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Abstract: Fatigue is an important factor affecting modern flight safety. It can easily lead to a decline
in pilots’ operational ability, misjudgments, and flight illusions. Moreover, it can even trigger serious
flight accidents. In this paper, a wearable wireless physiological device was used to obtain pilots’
electrocardiogram (ECG) data in a simulated flight experiment, and 1440 effective samples were
determined. The Friedman test was adopted to select the characteristic indexes that reflect the
fatigue state of the pilot from the time domain, frequency domain, and non-linear characteristics of
the effective samples. Furthermore, the variation rules of the characteristic indexes were analyzed.
Principal component analysis (PCA) was utilized to extract the features of the selected feature indexes,
and the feature parameter set representing the fatigue state of the pilot was established. For the
study on pilots’ fatigue state identification, the feature parameter set was used as the input of the
learning vector quantization (LVQ) algorithm to train the pilots’ fatigue state identification model.
Results show that the recognition accuracy of the LVQ model reached 81.94%, which is 12.84% and
9.02% higher than that of traditional back propagation neural network (BPNN) and support vector
machine (SVM) model, respectively. The identification model based on the LVQ established in this
paper is suitable for identifying pilots’ fatigue states. This is of great practical significance to reduce
flight accidents caused by pilot fatigue, thus providing a theoretical foundation for pilot fatigue risk
management and the development of intelligent aircraft autopilot systems.

Keywords: fight safety; pilot fatigue; electrocardiogram; feature analysis; identification of fatigue

1. Introduction

With the rapid development of the air transport industry in aircraft design, manu-
facturing, maintenance, and other aspects, the reliability and safety of aircraft have been
significantly improved. However, the proportion of flight accidents caused by human
factors in the overall number of accidents has not decreased [1–3]; these are especially
caused by pilot fatigue [4,5]. The noise and vibration of the cabin, air pressure changes,
long-haul flights, high-load work, circadian rhythm disturbance, and lack of sleep lead
pilots to often be in a state of fatigue [6]. Fatigue could easily lead to problems such as
reduction in operational ability, misjudgment, flight illusions, etc., and even cause serious
flight accidents. Therefore, how to identify the real-time fatigue state of pilots quickly and
accurately has become a core scientific problem that needs to be solved urgently in the field
of aviation safety. The identification of pilot fatigue is of great theoretical and practical
significance for achieving pilot fatigue risk control, health management, and real-time
safety warning for autopilot systems.

When pilots are tired, their heart function, nerve function, respiratory function, and
other related functions change accordingly. Therefore, the fatigue status could be reflected
by electroencephalogram (EEG), electrocardiogram (ECG), electromyography (EMG), or
other physiological indicators [7–12]. EEG and ECG are widely studied for their good
indication of fatigue [13,14]. EEG has been known as the “gold indicator” of monitoring
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fatigue and is widely used in fatigue detection [15–18]. However, in the process of detecting
pilot fatigue, EEG signal acquisition is can be susceptible to interference by external factors:
it has high requirements for the data acquisition environment, is invasive to pilots (for
example, electrodes need to be attached to the participant’s head), and a low signal-to-noise
ratio; thus, it is difficult to carry out in dynamic simulations or actual flight experiments.
ECGs reflect the activity of the heart. There is a correlation between heart rhythm and
autonomic nervous system (ANS) [19]. The autonomic nervous system is composed of
sympathetic nerves (SNS) and parasympathetic nerves (PSNs), which regulate the arousal
level of the human body. In the process of fatigue, the activity of sympathetic nerves and
parasympathetic nerves change significantly. Thus, the fatigue state of the human can be
reflected to a certain extent by the ECG signal [20–23].

Some scholars have conducted research on ECG indicators that reflect pilot fatigue.
Fan et al. selected 30 military cadets to conduct airfield traffic pattern simulation experi-
ments for four consecutive hours to collect the ECG signals of the participants. The analysis
results show that there are statistical differences in heart rate and its variability time domain
index RMSSD before and after the flight mission [24], which could be used to quantitatively
analyze pilots’ fatigue status. Hanakova et al. collected the ECG signals of eight flight
cadets through flight simulation experiments (eight simulated IFR flights within 24 h) and
analyzed them in the way of time domain, frequency-domain, and Poincaré plot. The
study found that the Poincaré plot of the ECG data could also reflect the fatigue state of the
pilots [18].

Some studies on the fatigue state identification method based on the ECG index have
an important reference significance for the identification of pilots’ fatigue state. Patel
et al. analyzed the ECG data, extracted the heart rate variability as a physiological index,
and used a neural network to identify the fatigue state caused by long-time driving [25].
Sang-Joong et al. collected the ECG signal from the driver’s palm throughout a two-hour
driving experiment, extracted the time domain and frequency domain indicators, and
used the autonomic nervous system balance graph to identify the drivers’ drowsiness and
fatigue [26]. Based on data of drivers’ ECG, Bhardwaj et al. selected the time domain,
frequency domain, and Poincaré scatter diagram indicators and used the deep auto-encoder
classifier to classify the non-fatigue and fatigue states [17]. Xu et al. selected the time
domain and frequency domain characteristic indexes from the electrical signal of the
Drozy database center as the model input, adopted a random forest classifier and support
vector machine (SVM) to establish the fatigue state classification model, and found that
the random forest classifier has a higher accuracy in identifying driving fatigue [27]. Li
et al. used a wavelet transform to extract heart rate variability features of the ECG signal
and adopted SVM as a classifier to identify fatigue state [28]. Munla et al. extracted
and preprocessed the drivers’ ECG signal and analyzed the drivers’ heart rate variability.
Several parameters in the heart rate variability signal were selected. The SVM based on
the radial basis function was used as a classifier to identify the drivers’ mental activity
state [29].

These results show that the time domain, frequency domain, and non-linear indexes
extracted from the ECG signals could quantitatively measure the fatigue state of pilots,
and the fatigue state could be identified based on the classification model. Thus, this
provides a strong theoretical basis and technical support for the study of pilot fatigue
state identification. However, there is little research on fatigue in civil aviation at home
and abroad, and there still exist many problems to be solved. In previous studies, the
participants of pilots’ fatigue state identification generally used ordinary people such
as college students and graduate students; unfortunately, only a few of the participants
were pilots. To become a pilot, we need to go through a series of strict selection, training,
and assessments and obtain the relevant certificates. Compared with other people, pilots
may show different physical and psychological states during flight missions. In some
previous studies, computer simulation experiments have been used. This is somewhat
different from the real flight environment and flight mission. Compared with the computer
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simulation experiment, the environment provided by the flight simulator is closer to the
real flight environment. In some previous studies, the time window for feature extraction
of ECG signals characterizing pilots’ fatigue state is generally not less than 5 min. If the
time window is shortened, it may be more conducive to the quick identification of pilots’
fatigue state.

In this paper, to meet the requirements of pilots’ natural driving and safe flight, ECG
signals with the advantages of a high sampling rate, reliable data, easy operation, and
non-intrusive nature are selected to identify the fatigue state of pilots in combination with
subjective self-assessment, thus guaranteeing the real-time performance and accuracy of
pilot fatigue data. Firstly, the flight simulation experiment is carried out by using a Cessna
172 flight simulator. The fatigue state of pilots is defined by the Samn–Perelli 7-Level fatigue
scale, and the ECG data of pilots under different fatigue states are obtained. Secondly, the
ECG signal of pilots is denoised by information processing techniques such as wavelet
threshold transform. The time domain, frequency domain, and non-linear indexes of the
ECG signals are extracted with a time window of 100 s. Thirdly, the feature vectors of
these indexes are extracted by way of the Friedman test and principal component analysis
(PCA). The change in trend of the ECG characteristic indexes in different fatigue states
is analyzed. Finally, the learning vector quantization (LVQ) is used to train and classify
the characteristic vectors of pilot fatigue so as to realize the identification of the pilots’
fatigue state.

The rest of this article is organized as follows. The research methods are introduced in
Section 2. Details of the experimental contents are described in Section 3. The results will
be analyzed and discussed in Section 4. Section 5 presents the conclusion.

2. Method

The research framework of this paper is displayed in Figure 1. To identify the fatigue
state of pilots, ECG data and the Samn–Perelli 7-Level fatigue scale data are collected
through flight simulation experiments. The obtained ECG data are preprocessed. Then,
time domain, frequency domain, and the non-linear characteristic indexes of the ECG data
are selected and extracted by the Friedman test and PCA. Based on the results of feature
selection and extraction, the pilots’ fatigue state identification model is established by
using the LVQ neural network. The pilot’s non-fatigue, mild fatigue, and fatigue states are
identified. The identification results are compared with those of BPNN, SVM and other
traditional methods.
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2.1. Data Preprocessing
2.1.1. Denoising of ECG Signals

In general, the collected ECG signals have certain noise, such as white noise, motion
artifacts, power line interference, EMG interference, and baseline drift [30]. In this paper,
band pass filtering, low pass filtering, and high pass filtering are adopted to remove
power line interference, EMG interference, and baseline drift noise in the ECG signals,
respectively. Additionally, wavelet threshold denoising is used to remove white noise and
motion artifacts, as shown in Table 1.

Table 1. ECG signal denoising.

Noise Type Denoising Method Notes

White noise Wavelet threshold denoising Wavelet threshold denoising method is used to decompose ECG
signal and remove white noise and motion artifactsmotion artifacts

Power line interference Band Pass filter Filter out 50 Hz power line interference
EMG interference Low Pass filter Filter out high-frequency noise greater than 100 Hz

Baseline drift High Pass filter Filter out low-frequency noise below 0.5 Hz

The ECG signals are collected by a wireless ECG sensor in this paper. The frequency
range of an ECG signal is 0.01–200 Hz. The frequency range of EMG interference is
5–2000 Hz. The frequency range of baseline drift is 0.1–0.5 Hz. The frequency of power
line interference is 50 Hz. A low pass filter is utilized to remove high-frequency noise
greater than 100 Hz, which can eliminate most EMG interference. Correspondingly, a
high pass filter is used to remove signals with a frequency below 0.5 Hz to eliminate the
effect of baseline drift. Electromagnetic interference in the surrounding environment may
also cause power line interference [31]. At present, the researchers still consider power
line interference when processing data with wearable ECG acquisition devices [32,33].
Accordingly, the 50 Hz band filter is used to remove the power line interference.

Wavelet threshold denoising can remove white noise [34]. We chose Daubechies-4 as
the wavelet generating function, and the threshold selection is shown in Equation (1) [35].
After the ECG signal is decomposed by the wavelet threshold denoising, the wavelet
coefficient of the effective signal is larger and that of the white noise is smaller [36]. Thus,
we can remove the white noise. At the same time, motion artifacts can also be removed by
wavelet threshold denoising [37,38]. The comparison of some ECG signal data before and
after denoising is exhibited in Figure 2a.

T =
√

2 ∗ log(N) (1)

where N represents the length of the signal.
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Figure 2. ECG Preprocessing. (a) ECG signal data before and after denoising. (b) The results of R-peaks extraction. (c) The
results of RR intervals.

2.1.2. ECG Index Extraction

On the basis of denoising the ECG signal, the peak value of the R peaks of QRS is
extracted, and the RR intervals are further obtained. At present, a differential threshold
method is the most commonly used method for detecting the ECG signal waveform, which
is a combination of the threshold method and differential operation. The basic idea of
detection is as follows: first of all, Equation (2) is used to carry out the first order difference
to find all the inflection points of the ECG signal. Secondly, using Equation (3), the second
order difference of the ECG signal is performed to find all peaks of the ECG signal. Finally,
Equation (4) is used to determine the peak threshold and find the peak point of the R wave.
Then, we can obtain the RR interval. The results of R-peaks extraction and RR intervals are
shown in Figure 2b,c.

f ′(xk) =
f (xk+1)− f (xk)

xk+1 − xk
(2)

f ′′ (xk) =
f ′(xk+1)− f ′(xk)

xk+1 − xk
(3)

Threshod = (max(x)−min(x)) ∗ 0.7 + min(x) (4)

where Threshod is the fixed threshold that needs to be set, max(x) is the maximum value
of the ECG signal in the detected time window, min(x) is the minimum value of the ECG
signal in the detected time window, and 0.7 is the empirical value.

Some meaningful indexes representing the ECG signal are extracted from the time
domain, frequency domain, and non-linear indexes. These indexes are listed in Table 2,
including eight time domains, eight frequency domains, and five non-linear ones.
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Table 2. Time domain, frequency domain and non-linear indexes.

Indicators Description Unit Symbol

Time Domain

AVNN Mean R-R interval ms T1
AVHR Average heart rate bpm T2
SDNN The standard deviation of R-R interval index ms T3

CV Coefficient of variation T4
RMSSD The root mean square of successive R-R interval ms T5
SDSD Standard deviation of successive R-R interval ms T6

PNN50 The percentage of successive normal cardiac
inter-beat intervals greater than 50 ms % T7

PNN20 The percentage of successive normal cardiac
inter-beat intervals greater than 20 ms % T8

Frequency
Domain

LF Low-frequency power (0.04~0.15 Hz),
generally reflects the activity information of sympathetic nerves ms2 F1

LF Percent The percentage of low-frequency power % F2

LFnorm
Normalized low-frequency power,

reflects the human body’s dual regulation of sympathetic and
parasympathetic nerve activities

F3

HF High-frequency power (0.15~0.4 Hz),
reflects the regulation of vagus nerve activity ms2 F4

HF Percent The percentage of high-frequency power % F5

HFnorm Normalized high-frequency power,
reflects changes in parasympathetic regulation F6

TP Total power,
reflects total variability of ECG signal ms2 F7

LF/HF
Low-frequency power/high-frequency power,

reflects the balance of sympathetic and parasympathetic
nervous system

F8

Non-Linear
Domain

SD1 Major axis of the ellipse of Poincaré plot ms N1
SD2 Minor axes of an ellipse of Poincaré plot ms N2

S The area of the fitted ellipse over Poincaré plot ms2 N3
A++ The number of points in the first quadrant in scatter plot % N4
B−− The number of points in the third quadrant in scatter plot % N5

Notes: Scatter plot is the coordinate point obtained by difference of three consecutive IBI points.

2.2. Feature Selection and Extraction
2.2.1. Friedman Test

In order to test the normality of the indexes, the Kolmogorov–Smirnov test is adopted.
All the indexes do not conform to the normal distribution. As a result, a non-parametric
test method, namely, the Friedman test, is adopted. The Friedman test is a method that uses
rank to judge whether there are significant differences in multiple overall distributions [39].
We use the Friedman test to select some indicators that have significant correlation in
non-fatigue, mild fatigue, and fatigue states.

Suppose that the null hypothesis is H0, and the alternative hypothesis is H1. H0
represents that multiple samples come from populations with no significant difference in
size. H1 represents ones with significant difference in size. The test value is calculated by
Equation (5):

X2 =
12

nm(m + 1) ∑ R2
j − 3n(m + 1) (5)

where m and n are the number of groups and the sample size in the group, respectively,
and Rj represents the rank sum of column.

According to the significance level (α) and the degree of freedom (m− 1) determined
in advance, the corresponding critical value (F2

α[m−1]) is obtained from the Chi-square

table. If X2 < F2
α[m−1], the null hypothesis is correct. Otherwise, the alternative hypothesis

is correct.
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2.2.2. Principal Component Analysis

After feature selection based on the Friedman test, there may be a certain correlation
between the characteristic indexes. There will be data coupling. Principal component
analysis (PCA) is adopted to further eliminate the mutual effect among feature extraction to
reduce the complexity. Principal component analysis is a statistical method of dimensional-
ity reduction. Many indexes with a certain correlation are recombined, and the important
dimensions of them are extracted. A new set of independent comprehensive indexes are
utilized to replace the original indexes. Thus, redundant information is eliminated.

The number of principal components is selected according to the principle that the
cumulative contribution rate of principal components reaches 85%. Principal component
contribution rate Wd and cumulative contribution rate s f are calculated by Equations (6)
and (7). The value of factor load is calculated by Equation (8).

Wd =
λd

p
∑

k=1
λk

, (d = 1, 2, · · · , p) (6)

s f =

f
∑

k=1
λk

p
∑

k=1
λk

, ( f = 1, 2, · · · , p) (7)

where λd represents the eigenvalue of the covariance matrix, and p represents the pth
feature of the sample.

lkd =
√

λkukd, (k, d = 1, 2, · · · , p) (8)

where ukd represents the kth element of the orthogonalized eigenvector.

2.3. Learning Vector Quantization

Learning vector quantization is a kind of forward and supervised neural network
evolved from a competitive algorithm by Finnish scholar Kohonen [40]. The LVQ neural
network consists of an input layer, competition layer, and output layer, as shown in Figure 3.
The classification results can be obtained only through the internal interaction of the input
layer, competitive layer, and output layer [41,42]. The LVQ neural network has better
recognition and convergence characteristics for complex and scattered feature datasets.
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Figure 3. LVQ neural network.

As shown in Figure 3, the connection mode between the input layer and competition
layer is a full connection. The connection mode between the competition layer and linear
output layer is a partial connection. When a vector is input into the network, the neuron in
the competition layer closest to the input vector is activated to win the competition. At this
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time, the state is “1”, while the rest of the neurons in the competition layer are all “0”. The
training steps of the LVQ are as show in Figure 4.
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Figure 4. The training steps of LVQ.

3. Materials
3.1. Participants

The sample size of the experiment was 30 pilots who had obtained a Private Pilot
License, Commercial Pilot License, and Instrument Rating License. The basic information of
the participants is described in Table 3. Based on the existing research of fatigue state based
on the ECG signals, a small sample of ECG signals can also reflect certain regularity [17,43].
The more experimental samples there are, the more accurate the experimental data are.
However, the experiment is costly and time-consuming. It is difficult to analyze when
the amount of data is large. Based on the above factors, the number of pilots selected in
this article is 30. The selected pilots are all right-handed. Their vision or corrected vision
is normal, and there is no serious history of tumor, nephritis, endocrine disorders, etc.
Before the experiment, the participants were required to ensure adequate sleep and avoid
strenuous exercise. In addition, 24 h before the experiment, they were asked to avoid
smoking, drinking, and other behaviors that excite or inhibit the central nervous system so
that the participants could maintain a good mental state.

Table 3. Basic information of the participants.

Basic Information Mean and Standard Deviation

Age 23.40 ± 1.60 (year)
Mean time of flight 273.24 ± 22.14 (h)

The experimental process is strictly in accordance with the Helsinki Declaration. All
experimental personnel received a complete explanation of the experimental procedures
and equipment. All the participants were familiar with the whole experimental process.
They volunteered to participate in the experiment and filled in a written consent form.



Sensors 2021, 21, 3003 9 of 24

3.2. Flight Simulation Experiment
3.2.1. Subjective Self-Evaluation

The Samn–Perelli 7-Level fatigue scale is a subjective method for evaluating fatigue
state. The contents of the Samn–Perelli 7-Level fatigue scale are listed in Table 4. In this
paper, the Samn–Perelli 7-Level fatigue scale is utilized to evaluate the fatigue status of the
pilots. The fatigue level is divided into 7 levels. Each fatigue level corresponds to a different
score. A score of 1 represents very alert and fully awake. A score of 7 indicates exhausted.
The pilot chooses the closest fatigue level according to his own fatigue state. Generally, a
fatigue scale score of no more than 3 is defined as non-fatigue status, a score greater than 3
but no greater than 5 is defined as mild fatigue status, and a score greater than 5 is defined
as fatigue status [44]. The experiment was conducted at the following times: 9:00–11:00,
14:00–16:00, and 19:00–21:00. The participants filled in the Samn–Perelli 7-Level fatigue
scale before and after the flight mission in each time period and obtained their own fatigue
scale score. Fatigue level depends on the subjective feelings of the participants, and it is
easily affected by many factors, such as individual differences, emotions and, environment.
It may be different from the actual fatigue level. Using the experimenter’s assessment
of the fatigue level of the participants can improve the accuracy of the fatigue level [45].
While the participants filled in the scale, the experimenters also filled in the Samn–Perelli
7-Level scale according to the fatigue state of the pilot. The average value is taken as the
final score of the pilot’s fatigue evaluation, which is calculated based on the fatigue scale
filled in by the participants and experimenters.

Table 4. Samn–Perelli 7-Level fatigue scale.

Item Description Scale

1 Very alert and fully awake 1
2 Very energetic but no longer at one’s peak 2
3 Some vitality 3
4 A little tired and lacking energy 4
5 Moderate fatigue 5
6 Very tired and difficult in concentrating 6
7 Exhausted 7

3.2.2. Experimental Equipment

The Cessna 172 flight simulator which is manufactured by Tianjin ZTXY Aviation
Technology Co., Ltd., Tianjin (China), is utilized for flight simulation experiment, as shown
in Figure 5a,b. The airport, weather environment, training mode, etc. could be set in
the flight simulator. The flight simulator has a good simulation effect and immersion.
Pilots wore wireless wearable ECG sensors to perform flight missions in the Cessna 172
flight simulator. The wireless wearable ECG data acquisition and recording device are
depicted in Figure 5c, and its parameters are given in Table 5. The ECG sensor is produced
by KINGFAR Co., Ltd., Beijing (China). The ECG sensor is worn on the chest of the
participants; the specific location is shown in Figure 5c.
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Table 5. Parameters of wireless wearable ECG sensor.

Name Value Name Value

Number of channels 6 Sampling rate 512 Hz
Resolution ≥16 Bit Common mode rejection ratio 110 dB

Noise ≤1.6 µV (RMS) Measurement range −1500 µV~+1500 µV

Basic magnification 500 Wireless transmission
frequency 2.4 GHz

Accuracy 0.183 µV Wireless sensor weight ≤20 g

3.2.3. Experimental Task

The visual manual airfield traffic pattern mission operation includes the basic flight
operations during flight, such as rolling, take-off, climbing, turning, descent, landing, etc.
Here, the visual manual airfield traffic pattern mission is used as the experimental content.
The process of the visual manual airfield traffic pattern is displayed in Figure 6. The pilots
continuously performed the flight mission during the experimental period. During the
entire simulation flight process, the clear and windless Eglin Air Force Base (AFB) was
selected. The simulated airfield traffic pattern process completed by the pilots at the Eglin
Air Force Base is indicated in Figure 7.
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3.2.4. Experimental Process

On the day before the experiment, the participants rested before 23:00 to ensure that
they had 8 h of adequate sleep. In addition, they participated in the experiment from 9:00
to 11:00, 14:00 to 16:00, and 19:00 to 21:00 on the day of the experiment. Moreover, they
were deprived of their right to sleep at noon on the experimental day. The experiment
lasted for 30 days. One pilot participated in the experiment every day. The ECG data of the
pilots were collected at 9:00–11:00, 14:00–16:00, and 19:00–21:00. This is about six hours a
day. The experimental process is illustrated in Figure 8.

3.3. Data Collection

In this paper, the ECG data of 30 pilots were obtained through flight simulation
experiments. In order to eliminate the effect of the beginning and the end of the experiment
on the pilots’ psychology, the ECG data from 9:45 to 10:15, 14:45 to 15:15, and 19:45 to
20:15 were selected for analysis. Based on the study of driver fatigue by using a 100s time
window of the ECG, the 100 s time window was selected to intercept the ECG data [46].
A total of 1440 effective samples were extracted, and the sample size of each time period
was 480. ErgoLAB software which is produced by KINGFAR Co., Ltd., Beijing (China), is
used to calculate the indexes of the samples. The calculated indexes include time domain,
frequency domain, and nonlinearity indexes, and the specific indexes are shown in Table 2.
Some experimental sample data are presented in Table 6.
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Table 6. Some experimental sample data.

NO. 1 Gender Male Age 24 Fatigue State Non-Fatigue

T1 T2 T3 T4 T5 T6 T7 T8
736.04 82 29.26 10.47 19.02 28.77 27.85 69.62

F1 F2 F3 F4 F5 F6 F7 F8
387.11 43.07 0.7 1045.83 18.41 0.3 5682.27 2.34

N1 N2 N3 N4 N5
35.36 103.13 11,456.37 18 21
NO.2 Gender Male Age 24 Fatigue state Non-fatigue

T1 T2 T3 T4 T5 T6 T7 T8
724.56 83 37.29 12.94 19.51 33.99 17.5 66.25

F1 F2 F3 F4 F5 F6 F7 F8
551.54 42.33 0.7 1261.26 17.74 0.3 7111.41 2.39

N1 N2 N3 N4 N5
38.95 126.7 15,503.65 22 18

...
...

...
...

...
...

...
...

NO.1440 Gender Male Age 24 Fatigue state Fatigue
T1 T2 T3 T4 T5 T6 T7 T8

900.45 67 87.58 6.21 40.1 40.41 20.31 57.81
F1 F2 F3 F4 F5 F6 F7 F8

2079.52 57.06 0.9 230.82 6.33 0.1 3644.33 9.01
N1 N2 N3 N4 N5

28.57 73.74 6618.56 14 15

4. Results and Discussion
4.1. Fatigue Scale Analysis

Figure 9 shows the statistics of the Samn–Perelli 7-Level fatigue scale. It can be seen
from Figure 9 that the pilots’ fatigue levels are significantly different in the three time
periods of 9:00–11:00, 14:00–16:00, and 19:00–21:00. At 7:00 and 9:00, the averages of the
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fatigue scale are less than 3. At 14:00 and 16:00, the averages of the fatigue scale are greater
than or equal to 3 but no greater than 5. At 19:00 and 21:00, the averages of the fatigue
scale are greater than or equal to 5. Their fatigue scores in the three time periods will show
an increasing trend with the passage of time. Thus, the pilot fatigue states corresponding
to these three time periods could be divided into non-fatigue, mild fatigue, and fatigue.
Non-fatigue, mild fatigue, and fatigue state are used as the labels for model training.
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4.2. Feature Selection and Extraction of Fatigue State

We randomly selected 22 participants and used the data of these 22 participants as
the training set. The data from the remaining 8 participants were used as the test set. The
training set contains 1152 samples, and the sample size of each time period in the training
set is 384. The test set contains 288 samples, and the sample size of each time period in
the test set is 96. The proportion of non-fatigue, mild fatigue, and fatigue samples in the
training set and test set is 1:1:1. We selected and extracted the features from the training set
to establish the pilots’ fatigue identification model.

4.2.1. Feature Selection of Fatigue State

In this paper, the Friedman test is used to analyze 21 ECG characteristic indexes of
non-fatigue, mild fatigue, and fatigue state in the training set. These indexes include 8 time
domains, 8 frequency domains, and 5 non-linear ones. From these 21 indexes, the indexes
with significant differences regarding fatigue state were selected by the Friedman test.

(1) Time domain characteristics

The time domain characteristic indexes selected by the Friedman test are AVNN,
AVHR, RMSSD, and PNN50, and the results are listed in Table 7. The asymptotic signifi-
cance of these indexes is 0.000 < 0.05, which shows that these four time domain indexes
have significant differences in non-fatigue, mild fatigue, and fatigue states.
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Table 7. Feature selection results of time domain indexes.

Time Domain
Indexes

Fatigue
States

Average
Value

Standard
Deviation Mean Rank Chi-Square

Value df Asymp. Sig.

AVNN Non-fatigue 698.1821 72.34479 1.49 53.106 2 0.000
Mild fatigue 740.2675 75.84125 1.91

Fatigue 817.9340 92.29630 2.60
AVHR Non-fatigue 87.2824 9.33199 2.51 53.042 2 0.000

Mild fatigue 82.0353 8.54602 2.09
Fatigue 74.3765 8.43882 1.41

RMSSD Non-fatigue 28.5129 13.26642 1.74 20.988 2 0.000
Mild fatigue 30.0260 15.26040 1.86

Fatigue 36.6806 14.48879 2.40
PNN50 Non-fatigue 8.8676 8.83414 1.66 32.645 2 0.000

Mild fatigue 10.3058 8.53710 1.84
Fatigue 17.0691 10.98281 2.49

Notes: The asymptotic significance is lower than 0.05, which indicates that the corresponding samples have significant differences.

The boxplot of the time domain indexes selected by the Friedman test is shown in
Figure 10. The maximum and minimum in the boxplot are the maximal non-abnormal value
and the minimal non-abnormal value, respectively. The number of outliers is extremely
small, and individual outliers do not affect the results. Therefore, detailed analysis of
outliers was not performed [35,47]. The maximum, minimum, median, average, and
upper/lower quartiles of AVNN increased by the increase in degree of fatigue. The
maximum, minimum, median, average, and upper/lower quartiles of AVHR decreased
with the increase in degree of fatigue. The minimum, median, average, and upper/lower
quartile of RMSSD increase with the increase in degree of fatigue. The maximum, median,
average, and upper/lower quartile of PNN50 increased with the increase in degree of
fatigue. It can be seen that AVNN, RMSSD, and PNN50 have an obvious upward trend,
while AVHR has a significant downward trend with the increase in degree of fatigue.
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(2) Frequency domain characteristics

After the Friedman test, the selected frequency characteristic indexes are SD1, A++,
and B++, and the results are exhibited in Table 8. The asymptotic significances of these
indexes are 0.000, 0.001, and 0.007, respectively, which are less than 0.05. This shows that
these time frequency indexes have significant differences in non-fatigue, mild fatigue, and
fatigue states.

Table 8. Feature selection results of frequency domain indexes.

Frequency
Domain Indexes Fatigue States Average

Value
Standard
Deviation Mean Rank Chi-Square

Value df Sig.

LFnorm Non-fatigue 0.7448 0.14369 2.34 16.309 2 0.000
Mild fatigue 0.6822 0.14964 1.92

Fatigue 0.6704 0.12799 1.74
HFnorm Non-fatigue 0.2653 0.15050 1.65 16.617 2 0.001

Mild fatigue 0.3221 0.15624 2.12
Fatigue 0.3320 0.13046 2.24

LF/HF Non-fatigue 3.1445 3.24117 1.81 9.812 2 0.007
Mild fatigue 3.3964 2.83835 1.92

Fatigue 4.1736 3.50645 2.27

Notes: The asymptotic significance is lower than 0.05, which indicates that the corresponding samples have significant differences.

The boxplot of the frequency domain indexes after feature selection is found in
Figure 11. The median, average, and upper/lower quartile of LFnorm decrease with the
increase in degree of fatigue. As fatigue increases, the median, average, and upper/lower
quartile of HFnorm is increased. The maximum, median, average, and upper/lower
quartile of LF/HF decrease with the increase in degree of fatigue. Therefore, as fatigue
increases, LFnorm and LF/HF have a significant downward trend, while LFnorm has a
significant upward trend.

Sensors 2021, 20, x FOR PEER REVIEW 15 of 24 
 

 

 Mild fatigue 0.3221 0.15624 2.12    

 Fatigue 0.3320 0.13046 2.24    

LF/HF Non-fatigue 3.1445 3.24117 1.81 9.812 2 0.007 

 Mild fatigue 3.3964 2.83835 1.92    

 Fatigue 4.1736 3.50645 2.27    

Notes: The asymptotic significance is lower than 0.05, which indicates that the corresponding samples have significant 

differences. 

The boxplot of the frequency domain indexes after feature selection is found in Figure 

11. The median, average, and upper/lower quartile of LFnorm decrease with the increase 

in degree of fatigue. As fatigue increases, the median, average, and upper/lower quartile 

of HFnorm is increased. The maximum, median, average, and upper/lower quartile of 

LF/HF decrease with the increase in degree of fatigue. Therefore, as fatigue increases, 

LFnorm and LF/HF have a significant downward trend, while LFnorm has a significant 

upward trend. 

  

(a) (b) 

 
(c) 

Figure 11. The boxplot of the frequency domain indicator after feature selection. (a) The boxplot of LFnorm. (b) The box-

plot of HFnorm. (c) The boxplot of LF/HF. 

(3) Non-linear characteristics 

After the Friedman test, the selected nonlinear characteristic indexes are SD1, A++, and 

B++, and the results are given in Table 9. The asymptotic significances of these indexes are 

0.001, 0.000, and 0.001, respectively, which are less than 0.05. This indicates that these three 

time domain indexes have significant differences in non-fatigue, mild fatigue, and fatigue 

states. 

  

Figure 11. The boxplot of the frequency domain indicator after feature selection. (a) The boxplot of LFnorm. (b) The boxplot
of HFnorm. (c) The boxplot of LF/HF.



Sensors 2021, 21, 3003 16 of 24

(3) Non-linear characteristics

After the Friedman test, the selected nonlinear characteristic indexes are SD1, A++,
and B++, and the results are given in Table 9. The asymptotic significances of these indexes
are 0.001, 0.000, and 0.001, respectively, which are less than 0.05. This indicates that these
three time domain indexes have significant differences in non-fatigue, mild fatigue, and
fatigue states.

Table 9. Feature selection results of non-linear domain indexes.

Non-Linear
Domain Indexes Fatigue States Average

Value
Standard
Deviation Mean Rank Chi-Square

Value df Asymp. Sig.

SD1
Non-fatigue 20.1111 9.25549 1.75 19.694 2 0.001
Mild fatigue 21.2862 10.89284 1.86

Fatigue 26.3768 10.33911 2.39
A++ Non-fatigue 25.2524 4.81696 2.35 35.671 2 0.000

Mild fatigue 24.2551 4.76400 2.16
Fatigue 19.6632 4.71692 1.48

B++ Non-fatigue 23.0033 8.76712 2.29 17.435 2 0.001
Mild fatigue 20.2130 5.50636 2.05

Fatigue 17.7637 4.76061 1.66

Notes: The asymptotic significance is lower than 0.05, which indicates that the corresponding samples have significant differences.

The boxplot of the non-linear indexes after feature selection is shown in Figure 12. The
maximum, minimum, median, average, and upper/lower quartile of SD1 increase with the
increase in fatigue. The maximum, minimum, median, average, and upper/lower quartile
of A++ decrease with the increase in fatigue. As fatigue increases, the maximum, median,
average, and upper quartiles of B++ are decreased. It can be seen that with the increase
in fatigue, SD1 has a significant upward trend, while A++ and B++ have a significant
downward trend.
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In this paper, the Friedman test is adopted to select the features in time domain,
frequency domain, and non-linear indexes. The feature selection results show that AVNN,
AVHR, RMSSD, PNN50, LFnorm, HFnorm, LF/HF, SD1, A++, and B++ are statistically
different in non-fatigue, mild fatigue, and fatigue states.

4.2.2. Feature Extraction of Fatigue State

PCA is adopted to further eliminate the mutual effect among feature extraction. The
results based on PCA are depicted in Figure 13. The variance contribution rates of the
first five principal components (PC1, PC2, PC3, PC4, and PC5) are 37.94%, 23.17%, 13.47%,
9.36%, and 6.46%, respectively. The cumulative contribution rate of the first five principal
components is 90.4%. Accordingly, PC1, PC2, PC3, PC4, and PC5 are used as principal
components. The factor loading matrix of five principal components are described in
Table 10. As can be seen from Table 10, the main components of PC1 include AVNN
and AVHR. The main components of PC2 are LFnorm, HFnorm, and LF/HF. The main
components of PC3 are RMSSD, SD1, and B++. The main components of PC4 include
PNN50 and A++. Among them, A++ plays a decisive role in PC4, which is 0.98. The main
components of PC5 are PNN50 and B++. According to the feature extraction results by
principal component analysis, PC1, PC2, PC3, PC4, and PC5 are selected as new feature
indexes for model training.
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Table 10. The factor loading matrix of PCA.

PC1 PC2 PC3 PC4 PC5

AVNN 0.43754 0.12881 −0.32497 0.0453 0.21814
AVHR −0.43284 −0.12248 0.3506 −0.07952 −0.14701

RMSSD 0.39995 0.15475 0.44308 0.0385 -0.32202
PNN50 0.38485 0.11403 0.11148 0.12194 0.56775
LFnorm −0.16641 0.50146 −0.17952 0.05901 0.07257
Hfnorm 0.14774 −0.59501 0.03596 0.0402 0.09042
LF/HF −0.15979 0.54117 −0.01296 −0.04581 −0.0966

SD1 0.40045 0.15491 0.44214 0.03842 −0.32096
A++ −0.15474 −0.01594 0.04499 0.98063 −0.03578
B++ −0.2319 0.09409 0.57578 −0.07052 0.61457

4.3. Identification of Fatigue State

Taking into account the classification accuracy and recognition speed of the network,
the pilots’ fatigue state identification model is established based on the training set. The test
set is used to verify the model. Moreover, it is compared with the traditional classification
methods, such as SVM and BPNN.
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4.3.1. Establishment of LVQ Model

Based on the results of feature extraction from the training set, there are five feature
indexes, namely, principal components PC1, PC2, PC3, PC4, and PC5. These five feature
indexes are utilized as inputs for training, so the number of neurons in the input layer is
five. The number of neurons in the output layer is three, corresponding to the three states
of non-fatigue, mild fatigue, and fatigue. In the model training process, the number of
iteration steps is 1000, the learning rate is 0.01, and the target error is 0.1.

The number of neurons in the competitive layers has a great effect on the performance
of the LVQ model. An excessive number of neurons in competitive layers will increase the
complexity of the model and increase the training time. Too few neurons in the competition
layer will make the model too simple and poor fitting. The mean square error (MSE) is
chosen as the loss function. The smaller the value of MSE, the closer the model output
distribution and the sample label distribution are. Here, K-fold cross validation (K = 10) is
adopted to determine the best number of neurons in the competitive layer through a large
number of experiments. The accuracy rate and MSE of pilots’ fatigue state identification
based on the LVQ model are illustrated in Figure 14. When the number of neurons in
the competitive layer is 13, the identification accuracy rate is the highest, and the MSE is
relatively small, so the number of neurons in the competitive layer is 13.
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4.3.2. Analysis of Identification Results

Based on the results of feature selection and extraction from the training set, AVNN,
AVHR, RMSSD, PNN50, LFnorm, HFnorm, LF/HF, SD1, A++, and B++ were selected from
the test set. After feature selection, the first five principal components were extracted from
ten indexes in the test set. The first five principal components were input into the LVQ
model to test the model. The pilots’ fatigue state identification results in the test set are
revealed in Figure 15. In the figure, “0”, “1”, and “2” are, respectively, used to represent
the non-fatigue, mild fatigue, and fatigue states. In the 96 test samples with a real label
of non-fatigue state, 10 are identified as mild fatigue state, and seven are identified as
fatigue state. In the 96 test samples with a real label of mild fatigue state, 13 are identified
as non-fatigue state, and eight are identified as fatigue state. In the 96 test samples with a
real label of fatigue state, four are identified as non-fatigue state, and 10 are identified as
mild fatigue state. The identification accuracy rate of the pilots’ fatigue state is listed in
Table 11. The average identification accuracy rate of the LVQ model is 81.94%, which can
effectively identify the pilots’ non-fatigue, mild fatigue, and fatigue state.
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Table 11. Identification accuracy rate based on the LVQ model.

Classification Non-Fatigue Mild Fatigue Fatigue Average

Accuracy (%) 82.29 78.13 85.42 81.94

4.3.3. Model Performance Evaluation

In this paper, the identification results of the LVQ model are compared with those of
traditional classification models SVM and BPNN to verify the accuracy and effectiveness of
the model. The training set is utilized to train SVM and BPNN, respectively. Additionally,
the test set is used to test the SVM and BPNN model. The confusion matrixes of the LVQ
model, SVM model, and BPNN model are described in Figure 16, and the identification
results are exhibited in Table 12. Figure 16 shows that the accuracy rates of the LVQ model
in three kinds of fatigue state are 82%, 78%, and 85%, respectively. The accuracy rates
of the BPNN model in three kinds of fatigue state are 70%, 65%, and 73%, respectively.
The accuracy rates of the SVM model in three kinds of fatigue state are 77%, 68%, and
73%, respectively. The accuracy rates of the LVQ model in three kinds of fatigue state are
higher than those of the BPNN model and SVM model. It can be seen from Table 12 that
the recognition accuracy of the LVQ model is 12.84% higher than that of the BPNN model
and 9.02% higher than that of the SVM model. Therefore, the pilots’ fatigue identification
model based on the LVQ model established in this paper has a high identification accuracy.
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Table 12. Model identification accuracy.

Model LVQ BPNN SVM

Accuracy (%) 81.94 69.10 72.92

In order to further evaluate the performance of the classification model, a precision
rate, recall value, F1 index, and ROC curve are adopted. Based on the results of the model
on the test set, the model evaluation indexes are calculated. The precision rate, recall value
and F1 index are calculated by Equations (9)–(11). The precision rate is the proportion of
the number of positive samples in the total number of positive samples in the prediction
classification, which reflects the accuracy of classification. The recall value is the proportion
of the quantity of positive samples in the classification, which reflects the sensitivity of
the model. The F1 index is the weighted harmonic average of precision and recall, which
reflects the overall index. When the F1 index is high, it indicates that the classification
method is more effective. The calculation results of the precision rate, recall value, and F1
index of the LVQ, BPNN, and SVM models are displayed in Table 13. The performance of
the LVQ model in the precision rate, recall value, and F1 index is significantly better than
that of the BPNN and SVM models. The LVQ model has a higher classification accuracy
and model sensitivity than that of the BPNN model and SVM model.

Precision =
TP

TP + FP
× 100% (9)

Recall =
TP

TP + FN
× 100% (10)

F1− Score =
2× Precision× Accuracy

Precision + Accuracy
× 100% (11)

where Accuracy = TP+TN
TP+FP+TN+FN . TP is the abbreviation of True Positive. It represents

that the actual results and predicted results are both positive. FP is the abbreviation of
False Positive. It represents that the actual result is opposite to the predicted result. TN is
the abbreviation of True Negative. It represents that the actual results and predicted results
are both negative. FN is the abbreviation of False Negative. It represents that the actual
result is opposite to the predicted result.
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Table 13. Performance evaluation results of classification models.

Method Precision (%) Recall (%) F1-Score (%)

LVQ 81.93 81.94 81.93
BPNN 69.60 69.10 69.35
SVM 72.87 72.92 72.89

The ROC curve is a comprehensive indicator, which reflects the continuous variables
of sensitivity and specificity. The receiver operating characteristics curves of the LVQ,
BPNN, and SVM models are described in Figure 17. Three curves are located at the top left
of the 45◦ diagonal and deviate from the 45◦ diagonal. Three models have good recognition
performance. The curve of the LVQ model is closer to (0,1) point than that of the SVM
model and BPNN model, which indicates that the performance of the LVQ model is better.
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The precision rate, recall value, F1 index, and ROC curve results of the LVQ model,
SVM model, and BPNN model show that the pilots’ fatigue state identification model based
on the LVQ model is reasonable, stable, and effective. The pilots’ fatigue state identification
model based on LVQ in this paper has high accuracy and reliability.

Based on the above research, in order to build the pilots’ fatigue state identification
model, the pilot is selected as the participant, the airfield traffic pattern is the simulated
flight task, and the wireless wearable ECG device is the data acquisition device. The
simulated flight experiment has less interference in the pilot’s operation, and the cost of
data acquisition is low. Hence, the obtained ECG data are of great significance for the study
of pilots’ fatigue state identification and the trends of variation in ECG signal indicators
under different fatigue states.

In this paper, the indexes that can characterize pilots’ fatigue state are obtained through
the Friedman test. The characteristics of each indicator are extracted based on the PCA.
Based on the extracted features, the LVQ is adopted to establish pilots’ fatigue state identi-
fication model. After model evaluation and verification, the modeling process is scientific
and reasonable, which has reference significance for pilots’ fatigue state identification.

Due to the limitation of time and energy, this paper only divides the pilots’ fatigue
state into non-fatigue, mild fatigue, and fatigue. In future research, the pilots’ fatigue state
could be further refined and identified. This paper only compares the data using the three
fatigue states and does not explore the change rule of each index in each fatigue state in
detail. Moreover, the change of each indicator in each fatigue state could be explored. Here,
the participants selected for the experiment are all male pilots, and female pilots could
be recruited for the experiment in future research to expand the research scope. In this
paper, 30 pilots were recruited as the participants of the flight simulation experiment. In
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future studies, the number of participants could be increased, and the reliability could be
improved by increasing the sample size.

5. Conclusions

In this paper, a wearable wireless ECG device was adopted to obtain pilots’ ECG
data in a flight simulation experiment, and 1440 valid samples were selected. Then, the
Friedman test was adopted to filter out the characteristic indexes that reflect the pilots’
fatigue state from the time domain, frequency domain, and non-linear characteristics in the
training set. AVNN, AVHR, RMSSD, and PNN50 are the time domain indexes; LFnorm,
HFnorm, and LF/HF are the frequency domain indexes; and SD1, A++, and B++ are the
non-linear indexes. These selected characteristic indexes have statistical differences in
non-fatigue, mild fatigue, and fatigue states, which could be used to quantitatively identify
the pilots’ fatigue states. This lays a foundation for more scholars to identify pilots’ fatigue
state based on ECG signals and study pilots’ fatigue mechanisms. In order to reduce
the correlation between feature indexes and improve the speed and accuracy of training,
PCA was utilized to extract features from the selected feature indexes. Additionally,
five principal components were extracted from 10 feature indexes to establish a feature
parameter set. The characteristic parameter set was used as the input of the LVQ model
to train the pilots’ fatigue state identification model. The recognition accuracy of the LVQ
model was 81.94%, which is 12.84% and 9.02% higher than that of the BPNN and SVM
models, respectively. Therefore, the pilots’ fatigue state identification model based on the
LVQ model established in this paper has a high identification accuracy. The present results
provide a theoretical basis for reducing flight accidents caused by pilot fatigue. At the same
time, the results also provide a practical reference for pilot fatigue risk management and
the development of intelligent aircraft autopilot systems.
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