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Adequate chronic wound healing is a major problem in medicine. A new solution might be non-thermal atmospheric-pressure
plasma effectively inactivatingmicroorganisms and influencing cells inwoundhealing. Plasma components as, for example, radicals
can affect cells differently. HaCaT keratinocytes were treated with Dielectric Barrier Discharge plasma (DBD/air, DBD/argon),
ozone or hydrogen peroxide to find the components responsible for changes in integrin expression, intracellular ROS formation or
apoptosis induction. Dependent on plasma treatment time reduction of recovered cells was observed with no increase of apoptotic
cells, but breakdown ofmitochondrial membrane potential. DBD/air plasma increased integrins and intracellular ROS. DBD/argon
caused minor changes. About 100 ppm ozone did not influence integrins. Hydrogen peroxide caused similar effects compared to
DBD/air plasma. In conclusion, effects depended on working gas and exposure time to plasma. Short treatment cycles did neither
change integrins nor induce apoptosis or ROS. Longer treatments changed integrins as important for influencing wound healing.
Plasma effects on integrins are rather attributed to induction of other ROS than to generation of ozone. Changes of integrins by
plasmamay provide new solutions of improving wound healing, however, conditions are needed which allow initiating the relevant
influence on integrins without being cytotoxic to cells.

1. Introduction

Physical plasma has been defined as a completely or partly
ionized gas considered as the fourth state of matter. It is
characterized by electrons, positive and negative ions, neutral
atoms, and neutral or charged molecules, by its temperature,
different types of radiation (e.g., UVB), and by electric
fields. The generation of nonthermal plasma at atmospheric
pressure with a temperature close to room temperature was
the basis for treating sensitive materials as, for example,
living cells. The development of different plasma sources and

devices led to an explosion of research in plasma medicine.
First, main focus of plasma application was the improvement
of chronic infected wounds [1–3] and disinfection of sur-
gical instruments or catheters [4] since plasma is effective
in the inactivation of different microorganisms [5–10] and
removal of biofilms [11–13]. Meanwhile, nonthermal plasma
was also investigated for application in several other fields,
for example, in dental applications, in changing surfaces
of medical implants, in treating cancer or dermatological
diseases, and in plastic surgery [14–16]. Ex vivo and in vivo
investigations demonstrated that neither plasma-inducedUV
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radiation nor a temperature increase or formation of radicals
had a potential risk to the treated patients and volunteers [17–
19].

Treating cells in culture with plasma cell detachment with
loss of viability, apoptosis, and damage ofDNAwere observed
[20–28]. The extent of observed effects depended on the
plasma source (plasma jet or needle and surface or volume
DBD), treatment time (plasma dose), and on the process gas
(air, argon, or helium).

In wound healing, for development of cancer metastasis
or for spreading of cells on the implant surfaces adhesion
molecules, as integrins, cadherins, the epidermal growth
factor receptor (EGFR), are of importance. These molecules
are responsible for adhesion or detachment of cells, for
cell signalling, cell migration, and also for growth and
differentiation [29–32] and should be influenced by plasma
according to the requirements. While in wound healing
migration and proliferation of keratinocytes or fibroblasts
should be improved, in treating cancer besides induction
of apoptosis and growth arrest, inhibition of migration is
requested. Aim of a successful plasma treatment is in either
case killing of desired cells without harming the surrounding
healthy tissue. To fulfil these criteria it is important to know
which of the components generated by plasma will cause the
required effect.

The purpose of this study was to elucidate how plasma
influences the expression of cell surface molecules of ker-
atinocytes (HaCaT cells) as major cell type of the skin pro-
moting adhesion, migration, and proliferation and which of
the components resulting from plasma might be responsible
for the effects observed.HaCaT cells were treatedwith plasma
generated by surface dielectric barrier discharge (surface
DBD) with air or argon as process gas, with ozone and
hydrogen peroxide (H

2
O
2
) as nonradical reactive oxygen

species resulting from plasma. Both ozone and H
2
O
2
can be

converted into radical reactive oxygen species, for example,
into the hydroxyl radical which then can further influence
treated cells.

2. Material and Methods

2.1. Materials. Cell culture flasks (T75) and 60mm diameter
Petri dishes came from TPP (Trasadingen, Switzerland).
RPMI 1640 with L-glutamine, the culture medium used, fetal
calf serum (FCS), and sodium azide (NaN

3
) for addition

to PBS buffer were purchased from Sigma (Taufkirchen/
Deisenhofen, Germany). Penicillin and streptomycin and
trypsin/EDTA solution were obtained from Lonza (Verviers,
Belgium) and phosphate buffered saline (PBS) came from
PAA (Cölbe, Germany). Hydrogen peroxide (H

2
O
2
) was

purchased from Roth (Karlsruhe, Germany). Monoclonal
antibodies came either from antibodies-online (Aachen,
Germany) (𝛼

2
-integrin (AK-7-PE, CD49b; 𝛼

4
-integrin (9F10-

PE, CD49d), 𝛼
6
-integrin (GoH3-PE, CD49f); 𝛼V-integrin

(NKI-M9-PE, CD51); 𝛽
3
-integrin (VI.PL2-FITC, CD61)),

AbD Serotec (Düsseldorf, Germany) (𝛼
3
-integrin (17c6-

PE, CD49c), eBioscience (Frankfurt, Germany) (𝛽
1
-integrin

(TS2/16-FITC, CD29)), or Biozol (Eiching, Germany) (E-
cadherin (67A4-PE, CD324); epidermal growth factor recep-
tor (EGFR, ICR10-FITC)). Annexin-V-Fluos Staining Kit
was provided by Roche Diagnostics (Mannheim, Ger-
many) and the fluorescent probe 5-(and-6)-chloromethyl-
2,7-dichlorodihydrofluorescein diacetate, acetyl ester (CM-
H
2
DCFDA) by Invitrogen (Molecular Probes, Darmstadt,

Germany).

2.2. Cell Culture. The nontumorigenic human keratinocyte
cell line HaCaT originally derived from normal human adult
skin was kindly provided by Professor NE Fusening (DKFZ,
Heidelberg, Germany) [33]. The cells were grown in T75
flasks in RPMI 1640 with L-glutamine supplemented with 8%
FCS and 1% penicillin-streptomycin solution (10,000 IU/mL
penicillin; 10,000 𝜇g/mL streptomycin) (RPMI) and main-
tained at 37∘C in a humidified atmosphere of 5% CO

2
and

95% air. HaCaT keratinocytes were subcultured 2 times
weekly. The cell line was free of mycoplasmas as tested by
PCR.

2.3. Treatment of HaCaT Cells with Plasma, Ozone, or a ROS
Inducer. For treatment of cells with nonthermal atmospheric
pressure plasma, a surface DBD plasma arrangement based
on a setup described by Oehmigen et al. [34] and Haertel
et al. [22] with air or argon as working gas was used. In
case of using argon plasma a closed DBD arrangement was
used and prior to discharge the plasma air was eliminated
by gassing with argon. In all experiments at ambient air
conditions, a pulsed sinusoidal voltage of 10 kVpeak (20 kHz)
with a 0.413/1.223 s plasma-on/plasma-off time was used. For
experiments in argon atmosphere, a pulsed sinusoidal voltage
of 3 kV peak (40 kHz) with a 0.413/1.223 s plasma-on/plasma-
off time was used. The plasma was formed in a thin layer
above the structured side which was faced towards the liquid
sample [22].

Ozone was generated by a Laboratory Ozoniser (Sander
GmbH, Uetze-Eltze, Germany). Ozone concentration was
monitored every 6 s by an FT-IR Fourier transformed
infrared spectroscopy (FT-IR) using a multicomponent FT-
IR gas analyserGasmetCR-2000 (Ansyco).Ozone concentra-
tion above the petri dish with cells inmediumwas adjusted to
about 100 ppm, 400 ppm, 1000 ppm, or 1800 ppm. To ensure
that there is only ozone above the cells an empty Petri dish
first was used to eliminate air by gassing with argon. The
ozone concentration was then adjusted bypassing the cells.
Only thereafter cellswere exposed to ozone.Negative controls
were exposed to 100% oxygen.

For treatment 1× 106 cells were seeded in 60mmdiameter
Petri dishes with 4mL RPMI and cultured for 24 h at
37∘C. One hour prior to treatment cell culture medium was
changed. Adherent cells were then exposed for 20 s to 300 s
to surface DBD plasma, for 300 s to ozone or for 24 h to
100 𝜇M H

2
O
2
. Control cells remained untreated or were

treated with 100% oxygen. Treated HaCaT cells were cultured
for 1 h or 24 h at 37∘C. After removing the medium adherent
cells were detached by subsequent treatment with PBS/EDTA
(10min) and trypsin/EDTA in Ca2+/Mg2+-free PBS (final
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concentration: 0.05%/0.1%; 5min) at 37∘C and centrifuged.
The cell pellet was suspended in PBS supplemented with 0.1%
NaN
3
and 1% FCS (FACS-PBS) for measuring cell surface

molecules, in Annexin binding buffer (ABP) for detection of
apoptosis or in RPMI for measurement of intracellular ROS.
Cell number was calculated using a Neubauer chamber.

2.4. Surface Expression of Adhesion Molecules. Surface exp-
ression of adhesion molecules on HaCaT cells was deter-
mined by flow cytometry using phycoerythrin- (PE-) or
fluorescein-isothiocyanate- (FITC-) conjugated monoclonal
antibodies [22]. Cells (1 × 105/50 𝜇L FACS-PBS) were incu-
bated for 30min at 4∘C with antibodies recognizing 𝛼

2
-,

𝛼
3
-, 𝛼
4
-, 𝛼
6
-, 𝛼V-, 𝛽1-, and 𝛽3-integrins, E-cadherin, and

the epidermal growth factor receptor. After washing of cells
400𝜇L FACS-PBS were added. Optimal antibody concen-
trations varied from 12.5 𝜇g/mL (𝛼

2
-integrin) to 50𝜇g/mL

(EGFR).
The results were expressed as percentage of cells which

were stained positive (mean ± SEM). For comparing the
intensity of a staining, flow cytometry data were plotted in
one-parameter histograms with counts at the 𝑦-axis (linear
scale) and fluorescence intensity at the 𝑥-axis (4-decade
logarithmic scale). The mean fluorescence intensity (MFI)
of a staining, which correlates with antigen density, was
expressed as arithmetic mean in log𝑈.

2.5. Externalization of Phosphatidylserine. Externalization of
phosphatidylserine as sign of apoptosis was measured 1 h and
24 h after HaCaT cells have been treated with either plasma
or ozone using an Annexin-V-Fluos Staining Kit. Briefly, 1
× 105 cells were incubated for 15min in the dark at room
temperature in 100𝜇L labeling solution consisting of 2𝜇L
Annexin-V-Fluos and 2 𝜇L PI (50𝜇g/mL) in 100 𝜇L ABP.
After incubation 400𝜇L ABP were added and apoptosis was
measured within 30min.

2.6. Intracellular Reactive Oxygen Species (ROS). Intracellular
ROS were detected 1 h and 24 h after the cells were exposed
to plasma using the fluorescent CM-H

2
DCFDA. The dye

is a derivate of DCF-DA with an additional thiol reactive
chloromethyl group enhancing the binding to intracellular
components, thereby prolonging cellular retention of the dye.
The nonfluorescent CM-H

2
DCFDA becomes fluorescent

after deacetylation by cellular esterases and cellular oxidation
by ROS. Fluorescence can be detected by a flow cytometer
(FL1, green fluorescence). Cells (1 × 105/100 𝜇L RPMI) were
incubated with 10𝜇MCM-H

2
DCFDA in the dark for 30min

at 37∘C. After washing of cells 400𝜇L RPMI were added.
Adhesion molecules (FL1 and FL2), Annexin/PI (FL1 and

FL2), and ROS (FL1) were measured using the FACScan (BD,
Heidelberg, Germany).

All results are expressed as mean ± SEM of 𝑁 indepen-
dent experiments.The number of experiments is either given
in the table or figures. SigmaStat Software was used to check
statistical significance (Student’s 𝑡-test and Mann-Whitney
Rank Sum Test).

3. Results and Discussion

3.1. Cell Viability and Apoptosis after Plasma Treatment.
Number of adherent cells after plasma treatment was used as
sign for viability and calculated 1 h and 24 h after exposure of
HaCaT cells to plasma. After 1 h (𝑛 = 7) neither treatment
with DBD/air nor with DBD/argon changed the number of
cells recovered by detachment with trypsin/EDTA (treatment
time up to 300 s, data not shown). The recovery of HaCaT
cells 24 h after treatment with DBD/air remained unchanged
up to a treatment time of 40 s and was significantly reduced
by a treatment time of 120 s. A further decrease was observed
by increasing the treatment time to 300 s (Figure 1(a)).
Compared to DBD/air the use of argon as working gas
resulted in a milder decrease of cell number. Only the longest
treatment time resulted in a significant reduced cell recovery
(Figure 1(a)). Similar results for detachment of adherent cells
or impaired adhesion after the treatment of different cell
types with different plasma sources were reported by several
investigators [20–22, 35, 36]. Viability of treated cells strongly
depended on the plasma source, the treatment time/plasma
dose, the working gas (e.g., air versus argon), or treatment
regimen [23].

Since a loss of HaCaT cells was caused by DBD plasma
treatment cell death was further characterized by staining
with PI to detect DNA and Annexin V to mark extracellular
phosphatidylserine residues as sign for apoptosis. Twenty-
four hours after treatment, nearly all detached/unsoldered
cells were positive for Annexin V independent of whether
the cells remained untreated (about 85.0%) or were treated
with DBD/air (>95.0%) or DBD/argon plasma (>93.0%).
These cells were characterized by 25% to 35% early apoptotic
cells (Annexin V positive, PI negative) and 60% to 75%
late apoptotic/necrotic cells (Annexin V and PI positive;
results not shown). Among the recovered adherent HaCaT
cells early apoptotic cells increased slightly from 1% to about
3% (Figure 1(b)), while the amount of necrotic cells did not
change significantly (data not shown). Only after a longer
treatment time (20min) apoptotic cells increase significantly
(about 8% early apoptotic cells and 17% necrotic cells) [28].
Treating HaCaT cells with DBD/argon apoptosis was not
induced (data not shown). Detection of apoptosis in HaCaT
cells is difficult; they seem to undergo apoptosis but then they
detach very quickly. First results show a breakdown of the
mitochondrial membrane potential as early sign of apoptosis
in recovered adherent HaCaT cells after 1 h of a 300 s
treatment cycle underlying that plasma induced apoptosis in
HaCaT cells. Different cell types seem to react differently to
exposure of plasma. While in primary immune cells 4 h after
DBD/air plasma treatment the highest amount of Annexin+
cells was detected [23], in primary ocular cells highest pro-
portion of apoptotic cells was already seen 2 h after treatment
[37]. In primary porcine aortic endothelial cells apoptosis was
detected 24 h after treatment [38]. Apoptosis induction was
further observed in primary human lymphocytes [39] and
in several cancer cell lines as melanoma cells [27, 40–42],
colorectal cancer cells [43, 44], lung carcinoma cells [42], or
breast cancer cells [45]. It is very difficult to compare these
results since different plasma sources and different methods
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Figure 1: Cell number of recovered HaCaT cells (a) 24 h after treatment with surface DBD/air (red line; 𝑁 = 8) or DBD/argon (blue line;
𝑁 = 8) plasma for 20 s to 300 s and induction of apoptosis (b) after DBD/air treatment ( = 1 h after plasma treatment, I = 24 h after plasma
treatment; 𝑁 = 8). Apoptosis was analysed by flow cytometry using Annexin V-FITC and PI (early apoptotoc cells = Annexin V+PI−).
Untreated cells served as controls (see time 0). Results are given as mean ± SEM. ∗𝑃 < 0.05, ∗∗𝑃 < 0.01, ∗∗∗𝑃 < 0.001 (𝑡-test), #𝑃 < 0.05
(Mann-Whitney test) versus control cells; ⋆𝑃 < 0.05, ⋆⋆𝑃 < 0.01 (𝑡-test); ∘𝑃 < 0.05 (Mann-Whitney test).

for apoptosis detection (e.g., Annexin V staining, TUNEL
assay, SubG1 phase of cell cycle, caspase 3/7, cytochrome C
release) were used. Further, the time of investigation after
plasma treatment differedmarkedly, reaching from 1 h to 72 h
after treatment.

3.2. Plasma and Expression of Adhesion Molecules. The first
target of plasma during treatment of cells is the cell mem-
brane with its embedded proteins as, for example, proteins
for ion exchange, connecting molecules like integrins or
cadherins, receptors (e.g., EGFR), or several enzymes. Their
expression and activity can be regulated influencing cell
adhesion, migration, ion conductivity, and cell signalling.
Therefore, we investigated the expression of several integrins,
of E-Cadherin, and that of the EGFR 24 h after plasma
exposure.

Integrins as transmembrane adhesion receptors are com-
posed of 𝛼- and 𝛽-subunits and mediate binding of cells to
components of the extracellular matrix (ECM). Nearly all
HaCaT cells expressed 𝛼

2
-integrin (99.0% ± 0.03%, 𝑛 = 14)

and 𝛽
1
-integrin (98.9% ± 0.02%, 𝑛 = 14) on their surface.

This proportionwas neither changed by treating the cells with
DBD/air norDBD/argonplasma (data not shown).Therefore,
mean fluorescent intensity (MFI) of the integrin staining was
estimated as relative indication for the amount of integrin
molecules on the cell surface.

In control cells theMFI of 𝛼
2
-integrin amounted to about

70 log𝑈 (Figure 2(a)) which was significantly enhanced by
DBD/air treatment of adherent cells for 120 s and 300 s. MFI
of 𝛽
1
-integrin on HaCaT cells was also increased, however,

by a treatment time of 300 s only (Figure 2(b)). HaCaT
cells treated with DBD/argon were characterized by a slight
increase of 𝛼

2
-integrin at 300 s treatment and a stable 𝛽

1
-

integrin expression at all points of time tested (Figures
2(a) and 2(b)). Treating the same cells in suspension with
DBD/air plasma MFI of 𝛼

2
-integrin decreased, while that

of 𝛽
1
-integrin also increased [23]. The kINPen 09, a plasma

jet working with argon, caused no change in 𝛼
2
-integrin

expression on HaCaT cells treated in suspension, while that
of 𝛽
1
-integrin increased [21]. The expression of 𝛼V- and

𝛽
1
-integrin on adherent fibroblasts treated with a plasma

jet using helium as working gas was downregulated [24].
In human melanoma cells treated with helium plasma the
expression of 𝛼

2
- und 𝛼

4
-integrin was decreased [46]. Other

integrins, however, were not investigated.
Since we found an increase in 𝛼

2
-integrin expression after

treating HaCaT cells with DBD/air plasma further integrins
were measured 24 h after 60 s and 300 s treatment cycles. A
treatment time of 60 s had no influence on the expression
of all integrins investigated (Figure 3). However, in addition
to 𝛼
2
- and 𝛽

1
-integrin the expression of 𝛼

5
-, 𝛼
6
-, and 𝛽

3
-

integrins was significantly enhanced after a 300 s treatment
cycle (Figure 3). In contrast, the expression of 𝛼

3
-, 𝛼
4
-, and

𝛼V-integrins was not changed by DBD/air plasma treatment
for 300 s.

Different 𝛼-subunits can covalently bind one 𝛽-chain,
for example, 𝛼

2
𝛽
1
, 𝛼
3
𝛽
1
, 𝛼
4
𝛽
1
, 𝛼
5
𝛽
1
, 𝛼
6
𝛽
1
, or 𝛼V𝛽1. These

heterodimers bind to different components of the ECM.
While the heterodimers 𝛼

2
𝛽
1
and 𝛼

6
𝛽
1
mediate binding to

laminin, 𝛼
4
𝛽
1
and 𝛼

5
𝛽
1
predominantly bind to fibronectin

[47]. The integrin receptor 𝛼
2
𝛽
1
additionally binds to colla-

gen. Cell spreading ofHaCaT cells on fibronectin depends on,
for example, the heterodimer 𝛼

5
𝛽
1
integrin [48]. Especially

at longer plasma treatment times, where the recovery of
remaining cells is strongly decreased, expression of 𝛼

2
𝛽
1
,

𝛼
5
𝛽
1
, and 𝛼

6
𝛽
1
heterodimers is enhanced, possibly to ensure

adhesion of remaining cells. The integrin subunit 𝛼
3
which

was not influenced by plasma regulates events linked to
epithelial repair including keratinocyte migration, thus pro-
moting wound healing [49]. A loss of 𝛼

3
𝛽
1
integrin would

compromise intercellular adhesions and collective migration
[49]. Cells which detached from the culture plate due to
plasma treatment were not investigated in these experiments.
However, we demonstrated a significant downregulation of
𝛼
2
-integrin on not-adhered HaCaT cells 24 h after treatment
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Figure 2: Expression of𝛼
2
-integrin/CD49b (a) and𝛽

1
-integrin/CD29 (b) onHaCaT cells whichwere recovered by trypsin 24 h after treatment

with surface DBD/air (red line;𝑁 = 8) or DBD/argon (blue line;𝑁 = 7) plasma. Cells were treated for 20 s to 300 s. Untreated cells served as
controls (see time 0). Expression of surface molecules was determined by flow cytometry using monoclonal antibodies. Mean fluorescence
intensity (MFI) in log𝑈 of positive stained cells is presented (mean ± SEM). ∗𝑃 < 0.05, ∗∗𝑃 < 0.01, ∗∗∗𝑃 < 0.001 (𝑡-test); ##𝑃 < 0.01
(Mann-Whitney test) versus control cells; ⋆𝑃 < 0.05, ⋆⋆𝑃 < 0.01 (𝑡-test).
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with the kINPen 09 while MFI of 𝛽
1
-integrin was not

influenced ([21], Supporting Information).
Cell-cell adhesion of remaining adherent cells seems not

to be influenced by DBD plasma treatment since neither the
proportion of E-cadherin expressing cells nor the density
of this molecule on the surface of treated HaCaT cells is
changed (data not shown). Similarly also the expression of
the EGFR on HaCaT cells was neither influenced by the
treatment time nor by the working gas used for generation
of plasma. The EGFR important for proliferation and cell
growth promotes cell survival. It contributes to motility

of keratinocytes, for example, in wound healing [32]. One
can conclude that on recovered HaCaT cells DBD plasma
does not interfere with these fundamental requirements of
cell survival. Widgerow [50] reported that within a chronic
wound there is a failure in expressing appropriate levels of
the 𝛼
5
-integrin subunit on epidermal keratinocytes resulting

in downregulation of 𝛼
5
𝛽
1
receptors. This might contribute

to the healing defect in such wounds by altered stimulation
of fibronectin and keratinocytesmigration. Another receptor,
𝛼V𝛽6, is of importance in chronic wounds. 𝛼V𝛽6 integrin
is an epithelial cell-specific receptor and not expressed on
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Table 1: Cell number of HaCaT keratinocytes and integrin expression on the cell surface 24 h after exposure to different stimuli. Cells were
either treated for 300 s with DBD/air plasma (6 independent experiments), DBD/argon plasma (8 independent experiments), hydrogen
peroxide (6 independent experiments), or ozone (2 independent experiments), whichwas generated by a LaboratoryOzonizer andmonitored
by FT-IR. Results are expressed as % of untreated cells for plasma treatment and % of oxygen (100%) treated cells for ozone. n.d.: not
determined.

DBD H2O2 Ozone (ppm)
Air Argon 100𝜇M ∼100 ∼400 ∼1000 ∼1800

Cell number1 22.5 ± 3.0 94.9 ± 7.7 38.1 ± 3.2 83.2 ± 6.5 62.1 ± 5.2 53.4 ± 0.9 42.2 ± 1.7

𝛼2-Integrin
1
135.3 ± 4.6 117.9 ± 6.8 138.5 ± 7.8 102.5 ± 1.3 109.4 ± 18.0 115.4 ± 8.2 135.4 ± 7.7

𝛼5-Integrin
1
186.8 ± 15.1 n.d. 136.0 ± 5.7 n.d. n.d. n.d. n.d.

𝛼6-Integrin
1
137.3 ± 5.9 n.d. 131.1 ± 4.8 94.7 ± 17.4 95.0 ± 8.5 79.8 ± 2.3 98.0 ± 1.2

𝛽1-Integrin
1

132.3 ± 5.1 104.8 ± 4.0 129.8 ± 5.5 98.6 ± 3.6 102.3 ± 11.9 104.5 ± 7.9 119.1 ± 2.9

𝛽3-Integrin
1
192.3 ± 18.3 n.d. 149.5 ± 13.1 n.d. n.d. n.d. n.d.

1Mean ± SEM.

resting epithelium, but its expression is induced in chronic
wounds [51]. Widgerow [50] stated that “the activation or
inhibition of integrin receptors by various agentsmay provide
an excellent means of influencing wound healing.” DBD/air
but notDBD/argon plasma increased the expression of𝛼

5
and

𝛽
1
integrins significantly. Integrin𝛼V was decreased, however,

not significantly. As demonstrated air plasma seems to be able
to counteract the deleterious effects in chronic wounds, at
least in terms of integrin expression.

3.3. Ozone and Integrin Expression. To determine whether or
not ozone generated by plasma is responsible for increased
integrin expression HaCaT cells were exposed to various
concentrations of ozone. Prior to these experiments we
measured the concentration of ozone accumulated in the gas
phase during a 300 s treatment cycle (energy input about
9 J/cm2) with DBD/air plasma in a closed system which
amounted to about 100 ppm. A different DBD plasma source
caused ozone concentrations of 182 ppm (4.65 J/cm2) and
of 30 ppm (1.95 J/cm2) within 15 s [52]. Exposing HaCaT
keratinocytes to about 100 ppm ozone for 300 s more than
80%of adherent cellswere recovered compared to the control,
while after DBD/air plasma treatment for 300 s only 22.5%
of cells were recovered (Table 1). In contrast to DBD/air
treatment none of the integrins measured were influenced
by 100 ppm ozone (Table 1). Using normal culture medium
exposed to ozone and immediately applied to breast epithelial
cells (MCF-10A), Kalghatgi et al. [52] could not detect any
increase of 𝛾-H2AX as sign for DNA damage. Increasing the
ozone concentration up to 1800 ppm viability decreased con-
tinuously (Table 1). In contrast, only 𝛼

2
-integrin expression

was similarly enhanced as after DBD/air treatment, while all
other integrins investigated were not influenced (Table 1).

Taken together, although the ozone concentration with
100 ppm was 1000 times higher than the maximum allowable
concentration (MAC), we could not detect any changes in
the expression of those integrins which were enhanced by
DBD/air plasma treatment.

3.4. Intracellular Reactive Oxygen Species and Integrin Expres-
sion. During plasma treatment the cells are exposed to all

the electrons, ions, UV photons, short and long lived neutral
and charged molecules such as ozone (O

3
), hydroxyl and

superoxide radicals (HO∙, O
2

∙−), hydrogen peroxide (H
2
O
2
),

nitric oxide (NO∙), and singlet oxygen (1O
2
). Reactive oxygen

species always present in cells have lots of physiological
functions, for example, smooth muscle relaxation, control
of ventilation, signal transduction from various membrane
receptors, and enhancement of immunological functions
[53]. Higher concentrations of ROS lead to DNA dam-
age and consequently to apoptosis. We wanted to know
whether or not these species from plasma penetrate into the
treated cells or whether plasma induces ROS intracellularly.
Both mechanisms cannot be distinguished by measuring
intracellular ROS using CM-H

2
DCFDA, but this method

gives a general indication of the oxidation state of the cells
following plasma treatment. Using this dye H

2
O
2
, perox-

ynitrite anion (ONOO−), and hydroxyl radical (HO∙), as
well as alkylperoxyl and hydroxyl peroxyl radicals (ROO∙,
HOO∙) will be detected. TreatingHaCaT cells with DBD/air a
linear increase of CM-H

2
DCFDA positive cells was observed

1 h after treatment (Figure 4(a)). Even 24 h later significant
enhanced CM-H

2
DCFDA positive cells were still detectable

(Figure 4(a)) suggesting a role for long lived radicals (e.g., O
3
,

NO∙, H
2
O
2
) in cells induced by plasma or partly developed

from short lived radicals. Changing the working gas for
generating plasma from air to argon there is nearly no
increase in ROS positive cells neither 1 h nor 24 h after
treatment (Figure 4(b)). Taking into account that air was
completely replaced by argon (prior to spark the argon
plasma) and, therefore, no oxygen exists in the gas phase
over the cells, the induction of intracellular ROS can only
be mediated by components of the culture medium. It was
hypothesized by Arjunan et al. [54] that plasma-produced
ROS, as well as products from plasma-ROS interaction with
cell culture medium, either diffuse through cell membrane
into the cytosol or react with the cell membrane to produce
intracellular ROS. Vandamme et al. [44] detectedmeasurable
reactive oxygen species in the gas phase over the cells and
in the culture medium. Recently, intracellular ROS were also
detected in other human cells as in primary ocular cells
(keratocytes), breast cancer cells (MCF-10A), HeLa cells, and
in hepatocellular carcinoma cells (HepG2) [20, 26, 37, 55].
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Figure 4: Induction of reactive oxygen species (ROS) withinHaCaT
cells by plasma. HaCaT cells remained either untreated (time 0) or
were treated with DBD/air ((a); = 1 h after plasma treatment, I =
24 h after plasma treatment;𝑁 = 7) or DBD/argon ((b); = 1 h after
plasma treatment, I = 24 h after plasma treatment; 𝑁 = 7) plasma
for 60 to 300 s. Intracellular ROS were detected by flow cytometry
using the dye CM-H

2
DCFDA and results are given as mean ± SEM.

∗
𝑃 < 0.05, ∗∗𝑃 < 0.01 versus control cells (𝑡-test).

Highest levels of intracellular ROS were found shortly after
plasma treatment and reached values of untreated control
cells 24 h after plasma treatment. This is very similar to that
we observed.

Due to the increase in intracellular ROS especially after
DBD/air plasma treatment, we assume that the increased
expression of integrins (𝛼

2
, 𝛼
5
, 𝛼
6
, 𝛽
1
, and 𝛽

3
) might bemedi-

ated by ROS. To verify this hypothesis HaCaT keratinocytes
were treated for 24 h with H

2
O
2
. Induction of intracellular

ROS was controlled and expression of those integrins which
were significantly enhanced afterDBD/air treatment for 300 s
was measured. Hydrogen peroxide caused a nearly twofold
increase of ROS positive HaCaT cells within 24 h (7.4 ± 0.8%
versus 14.2 ± 1.6%, 𝑛 = 13, 𝑃 < 0.01), which correlated well
with that caused byDBD/air treatment for 300 s (Figure 4(a)).
As shown inTable 1 hydrogen peroxide decreased the number
of recovered cells to about 40%. All integrins (𝛼

2
, 𝛼
5
, 𝛼
6
,

𝛽
1
, and 𝛽

3
) enhanced by treating HaCaT keratinocytes with

DBD/air plasma are also enhanced by exposure to hydrogen
peroxide (Table 1).

4. Summary and Conclusion

We provided basic investigations of HaCaT keratinocytes
treated with nonthermal atmospheric-pressure plasma to get

more insight into plasma-cell interaction. The first target
of plasma in treating cells is the cell membrane which was
influenced by DBD plasma. We demonstrated changes in the
plasma membrane for phosphatidylserine residues as well
as for some adhesion molecules, for example, the integrins,
while E-cadherin and the EGFR were not affected. Changes
in integrin expression were related to intracellular ROS
induction, while ozone as nonradical ROS had no influence
at concentrations measured during DBD/air treatment. Only
a very high ozone concentration mediated increased 𝛼

2
-

integrin expression.
Taken all our experiences together, we conclude that if

the plasma treatment is long enough (e.g., 300 s), intracellular
ROS is enhanced, and it comes to a breakdown of the
mitochondrial membrane potential as early sign of apoptosis
and to DNA damage [28], followed either by cell death
or an increased cell surface expression of several integrins
on surviving cells. Shorter treatment periods (<60 s) do
neither affect the remaining cell number, intracellular ROS,
nor integrin expression. Since wound related cells are not
negatively influenced by a milder plasma treatment and
taking into account that plasma inactivates microorganisms,
one can assume that chronic infected wound healing will
be improved by plasma. However, further investigations are
necessary to find optimal plasma treatment conditions, which
initiate the relevant influence on integrin expression, but
which should have less influence on cell viability and DNA.
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