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A presynaptic protein closely related to Parkinson’s disease (PD), α-synuclein (α-Syn),

has been studied extensively regarding its pathogenic mechanisms. As a physiological

protein in presynapses, however, α-Syn’s physiological function remains unclear. Its

location in nerve terminals and effects on membrane fusion also imply its functional

role in synaptic transmission, including its possible interaction with high-curvature

membranes via its N-terminus and amorphous C-terminus. PD-related mutants that

disrupt the membrane interaction (e.g., A30P and G51D) additionally suggest a

relationship between α-Syn’s pathogenic mechanisms and physiological roles through

the membrane binding. Here, we summarize recent research on how α-Syn and its

variants interact with membranes and influence synaptic transmission. We list several

membrane-related connections between the protein’s physiological function and the

pathological mechanisms that stand to expand current understandings of α-Syn.
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INTRODUCTION

The protein α-Synuclein is highly soluble and plays a central role in the pathogenesis in
Parkinson’s disease and other synucleinopathies. With only 140 amino acids, α-Synuclein (α-Syn)
is a small peripheral membrane protein that localizes specifically to the axon terminal in
neurons (Maroteaux et al., 1988; George et al., 1995; Iwai et al., 1995; Bendor et al., 2013). In
α-Syn’s unusual, unique structure (Figure 1), its highly conserved N-terminus contains seven
11-mer repeats (residues 1–95) with the KTKEGV consensus sequence, similar to apolipoprotein,
that forms three turns of an amphipathic α-helix and mediates α-protrusion associated with
membranes of synuclein and lipids (Davidson et al., 1998; Eliezer et al., 2001; Bussell and
Eliezer, 2003; Chandra et al., 2003; Bussell et al., 2005). Strangely, all identified mutations
related to synucleinopathies (e.g., A30P, E46K, H50Q, G51D, A53E, and A53T) are located
in the N-terminal domain (Polymeropoulos et al., 1997; Krüger et al., 1998; Zarranz et al.,
2004; Appel-Cresswell et al., 2013; Lesage et al., 2013; Proukakis et al., 2013; Pasanen et al.,
2014). Beyond that, five of them are clustered in eight residues, which suggests the potential
for a pathology of lipid binding or even a lack of lipid binding to α-Syn. Aside from that
domain, the NAC domain (i.e., residues 60–95) is responsible for α-Syn’s aggregation (Uéda
et al., 1993) and aids the detection of lipid properties (Fusco et al., 2014). Meanwhile, the
C-terminus (i.e., residues 96–140), a highly acidic and largely unstructured domain (Davidson
et al., 1998; Bussell and Eliezer, 2003; Ulmer et al., 2005), is the target of various post-translational
modifications (Oueslati et al., 2010). It is also considered to bind to proteins, ions, polycations, and

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/journals/cellular-neuroscience#editorial-board
https://www.frontiersin.org/journals/cellular-neuroscience#editorial-board
https://www.frontiersin.org/journals/cellular-neuroscience#editorial-board
https://www.frontiersin.org/journals/cellular-neuroscience#editorial-board
https://doi.org/10.3389/fncel.2021.633727
http://crossmark.crossref.org/dialog/?doi=10.3389/fncel.2021.633727&domain=pdf&date_stamp=2021-03-04
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:dongwei@swmu.edu.cn
https://doi.org/10.3389/fncel.2021.633727
https://www.frontiersin.org/articles/10.3389/fncel.2021.633727/full


Liu et al. The Membrane Interaction of Alpha-Synuclein

polyamines (Paik et al., 1999; Nielsen et al., 2001; Fernández et al.,
2004; Brown, 2007), as well as to modulate α-Syn’s binding to
membranes (Sevcsik et al., 2011) and protect it from aggregation
(Crowther et al., 1998; Park et al., 2002; Hoyer et al., 2004).

Located in presynapses, α-Syn could interact with synaptic
vesicles and act as a molecular chaperone of soluble N-
ethylmaleimide-sensitive factor attachment protein receptor
(SNARE) complexes (George et al., 1995). Although such
evidence indicates α-Syn’s role in neurotransmitter release and
synaptic plasticity, its precise function remains unclear. α-Syn
is also absent in worms, fruit flies, and yeasts, which suggests
that it is not generally required for synaptic transmission or
membrane trafficking (Abeliovich et al., 2000; Chandra et al.,
2004; Burre et al., 2010; Jensen et al., 2011). Therefore, given
existing research, we have summarized the current knowledge
about the interaction of α-Syn with membranes, how variants
of α-Syn affect the interaction with membranes, and how α-
Syn affects synaptic transmission. We also discuss the possible
mechanism of the transition between physiological function and
pathological mechanism.

PHYSIOLOGICAL MECHANISM OF
MEMBRANE FUSION

As a basic life process, membrane fusion involves subcellular
compartmentation, cell growth, hormone secretion, and
neurotransmission (Wickner and Schekman, 2008). Membrane
fusion begins with the gradual fusion of the outer and inner
leaflets between two membranes, which causes lipids and other
contents (e.g., proteins, glycoprotein, and glycolipid) to mix.
From there, it consists of multiple distinct stages, including

FIGURE 1 | Schematic diagram of α-Syn in SNARE (a complex composed of syntaxin-1A, VAMP2 and SNAP-25)-mediated membrane interaction. α-Syn’s

N-terminus forms two helices to interact with the plasma membrane, while α-Syn interacts with VAMP2 at the C-terminus.

tethering, docking and priming, hemifusion, and full fusion
(Tian et al., 2019).

Critical evidence concerning proteins active in membrane
fusion has accumulated in the literature to date. Notably, SNAREs
are considered to represent core fusion elements that assembled
in a four-helix bundle structure, releasing energy such that the
membranes enter into close proximity and eventually undergo
membrane fusion (Sutton et al., 1998). Proteins such as α-Syn
and cysteine string protein α (CSPα) affect SNARE complexes,
while the interaction between lipid molecules and proteins plays
a key role in regulating membrane fusion (Brunger et al., 2015;
Wang et al., 2016b; Bao et al., 2018; Das et al., 2020).

α-Syn’s Interaction With Membranes
In view of its enriched expression in neuronal cells, many
endogenous roles for α-Syn have been proposed, including
ones that involve controlling synaptic vesicle release (Snead
and Eliezer, 2014), modulating secretory pathways (Wang and
Hay, 2015), and even regulating vesicle transport (Jensen et al.,
1998). Another well-described biochemical property of α-Syn is
membrane binding associated with structural switching.

α-Syn’s Function in Synaptic Transmission
In vitro research has shown that α-Syn inhibits membrane fusion
by stabilizing the lipid packing of stressed bilayers independently
of other protein factors that may be involved in the fusion
machinery of membranes (Kamp et al., 2010). At the same
time, α-Syn was found to significantly promote the clustering
of protein-reconstituted liposomes that mimic synaptic vesicles,
albeit with little effect on Ca2+-triggered fusion in a single
vesicle-vesicle system with reconstituted neuronal SNAREs,
synaptotagmin-1, and complexin-1 (Diao et al., 2013). It was also
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found to participate in vesicle aggregation, initiation, fusion (i.e.,
assembly of SNARE complex), and recycling (i.e., disassembly
of SNARE complex), all of which relate to membrane fusion
(Lashuel et al., 2013).

Studies have shown that α-Syn functions within various
aspects of synaptic transmission. For one, it promotes the
assembly of SNARE complexes by directly interacting with
N-terminus of VAMP2 through the highly flexible, negatively
charged C-terminal region (Burre et al., 2010). For another,
via its N-terminal region, α-Syn’s membrane anchoring is also
essential to the process (Wang et al., 2016a). α-Syn may also
cooperate with CSPα to maintain SNARE proteins assembly
and neurotransmission (Hou et al., 2017). Additional evidence
suggests that native α-Syn does not compromise the efficiency
of synaptic vesicle exocytosis but does help to increase the
availability of synthetic vesicles at the synapse (Diao et al., 2013).
Recently, studies show both VAMP2 and synapsin cooperate
to promote clustering of SVs and regulating SV recycling with
different mechanisms (Atias et al., 2019; Sun et al., 2019).
However, other research has indicated that α-Syn knockout
exerts little effect on synaptic transmission (Nemani et al.,
2010) and that α-Syn’s overexpression reduces the release of
neurotransmitters by disrupting vesicle docking in exocytosis
(Larsen et al., 2006). Further still, because αβγ-synuclein triple-
knockout mice lacking synucleins developed age-dependent
neurological impairments, exhibited decreased SNARE-complex
assembly, and died prematurely, synucleins may also sustain
normal SNARE complex assembly in presynaptic terminals
during aging (Burre et al., 2010).

Other research has revealed that the promotive effect of
α-Syn on SNARE-dependent bilayer merging mainly occurs
via the enhancement of vesicle docking (Hawk et al., 2019).
Recent work also revealed no significant changes observed in
merging efficiency, the ratio of instant-to-delayed merger events,
or the kinetics of bilayer merging other than the frequency
of vesicle docking, especially since α-Syn stimulates vesicle
docking without altering the dynamics of bilayer mergers in
lipid mixing (Hawk et al., 2019). To that, researchers have
contributed the hypothesis that α-Syn binds to vesicle-associated
membrane protein 2 (VAMP2) by using its unstructured C-
terminus, while simultaneously interacting with the target plasma
membrane via its amphipathic N-terminal region, thereby aiding
the recruitment of synaptic vesicles to the plasma membrane.
The α-Syn’s C-terminus is critical to promoting vesicle docking,
because after truncating the C-terminus, the docking process
of vesicles was inhibited, and overexpression had destroyed the
accumulation of vesicles within the synapse (Lou et al., 2017).
On the contrary, it had been found that the inhibition of
docking by α-Syn is coupled with the α-Syn’s membrane binding
but not with the interaction with VAMP2, although the fusion
inhibition by α-Syn oligomers at much lower concentrations
requires α-Syn’s interaction with VAMP2 (Lai et al., 2014).
Once aggregated, the multivalent oligomeric species containing
multiple binding sites can bind to VAMP2 on the vesicle,
which renders VAMP2 unable to interact with t-SNARE (i.e.,
syntaxin-1A and SNAP-25) on the plasma membrane (Choi

et al., 2013) and thus severely reduces the possibility of bilayer
merging. In addition, some convincing evidence suggests that
α-Syn promotes the filling of vesicles by directly interacting
with and modulating vesicular monoamine transporter 2 and the
reuptake of dopamine via the dopamine transporter (Lee et al.,
2001; Wersinger and Sidhu, 2003; Guo et al., 2008; Swant et al.,
2011; Butler et al., 2015). Latest studies also suggest that α-Syn
can promote endocytosis by increasing phosphatidylinositol 4,5-
bisphosphate level (Schechter et al., 2020). Those findings may
stimulate new ideas for further examination of the process of
synaptic transmission.

Fusion Pore Regulation
In general, fusion begins with the formation of a narrow pore
called a fusion pore that allows water, solute, and membrane
to move between compartments (Brose et al., 2019). A fusion
pore may grow, contract, or close, all under the influence of
both mechanical forces and biological cues (Brose et al., 2019).
In that context, α-Syn’s aggregation has been shown to cause
the formation of oligomeric intermediates that interact with
membranes to form fusion pores, while α-Syn itself seems to
partly accelerate the opening of the pores (Logan et al., 2017).
During exocytosis, synaptic vesicles also form fusion pores
that dilate before fully collapsing into the plasma membrane.
However, because fusion pores can also reclose during kiss-and-
run events in which vesicles are immediately regenerated (Alabi
and Tsien, 2013), the regulation of the membrane curvature may
affect the behavior of fusion pores. If so, then because α-Syn can
bind to anionicmembranes with high curvatures (Davidson et al.,
1998; Jensen et al., 2011; Pranke et al., 2011), overexpression of
α-Syn has been shown to influence the behavior of exocytotic
fusion pores. The dilation of fusion pores would thus be expected
to limit the release of neuromodulators that dissociate slowly
from luminal matrices (e.g., monoamines and peptides), but
without affecting classical transmitters such as glutamate that
can rapidly escape, even through small pores. However, α-
Syn has increased the number of SNARE complexes (Burre
et al., 2010), which may also heighten the force that drives
the dilation of fusion pores and thus promotes cargo release
(Shi et al., 2012). In view of those dynamics, it is difficult
to reconcile the observed inhibition of cargo release and the
notion that α-Syn chaperones SNARE complexes. Altogether, α-
Syn appears to play a dual role. On the one hand, it inhibits
membrane fusion in vivo and in vitro by directly acting on lipid
bilayers. On the other hand, it may promote the accumulation of
SNARE complexes by inhibiting exocytosis, thereby preventing
the disassembly of complexes present on vesicles primed for
fusion (Kamp et al., 2010, Nuscher et al., 2004; Braun and Sachs,
2015).

Modulation With Ca2+

The primary location of α-Syn is at the presynaptic terminal,
where calcium fluctuations can occur in concentrations in the
hundreds of µM. It is well established that calcium ions play an
important role in triggering synaptic transmission, and studies
have shown that calcium binds to α-Syn at its C-terminus,
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where Ca2+ can regulate the role of α-Syn and the plasma
membrane. In vitro experiments have confirmed that different
concentrations of calcium ions exert different effects on proteins
in plasma membranes (e.g., presynaptic membrane), and it
is well known that cytosolic Ca2+ regulates vesicle docking,
priming, fusion, and the expansion of fusion pores (Man et al.,
2015). Still other work has shown that α-Syn interacts with
plasma membranes in a specific structure and affects calcium
signal transduction, while β-sheet-rich-poly α-Syn can cause
Ca2+ deregulation and Ca2+-dependent cell death (Angelova
et al., 2016). Added to that, a recent study has demonstrated
α-Syn’s novel effects on mobilizing the release of Ca2+ from
thapsigargin-sensitive Ca2+ pools to enhance the ATP-induced
increase of Ca2+ concentration, which enhances vesicle fusion.
At the same time, soluble α-Syn elevates the same release of
Ca2+ from thapsigargin-sensitive Ca2+ pools to enhance ATP-
induced fusion, which reveals α-Syn’s novel role in coupling
vesicles to specific Ca2+ microdomains. By contrast, aggregated
α-Syn, in a Ca2+-independent pathway, inhibits vesicle priming
but does not affect the dilation of fusion pores (Huang et al.,
2018).

INFLUENCE OF α-SYN’S DIFFERENT
TRUNCATED ENDS ON MEMBRANE
INTERACTION

α-Syn has an N-terminal membrane-binding region that
binds to phospholipid bilayers and a C-terminal region
that interacts with VAMP2 (Lou et al., 2017). Via its N-
terminus and amorphous C-terminus, α-Syn can also interact
with high-curvature membranes. At both ends, however,
truncation affects α-Syn’s interaction with membranes
to varying degrees, hence the interest among researchers
in analyzing how α-Syn’s different truncated ends affect
membrane interaction.

Several studies have furnished support for an emerging
view that α-Syn’s N-terminal region plays an anchoring
role in membrane interaction, namely by modulating α-Syn’s
physiological as well as pathological role (Diao et al., 2013;
Fusco et al., 2016; O’Leary and Lee, 2019). Since then, additional
research has indicated that approximately 14 N-terminal residues
enter anionic membranes at a skewed angle of insertion, which
relates to the helical region’s folding onto the membrane’s
surface, thereby synergistically establishing the joint α-Syn–
lipid structures (Cholak et al., 2020). Meanwhile, the deletion
of residues 2–14 reduces α-Syn’s membrane localization in
mammalian cells, which indicates that the N-terminal anchor
exerts an impact in vivo. All of that evidence shows that avidity
within the N-terminal anchor couples N-terminal insertion and
helical surface binding, both of which are crucial for α-Syn’s
interaction with membranes and cellular localization and may
even affect membrane fusion (Cholak et al., 2020). Fusion has
also proven to fail with a truncated α-Syn due to its lacking
the charged C-terminal domain (Kamp et al., 2010). Last,
genomic editing to disrupt α-Syn’s N-terminal domain, which

is important for membrane association, induced mitochondrial
elongation without changes in fusion-fission protein levels,
thereby suggesting that αSyn plays a direct physiological role
in maintaining the size of mitochondria (Pozo Devoto et al.,
2017).

INFLUENCE OF MUTANTS ON MEMBRANE
INTERACTION

Studies have additionally revealed that α-Syn factors into
neurodegenerative disorders (Logan et al., 2017) and that various
secondary structures of α-Syn are involved in physiological
and pathological processes (El-Agnaf et al., 1998; Conway
et al., 2000; Lashuel et al., 2002; Uversky, 2007; Burré et al.,
2014, 2015; Wang et al., 2014). For those reasons, knowing
the effect of Parkinson’s disease-related mutants that disrupt
membrane interaction is important to understanding the possible
relationship between pathogenic mechanisms and physiological
roles at play in membrane binding. Research has shown that
the A53T mutation had the highest membrane affinity with
wild-type α-Syn, even compared to A30P (Perlmutter et al.,
2009). Meanwhile, the increased affinity of the E46K mutant
for vesicles containing negatively charged lipids has also been
observed to induce an additional hydrogen bond between the
protein and either the detergent or the lipid. Even so, the
literature on those topics remains slim, and other possible
mechanisms of the effects of PD-related mutants indeed warrant
further investigation.

DISCUSSION

As a type of membrane-based interaction, membrane fusion
is vital to the release of neurotransmitters and plays a chief
role in transmitter mechanisms. As a protein that can
regulate membrane fusion, α-Syn is essential in the normal
function of synapses, especially in synaptic transmission.
Since changes in α-Syn can affect its function of regulating
membrane fusion and thus affect synaptic transmission—and
its changes may also contribute to some neurodegenerative
diseases—a more profound understanding of α-Syn is
critically needed.

Physiologically, as a chaperone, α-Syn participates in the
assembly of SNARE complexes and may perform other
functions as well. Pathologically, by contrast, α-Syn misfolds
into neurotoxic aggregates that mediate neurodegeneration and
propagate between neurons (Burré et al., 2014). Synuclein also
forms a perplexing web of interactions with lipids, trafficking
machinery, and other regulatory factors (Wang and Hay, 2015).
Moreover, the protein’s effects on endocytosis, exocytosis, and
vesicle circulation are closely related to synaptic transmission.
In the central nervous system, the release of calcium-dependent
neurotransmitters regulates the roles of α-Syn and membrane,
which affect not only the interaction between α-Syn and synaptic
vesicles, but also neurotransmission, a qualitative release process.
Therefore, the aggregation of α-Syn may relate to α-Syn’s toxic
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effect, which stands to inspire new ideas for drug targets
able to prevent that effect. On top of that, other experiments
could study the effect of PD-related mutants on fusion to
provide insights into the treatment of neurodegenerative diseases
more generally.
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