely. Studies have reported heterogeneous results concerning first-peak knee

adduction kinetics in TKA patients, at least during level walking. In Benedetti et al. [54]

TKA patients demonstrated significantly reduced knee adduction moments both 12 and

24 months post-surgery compared with a CG. The authors explained that measured compen-

satory mechanisms in the trunk could be responsible for the reduced knee adduction moments

in the TKA group. Likewise, Urwin et al. [55] showed reduced knee adduction moments of

TKA patients nine months post-surgery compared with controls. It is important to mention,

that in both studies, the TKA patients performed level walking significantly more slowly than

the appropriate CG, which could partly explain the mentioned differences. Contrarily, in the

current study, no between-group differences were found with respect to gait velocity, regard-

less of the locomotion task. On the other hand, in a study by Worsley et al. [56], a mixed group

consisting of TKA and UKA patients conducted level walking with slightly higher knee adduc-

tion moments compared with healthy controls (p = 0.27), whereby the non-OP knee showed

higher values than the OP knee. In the current study, only the UKA group showed higher, but

statistically not significantly different (p = 0.109), adduction moments in the OP knee during

level walking. Interestingly, both KA groups accomplished decline walking with notably

reduced knee adduction moments in their OP knee compared with the CG (η2 = 0.36). The

non-OP knee exhibited greater knee adduction moments than the OP knee in either KA group

(Fig 4) accompanied by greater varus angles in the non-OP knee (Fig 3). In this regard, it is

important to mention that static reference trials exhibited normally aligned limbs and no inter-

limb asymmetries. However, knee adduction moments as well as adduction moment impulses
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of the non-OP knee did not exceed the CG’s values. Hence, reduced knee adduction moments

in the affected knee do not necessarily result in a medial compartment overload of the contra-

lateral non-replaced knee. In addition, compensatory mechanisms, such as increased lateral

trunk sway in the frontal plane, which could explain the reduced knee adduction moments

during decline walking in the OP knee, were not detected by means of the FAP-COPadd dis-

tance calculation.

Only a few studies included a CG or reported P-values. To the authors’ knowledge, there is

no study investigating ramp negotiation with patients after TKA and UKA. Hence, it is diffi-

cult to integrate the results of the current study regarding sloped walking with the existing lit-

erature and therefore, comparisons should be treated with caution. However, the results of the

current study clarify the importance of analyzing physically more demanding ADL, such as

ramp negotiation, in addition to level walking. Although decline walking shows similar lower

limb kinematics and kinetics to level walking [10,11], the knee joint seems to be mostly

affected by negative inclinations, which is in accordance with previous literature. Thus,

impairments after KA surgery should be more apparent during decline walking than level

walking.

The present study has some limitations, especially with regard to the TKA group consisting

of posterior stabilized and posterior cruciate ligament retained knee endoprosthesis. However,

generally, no statistical differences in terms of functional and clinical parameters were detected

in the previous literature. Nevertheless, the superiority of one of the prosthesis types remains

controversial [57–59]. Data extracted from the transverse and frontal plane should be inter-

preted with caution due to its known sources of measurement and modeling issues [29,60]. In

order to reduce bias due to high BMI values and associated increased soft-tissue artifacts, the

authors excluded subjects with BMI values higher than 31. Furthermore, the authors placed

particular importance on keeping the age of the subjects consistent (Table 1). The groups were

not gender-matched, which may have affected the results of this study. Thus, on account of the

strict inclusion criteria, it was not possible to include more subjects in the appropriate groups.

Conclusion

The results of the current study are in accordance with the second hypothesis explaining the

significant importance of including walking on sloped surfaces in biomechanical studies and

rehabilitative treatment evaluation of KA patients. Particularly, decline walking exposed

appreciable discrepancies in both KA groups compared with the CG presenting compromised

knee internal rotation, especially in the TKA group. However, the non-OP knee showed simi-

lar kinematics in the transverse plane compared with the CG’s. Contrary to the authors’ first

hypothesis, no statistically significant differences between the TKA and UKA groups in terms

of the parameters evaluated and locomotion tasks were found. Both KA groups exhibited simi-

lar discrepancies in the OP knee compared with the CG as well as to the KA groups’ non-OP

knee, in particular during decline walking. However, the TKA group presented abnormal knee

biomechanics to a greater extent than the UKA group. The relatively small sample size or

insufficient measuring sensitivity could be potential reasons for the absence of statistically sig-

nificant differences between the TKA and UKA group.

Supporting Information

S1 Table. Sagittal plane knee kinematics and kinetics during level walking. �Indicates sig-

nificant difference between corresponding groups. Peak values are presented for the first 50%

of stance phase. Mean (Ø) flexion velocity is calculated from heel strike until maximum knee
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flexion for the first 50% of stance phase.

(PDF)

S2 Table. Sagittal plane knee kinematics and kinetics during decline and incline walking.
�Indicates significant difference between corresponding groups. Peak values are presented for

the first 50% of stance phase. Mean (Ø) flexion velocity is calculated from heel strike until

maximum knee flexion for the first 50% of stance phase.

(PDF)
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