
Research Article
Identification of Prognostic Biomarkers of Cutaneous Melanoma
Based on Analysis of Tumor Mutation Burden

Jiaqiong Lin ,1 Yan Lin ,2 Zena Huang ,3 and Xiaoyong Li 4

1Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
2Department of Nephrology, Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
3Department of General Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences,
Guangzhou, China
4Department of General Surgery, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China

Correspondence should be addressed to Xiaoyong Li; 969740437@qq.com

Received 11 September 2020; Revised 23 October 2020; Accepted 24 October 2020; Published 16 November 2020

Academic Editor: Andrei Korobeinikov

Copyright © 2020 Jiaqiong Lin et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Background. Immunotherapy offers a novel approach for the treatment of cutaneous melanoma, but the clinical efficiency varies for
individual patients. In consideration of the high cost and adverse effects of immunotherapy, it is essential to explore the predictive
biomarkers of outcomes. Recently, the tumor mutation burden (TMB) has been proposed as a predictive prognosticator of the
immune response. Method. RNA-seq and somatic mutation datasets of 472 cutaneous melanoma patients were downloaded
from The Cancer Genome Atlas (TCGA) database to analyze mutation type and TMB. Differently expressed genes (DEGs) were
identified for functional analysis. TMB-related signatures were identified via LASSO and multivariate Cox regression analysis.
The association between mutants of signatures and immune cells was evaluated from the TIMER database. Furthermore, the
Wilcox test was applied to assess the difference in immune infiltration calculated by the CIBERSORT algorithm in risk
groupings. Results. C>T substitutions and TTN were the most common SNV and mutated gene, respectively. Patients with low
TMB presented poor prognosis. DEGs were mainly implicated in skin development, cell cycle, DNA replication, and immune-
associated crosstalk pathways. Furthermore, a prognostic model consisting of eight TMB-related genes was developed, which
was found to be an independent risk factor for treatment outcome. The mutational status of eight TMB-related genes was
associated with a low level of immune infiltration. In addition, the immune infiltrates of CD4+ and CD8+ T cells, NK cells, and
M1 macrophages were higher in the low-risk group, while those of M0 and M2 macrophages were higher in the high-risk
group. Conclusion. Our study demonstrated that a higher TMB was associated with favorable survival outcome in cutaneous
melanoma. Moreover, a close association between prognostic model and immune infiltration was identified, providing a new
potential target for immunotherapy.

1. Introduction

Cutaneous melanoma, characterized by high aggressiveness
and poor prognosis, is well known as a common malignant
neoplasm of the skin having the highest mortality rates [1,
2]. It is classified into different subtypes, including the lentigo
malignant type, the superficial spreading type, and the nodu-
lar type based on clinical and histological characteristics [3].
Cutaneous melanoma originates from melanocytes, and its
incidence has increased rapidly in recent years, causing seri-
ous problems to public health [4, 5]. When in the advanced

stages, approximately 8% to 46% of patients develop brain
metastasis [6]. Of note, in patients with metastasis, the 5-
year survival rate dramatically declines to 10% [7, 8]. The
therapeutic approaches vary considerably depending on the
different tumor stages. Surgical resection remains a major
treatment approach for the early stage of cutaneous mela-
noma. Combination with chemotherapy, radiotherapy, and
targeted therapy after surgical intervention is required for
most patients in advanced stages [9]. However, the treatment
efficacy remains limited and the prognosis is poor for
patients in advanced stages.
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In recent years, immunotherapy, including CAR T cell
therapy, monoclonal antibodies, vaccine, and immune
checkpoint inhibitors (ICIs) has developed considerably
and has established new perspectives for the treatment of
these malignant neoplasms [10–12]. Notably, ICIs targeting
the cytotoxic T-lymphocyte antigen 4 (CTLA-4), pro-
grammed death-ligand 1 (PD-L1), and programmed cell
death receptor 1 (PD-1) bring a great promise for the treat-
ment of patients with cutaneous melanoma [13, 14]. Never-
theless, effective biomarkers able to discriminate
populations who would benefit most from the treatment of
ICIs are still lacking. The drugs of ICIs are expensive, and
patients benefit from each immunotherapeutic intervention
differently, which raises difficulties in defining therapy.
Hence, it is of great significance to be able to effectively dis-
criminate those patients who may benefit from
immunotherapy.

With the rapid development of sequencing technology
and the growing understanding of tumorigenesis,
precision-targeted therapy is emerging as a promising anti-
cancer approach. Thanks to the public data repositories
such as The Cancer Genome Atlas (TCGA) database; this
abundant publicly available source of tumor data provides
a valuable foundation for in-depth investigations. Several
studies have demonstrated that the tumor mutation bur-
den (TMB) is closely associated with immunotherapy out-
comes in multiple cancer types and is emerging as a
predictive biomarker for the response of immunotherapy
[15–17]. The definition attributed to TMB is the total
number of somatic mutations including base substitutions,
deletions, and insertions detected in per one million bases
[18]. The degree of TMB is possibly associated with mul-
tiple factors, such as microsatellite instability and environ-
mental damage [19]. Mutations in driver genes could
promote oncogenesis. Conversely, a large number of
somatic mutations may produce a vast amount of neoanti-
gens, serving as targets of activated immune cells [20].
Hence, the accumulation of somatic mutations in cancer
has resulted in increased TMB and neoantigens, which
can be recognized and attacked by the immune system
[21]. Patients with higher TMB manifested a favorable
response to immunotherapy [22]. In non-small-cell lung
cancer (NSCLC), the TMB was identified as an effective
predictor of response to treatment of ICIs [23]. In addi-
tion, Thomas et al. demonstrated that TMB played a cru-
cial role in immune-mediated survival in patients with
breast cancer [24]. Furthermore, it has been demonstrated
that the role of TMB in the immune response and in
immune infiltration varies depending on the tumor type
[25]. A limited number of studies have investigated the
relationship between TMB and prognostic prediction in
cutaneous melanoma. Therefore, we conducted our present
study to explore the potential role of TMB in cutaneous
melanoma using public data resources.

2. Method

2.1. Data Collection. Somatic mutation datasets were down-
loaded from the TCGA database (https://portal.gdc.cancer

.gov). Of these, the profiles processed by the VarScan soft-
ware were chosen for further analysis and visualization
using the “maftools” R package. In addition, transcriptome
data including HTSeq-Counts and clinical data such as
survival time and survival status, as well as other clinical
futures of 472 samples with cutaneous melanoma includ-
ing 1 normal sample and 471 tumor samples, were also
obtained from the TCGA database. Samples with missing
follow-up information were excluded; thus, a total of 460
samples were investigated in the study.

2.2. TMB Calculation. TMB, the total number of mutations
per megabyte, was calculated by dividing the total number
of variants by the overall size of human exons (38Mb). Next,
patients were stratified into low and high TMB groups
according to the median value. The Kaplan-Meier analysis
was employed to evaluate the survival function between the
two groups. Furthermore, the relationship between the
TMB levels and clinical characteristics was compared by the
Wilcox test or Kruskal-Wallis test depending on the number
of groups for comparison.

2.3. Identification and Functional Analysis of Differentially
Expressed Genes. The DEG-seq2 R package was used to iden-
tify the differentially expressed genes (DEGs) between the
low and high TMB groups, with ∣log 2FC ∣ >2 and FDR <
0:05 considered as threshold values. The volcano plot of
genes was drawn using the R package with upregulated DEGs
marked in red and downregulated DEGs in blue. Subse-
quently, the GO functional analysis of 403 DEGs and the
gene set enrichment analysis (GSEA) of all genes were carried
out via R packages including clusterProfiler, org.Hs.eg.db
and ggplot2 [26].

2.4. Development and Assessment of the TMB-Related
Prognostic Model. The prognosis-related DEGs extracted from
a combined univariate Cox and Kaplan-Meier analysis were
selected for the construction of the prognostic model utilizing
the Lasso-penalized Cox regression analysis and multivariate
Cox regression. The risk scores were calculated as follows:
Risk scores = expression of TGM3× (0.0129)+ expression of
PROKR1× (0.4339)+ expression of CRABP2× (0.0014)+
expression of CHI3L1× (−0.0024)+ expression of PAE-
P× (0.0002)+ expression of KLRK1× (−0.7398)+ expression
of SLC32A1× (−15.5098)+ expression of SPRR2F× (0.0366).
The distribution of the survival status of patients and TMB-
related genes in the low- and high-risk score groupings was
visualized using the R package. In addition, the Kaplan-
Meier analysis was employed to compare the overall survival
(OS) of each of the two groups. Univariate and multivariate
Cox regression analyses were carried out to determine the
independent prognostic factors for cutaneous melanoma.
p < 0:05 indicated statistical significance. The Receiver Oper-
ating Characteristic (ROC) curve was employed to evaluate
the performance of the prognostic model. Furthermore, a
nomogram was established to predict the progression risk of
cutaneous melanoma.

2.5. TIMER Database and Estimation of Immune Infiltration.
The association between immune infiltration levels and
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mutation types of the prognostic genes was investigated via
the TIMER database (https://cistrome.shinyapps.io/timer/).
Significance testing utilizing the Wilcox test was employed
to evaluate the immune infiltration levels in different muta-
tion types. In addition, the CIBERSORT algorithm was con-
ducted to evaluate the immune infarction in patients with
cutaneous melanoma. The Wilcox test was performed to
determine different immune infiltration levels between the

low- and high-risk groups, and the results were visualized
by violin plots.

2.6. Statistical Analysis. All analyses were performed by R
version 3.6.3 and the corresponding packages. The Kaplan-
Meier analysis was employed to evaluate the overall survival.
The Wilcox test was carried out for comparisons between
the two groups, and the Kruskal-Wallis test was used for
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Figure 1: Visualization of mutation profiling in cutaneous melanoma samples. (a) Frequency distribution and summary statistics of different
mutation types. (b) Waterfall plot of mutation profiles in cutaneous melanoma samples. The top 30 genes with different mutation types are
listed in order of mutation frequency. The different colors of the water plot represent different mutation types, which are annotated at the
bottom. The bar plot on the right means the mutation frequency of each gene, while the above one represents the number of mutation burden.
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comparisons of more than two groups. p < 0:05 represented
statistical significance.

3. Results

3.1. Visualization of Mutation Profiling in Cutaneous
Melanoma. Mutation profiling of cutaneous melanoma was
analyzed and visualized using the maftools package. The fre-

quency distribution and the statistics of different mutation
types identified are summarized in Figure 1(a), in which the
missense mutation was the most common mutation in the
variant classification. Single nucleotide polymorphism
(SNP) was the main variant type identified, and the C>T
transition was the most frequently observed in single nucleo-
tide variant (SNV) classification. In addition, the number of
mutated bases for each patient was calculated, and mutation
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Figure 2: The Kaplan-Meier analysis of TMB and the relationship with clinical risk characteristics. (a) The Kaplan-Meier analysis of patients
with low- and high- TMB groups. (b–e) Statistically significant differences (p < 0:5) in patients stratified by age, sex, and T and N stages were
evidenced by the Wilcox test. TMB: tumor mutation burden.
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Figure 3: Continued.
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types were represented graphically using boxplots with dif-
ferent colors. Furthermore, the top 10 mutated genes were
ranked in descending order according to the mutation fre-
quency, and TTN accounted for the most common
mutated gene. Moreover, a waterfall plot was depicted to
display detailed mutation information relative to the top
30 significantly expressed genes in cutaneous melanoma
patients (Figure 1(b)).

3.2. TMB and Clinical Correlation. The TMB value for each
patient was calculated, and patients were classified into low

and high TMB groups using the median of TMB value as
the threshold. The Kaplan-Meier analysis was applied to
evaluate the survival probability in different groups. As a
result, the patients in the high TMB group presented a higher
survival rate, indicating that higher TMB in cutaneous mela-
noma contributed to a better prognosis (Figure 2(a)). More-
over, we compared the relationship between the TMB level
and clinical features in cutaneous melanoma. The results
showed that TMB was associated with age (Figure 2(b)), sex
(Figure 2(c)), and TN stage (Figures 2(d) and 2(e)). The
TMB level was higher in males and patients over 65 years
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Figure 3: Identification and functional enrichment analysis of DEGs between the low- and high-TMB groups. (a) The volcano plot of DEGs
(∣log ðFCÞ > 2 ∣ , FDR < 0:05). The upregulated DEGs were depicted in red, while the downregulated were in green. (b, c) GO enrichment
analysis, including BP, CC, and MF, of DEGs. (d) Summary of GSEA results with p < 0:05. BP: biological process; CC: cell composition;
MF: molecular function; GSEA: gene set enrichment analysis; TMB: tumor mutation burden.
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Figure 4: Continued.
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Figure 4: Construction and assessment of TMB-related signature for cutaneous melanoma. (a) Visualization of the intersection of DEGs
related to prognosis. (b, c) TMB-related genes associated with prognosis are identified by the LASSO COX regression. (d) Distribution of
patients’ status and TMB-related genes in the low- and high-risk groups. (e) The Kaplan-Meier analysis of patients in the low- and high-
risk groups. TMB: tumor mutation burden.
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while it was lower in patients with advanced TN stage. Taken
together, these results revealed that a higher TMB contrib-
uted to a better prognosis in cutaneous melanoma.

3.3. Identification and Functional Analysis of DEGs. In order
to identify TMB-associated DEGs in cutaneous melanoma,
an analysis using the DEG-seq2 R package was conducted.
As shown in Figure 3(a), a total of 403 DEGs with ∣log 2FC
∣ >2 and FDR < 0:05, including 71 upregulated and 332
downregulated genes were identified. The GO enrichment
analysis in Figures 3(b) and 3(c) indicated that DEGs were
mainly implicated in epidermis development and skin devel-
opment. In addition, the GSEA results revealed that DEGs
participated in cancer-related pathways such as the cell cycle
and DNA replication, as well as in immune-associated cross-
talk including allograft rejection, graft-versus-host disease,
and primary immunodeficiency (Figure 3(d)).

3.4. Identification of a TMB-Associated Signature. To identify
whether DEGs may be responsible for the clinical prognosis,
univariate COX regression and Kaplan-Meier survival analy-
sis was conducted, and 91 DEGs were extracted for further
analysis (Figure 4(a)). Subsequently, the Lasso COX regres-
sion and multivariate COX regression analysis were per-
formed for the construction of a prognostic model
(Figures 4(b) and 4(c)). Eight genes including TGM3,
PROKR1, CRABP2, CHI3L1, PAEP, KLRK1, SLC32A1, and
SPRR2F comprised the TMB-associated signature. The cal-
culation of risk scores for each patient was based on the coef-
ficients of each respective signature presented in Table 1. In
addition, the patients were divided into the low- and high-
risk groups according to the median of each risk score. The
distribution of risk for patients and expression pattern of
the eight prognostic genes are presented in Figure 4(d). The
Kaplan-Meier analysis in the two groups demonstrated
that patients with lower risk scores displayed better prog-
nosis (Figure 4(e)).

3.5. Survival Probability Prediction. As shown in Figures 5(a)
and 5(b), the results obtained from univariate and multivar-
iate Cox proportional hazard model regression indicated that
the TN stage and the risk scores of the TMB-related signa-
tures were independent prognostic factors for cutaneous
melanoma. The ROC curve analysis was performed to assess
the predictive accuracy of the TMB-related prognostic

model. The AUCs responsible for the 1-, 3-, and 5-year OS
were 0.705, 0.726, and 0.7272, respectively (Figure 5(c)). In
addition, a nomogram including age, sex, TMN stage, and
the risk scores was constructed to predict OS at 3 and 5 years
for cutaneous melanoma patients (Figure 5(d)).

3.6. Correlation between the Mutation Types of the Eight
Prognostic Genes and Immune Infiltrates.We further investi-
gated the correlation between the mutation types of the eight
prognostic genes and the immune infiltrates of B cells, CD8+
T cells, CD4+ T cells, macrophages, neutrophils, and den-
dritic cells. Compared with the wild-type genes, infiltrations
associated with mutations in the eight prognostic genes dis-
played lower levels of immune infiltrates (Figure 6).

3.7. Different Immune Cell Fractions in the Low- and High-
Risk Groups. According to the CIBERSORT algorithm, we
calculated the fraction of 22 immune cells present in each
sample of cutaneous melanoma. In addition, the proportion
of immune cells for different risk groups was compared using
the Wilcox test and was then visualized using violin plots. As
a result, the infiltration levels of plasma cells, CD8+ T cells,
CD4+ memory activated cells, NK activated cells, and M1
macrophages were higher in the low-risk group than that in
the high-risk group, while the infiltration of M0 macro-
phages, M2 macrophages, and activated dendritic cells was
higher in the high-risk group (Figure 7).

4. Discussion

To date, immunotherapy is considered an attractive
approach for tumor treatment. In recent years, with the avail-
ability of ICI therapy, the survival rate of patients with cuta-
neous melanoma has considerably improved. However, not
all patients have benefited from such therapy, and the treat-
ment effects vary from person to person, resulting in a sub-
stantial waste of healthcare resources and a heavy economic
burden for patients. Hence, it is urgent to investigate novel
effective immunotherapeutic targets to achieve the most ben-
efit for patients.

Tumorigenesis is an intricate process, which involves
mutations of multiple genes and a complicated interaction
with the microenvironment. The occurrence of nonsynon-
ymous mutations in tumor cells may generate new antigens,
which are recognized by the autoimmune system and
resulted in the activation of T lymphocytes and the immune
response [20, 27, 28]. The greater the presence of new anti-
gens, the more likely these will be recognized by the immune
system, indicating the crucially significant role of TMB in ICI
therapy. Studies have demonstrated that the TMB is closely
correlated with the clinical prognosis of patients [29, 30]. In
colorectal cancer, patients with high TMB had better progno-
sis when receiving combination therapy [31]. In the Check-
Mate 026 Investigators trial, patients with high TMB
benefited from the treatment of nivolumab, while no effect
was observed in the subgroup stratified by the PD-L1 expres-
sion [22], indicating the potential of TMB as a biomarker of
immunotherapy outcome. A subsequent study research fur-
ther confirmed the significant role of TMB, in which the

Table 1: Multi-Cox regression analysis of TMB-related signatures.

Id Coef HR HR.95 L HR.95H p value

TGM3 0.01287 1.012953 0.999133 1.026965 0.066331

PROKR1 0.436863 1.547844 1.276414 1.876993 8.96E-06

CRABP2 0.001434 1.001435 0.999676 1.003197 0.109893

CHI3L1 -0.00265 0.997357 0.994393 1.00033 0.081346

PAEP 0.000235 1.000235 1.000113 1.000358 0.000156

KLRK1 -0.73979 0.477212 0.291349 0.781645 0.003298

SLC32A1 -15.5098 1.84E-07 4.41E-14 0.766073 0.046127

SPRR2F 0.036618 1.037297 1.01223 1.062985 0.003347
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Figure 5: Continued.
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investigators found that patients with high-TMB were closely
associated with an enhanced response to nivolumab plus ipi-
limumab immunotherapy [32]. Jiang et al. demonstrated that
a low TMB and high immune infiltrates of CD8+ T cells were
predictive factors for longer survival in lung squamous cell
carcinoma patients [33]. Moreover, in a study investigating
diverse cancer types, the TMB was identified as an indepen-
dent factor for predicting response to immune treatment
[34]. Consistent with these studies, our findings showed that
cutaneous melanoma patients having a higher TMB also had
a higher survival rate than patients with a lower TMB. In
addition, we also demonstrated that TMB was negatively
associated with the stage of TN classification, which sug-
gested that high TMB in cutaneous melanoma was a predic-
tive factor of a better outcome.

Subsequently, the functional analysis of TMB-related
DEGs revealed that the identified DEGs were implicated in
the development of the epidermis and skin, as well as in
immune-associated crosstalk such as allograft rejection,
graft-versus-host disease, and primary immunodeficiency.
Furthermore, a prognostic model consisted of TMB-related
genes including TGM3, PROKR1, CRABP2, CHI3L1, PAEP,
KLRK1, SLC32A1, and SPRR2F was established via the Lasso
COX regression and multivariate COX regression analysis.
Patients with high-risk scores presented poor prognosis,
and the prognostic model displayed superior predictive accu-
racy evidenced by AUC of ROC analysis. Combined with the
results of the proportional hazards model conducted by the
multivariate Cox regression, our results strongly indicated
that the model could act as an independent prognostic bio-
marker for cutaneous melanoma. Significantly, our results
revealed that the expression of TMB-related signatures was
related to the infiltration of different immune cells. The
mutation of an eight gene TMB signature was associated with
the inhibition of immune infiltration. Besides, our results
found that the infiltration level of CD8+ T cells, CD4+ T

cells, and NK-activated cells, as well as M1 macrophages,
increased in the low-risk group. T lymphocytes are recog-
nized to play a significant role in the antitumor immune
response, and previous studies have demonstrated that T
lymphocyte infiltrates closely correlated with better survival
outcomes. In the studies of melanoma, patients with a higher
degree of CD4+ tumor-infiltrating lymphocytes tend to have
more favorable outcome [35]. Similarly, a positive associa-
tion between infiltrating CD8+ lymphocytes and patient
survival was observed in Piras’s research [36]. Li et al.
found that CD4+ T cells could stimulate the activation
of M1 macrophages, and the infiltrate level of CD4+ and
CD8+ T cells was negatively associated with tumor size
in gastric cancer [37]. Furthermore, Mukhtar documented
that the different subtype conversion of macrophages was
crucial for tumor therapy as the M1 macrophages exerted
antitumor activity via inducing adaptive immune
responses, while M2 macrophages promoted tumor pro-
gression [38]. In accordance with the above studies, our
findings showed that the infiltration of M0 and M2 mac-
rophages was higher in the high-risk group than in the
low-risk group, suggesting the significant role of macro-
phages in immune infiltration.

To our acknowledge, our investigation is the first study
to develop a TMB-related prognostic model for the predic-
tion of prognosis and to illustrate its potential association
with immune infiltration in patients with cutaneous mela-
noma. Our study not only revealed the important role of
TMB in survival outcome in cutaneous melanoma but also
proposed a prognostic model for survival prediction, sup-
plying new potential targets for immunotherapy. Nonethe-
less, several limitations need to be considered in our study.
For example, an additional independent clinical cohort is
required to validate the efficiency of the prognostic model,
and further experimental studies are essential to further
establish the biological role of the identified biomarkers.
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Figure 5: Risk score is an independent prognostic factor for survival probability prediction. Univariate COX (a) and multivariate COX (b)
regression analysis of clinical risk characteristics and risk score. (c) The ROC curves of TMB-related signature for 1, 3, and 5 years. (d)
Construction of nomogram for predicting the OS probability of patients with cutaneous melanoma. TMB: tumor mutation burden; OS:
overall survival; ROC: receiver operating characteristic.
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Figure 6: The relationship between mutants of 8 prognostic genes and immune cells. (a–h) Comparisons of immune cell infiltration in
different mutation types of 8 prognostic genes. ∗p < 0:05, ∗∗p < 0:01, ∗∗∗p < 0:001.
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In conclusion, our study provides evidence supporting
the importance of TMB as a significant determinant of
immunogenicity, and immune cell infiltration reflects the
functional activity of the immune response. Our study eluci-
dated the relationship between TMB-related signatures and
immune infiltration, proposing that a prognostic model that
includes TMB could represent a reliable predictor for pre-
dicting the efficiency of immunotherapy.
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