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Abstract

Background: The advent of gene expression profiling was expected to dramatically improve cancer diagnosis.
However, despite intensive efforts and several successful examples, the development of profile-based diagnostic
systems remains a difficult task. In the present work, we established a method to convert molecular classifiers
based on adaptor-tagged competitive PCR (ATAC-PCR) (with a data format that is similar to that of microarrays)
into classifiers based on real-time PCR.

Methods: Previously, we constructed a prognosis predictor for glioma using gene expression data obtained by
ATAC-PCR, a high-throughput reverse-transcription PCR technique. The analysis of gene expression data obtained
by ATAC-PCR is similar to the analysis of data from two-colour microarrays. The prognosis predictor was a linear
classifier based on the first principal component (PC1) score, a weighted summation of the expression values of
58 genes. In the present study, we employed the delta-delta Ct method for measurement by real-time PCR. The
predictor was converted to a Ct value-based predictor using linear regression.

Results: We selected UBL5 as the reference gene from the group of genes with expression patterns that were
most similar to the median expression level from the previous profiling study. The number of diagnostic genes was
reduced to 27 without affecting the performance of the prognosis predictor. PC1 scores calculated from the data
obtained by real-time PCR showed a high linear correlation (r = 0.94) with those obtained by ATAC-PCR. The
correlation for individual gene expression patterns (r = 043 to 0.91) was smaller than for PC1 scores, suggesting
that errors of measurement were likely cancelled out during the weighted summation of the expression values.
The classification of a test set (n = 36) by the new predictor was more accurate than histopathological diagnosis
(log rank p-values, 0.023 and 0.137, respectively) for predicting prognosis.

Conclusion: We successfully converted a molecular classifier obtained by ATAC-PCR into a Ct value-based
predictor. Our conversion procedure should also be applicable to linear classifiers obtained from microarray data.
Because errors in measurement are likely to be cancelled out during the calculation, the conversion of individual
gene expression is not an appropriate procedure. The predictor for gliomas is still in the preliminary stages of
development and needs analytical clinical validation and clinical utility studies.
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Background

Since the inception of gene expression profiling,
researchers have sought to use this technology to
improve the diagnosis of diseases, especially cancers.
Recently, MammaPrint [1,2] and Oncotype DX [3,4]
were established as diagnostic tests based on multiple
gene assays for breast cancer. Despite the success of
these diagnostic tests, the development of assays for
gene expression profiling is still difficult. In particular,
there have been few examples of microarray-based diag-
nostic tests, although microarrays are frequently used as
a discovery tool. One reason for the paucity of microar-
ray-based diagnostic tests is that DNA microarrays
require considerable effort to achieve the level of techni-
cal refinement necessary for diagnostic practice. On the
contrary, real-time PCR is stable and robust and is fre-
quently used for diagnosis. Because there are many stu-
dies describing the use of microarrays at the discovery
phase, a convenient method to convert a microarray-
based algorithm into one based on real-time PCR would
help to accelerate the development of diagnostic systems
based on gene expression profiling.

Previously, we performed gene expression profiling of
152 glioma tissues [5] with a high-throughput quantita-
tive PCR technique called adaptor-tagged competitive
PCR (ATAC-PCR) [6,7]. ATAC-PCR is an advanced
version of quantitative competitive PCR characterised by
the addition of unique adaptors for different cDNAs.
A single ATAC-PCR reaction includes five cDNA sam-
ples and two different amounts of a control cDNA sam-
ple with different adaptor tags, and it measures the
relative expression of the samples against that of the
control. We discovered a correlation between gene
expression profiles and glioma prognosis, and we devel-
oped a prognosis predictor based on a 58-gene profile
[5]. The performance of the predictor based on ATAC-
PCR was cross-validated with a learning set of 110
glioma samples and validated with a test set of 42 sam-
ples. Cox regression analysis revealed that the correla-
tion between the predictor and the prognosis was
superior to that of histological classification and was an
independent risk factor. The current prognostic stan-
dard, the histopathological classification system, is lim-
ited in its diagnostic accuracy, and prognoses range
widely even within the same grade. Diagnosis depends
on individual pathologists, and the results are often dis-
cordant among multiple pathologists [8]. The perfor-
mance of the prognosis predictor based on ATAC-PCR
indicated that this predictor held promise for the sup-
port of conventional histopathological classification. Our
classifier is also expected to bring benefits in the clinical
setting for personalized management of glioma patients.
For example, various molecular-targeted drugs have
recently been evaluated in clinical trials for gliomas.
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These novel treatments should be considered for
tumours that are resistant to conventional chemora-
diotherapy. Yet, it is important to avoid using such a
therapy for tumours that are sensitive to conventional
chemoradiotherapy, based on the cost and adverse
effects associated with this technique. Considering ele-
vated expression of angiogenesis-related genes in the
poor prognosis group, [5], our classifier might be useful
for selection of patients for anti-VGEF agents.

In the present study, we converted the conventional
predictor to one based on real-time PCR. This new pre-
dictor is based on the delta-delta Ct method [9] and
requires only the measurement of the cycle threshold
(Ct) of diagnostic genes. For the conversion, we first
identified a reference gene for real-time PCR. Then we
constructed the parameters for the conversion formula
using data obtained from the learning set, which was
used to construct the original classifier. Finally, the new
classifier was validated with a test set. Because there is a
linear correlation between microarray data and Ct values
[10], the conversion process could be applicable for clas-
sifiers based on microarrays.

Methods

Patients and tumour samples

Specimens excised from 80 patients with high-grade
glioma (69 cases of glioblastoma and 11 cases of ana-
plastic astrocytoma) at Kyoto University Hospital or
nearby regional hospitals between 1998 and 2008 were
stored at -70°C until use. All histological diagnoses were
performed in the Kyoto University Pathology Unit
according to the 2000 or 2007 WHO classifications.

Sixty of the 80 samples were recruited from those
used in the previous study [5]. They were collected from
patients enrolled in a phase II clinical trial using nimus-
tine, carboplatin, vincristine, and IFN-f with radiother-
apy for high-grade gliomas (the KNOG study) [11]. The
remaining 20 patients were treated with temozolomide
and radiotherapy. The learning set included 44 samples
(43 glioblastoma, 1 anaplastic astrocytoma) from the
KNOG study. Recurrence was detected in 36 of the 44
patients and their median progression-free survival was
7 months. The test set included 36 samples (26 glioblas-
toma and 10 astrocytoma). Twenty-three of the 36
patients showed tumour progression, and their median
progression-free survival was 8 months.

Institutional approval for this study was obtained from
the Institutional Review Board of Kyoto University, and
informed consent was obtained from all patients prior
to surgery.

RNA extraction and cDNA synthesis
Total RNA was isolated from 100 mg of the tumour
specimen using TRIzol (Invitrogen, Carlsbad, CA, USA)



Kawarazaki et al. BMC Medical Genomics 2010, 3:52
http://www.biomedcentral.com/1755-8794/3/52

according to the manufacturer’s instructions. RNA con-
centrations and A260/A280 ratios were measured using
a NanoDrop ND-1000 (NanoDrop Technologies, Mon-
tchanin, DE, USA). Only RNA samples with A260/A280
ratios above 1.90 were included in the study. RNA
integrity was confirmed by analysis with the Agilent
2100 bioanalyser.

After DNase treatment, 5 pg of total RNA in 10 ul of
distilled water was incubated with 1 ul of oligo(dT) pri-
mer for 5 min at 70°C. Total RNA was reverse tran-
scribed in a total volume of 20 ul containing 4 pl of 5x
first strand buffer, 1 pl of RNase inhibitor (Invitrogen),
2 ul of 0.1 M DTT, 0.5 ul of 20 mM dNTP and 1 pl of
SuperScript III Reverse Transcriptase (Invitrogen). The
samples were incubated at 45°C for 1 hr. Next, a reac-
tion mixture (total volume of 103 pl) containing 10 pl
of 10x Escherichia coli (E. coli) ligation buffer, 2 ul of 20
mM dNTPs, 2 pl of 0.1 M DTT, 2 pul of E. coli ligase
(Invitrogen), 1 pl of RNase H (Invitrogen), 4 ul of E. coli
DNA polymerase (Invitrogen) and 82 ul of nuclease-free
water was added. The resulting reaction mixture was
incubated at 16°C for 120 min and then at 70°C for 20
min. The reaction mixture was then diluted five-fold
with nuclease-free water and stored at -30°C until RT-
PCR analysis.

Primer design and optimisation

Gene sequences were retrieved using the UCSC Genome
Bioinformatics http://genome.ucsc.edu/ program, and
primers sequences were designed using Primer3Plus
http://www.bioinformatics.nl/cgi-bin/primer3plus/pri-
mer3plus.cgi. Specific interactions between primers and
target genes were confirmed using either NCBI BLAST
http://blast.ncbi.nlm.nih.gov/Blast.cgi) or BlastView
(http://uswest.ensembl.org/index.html. The specificity of
the expected RT-PCR products was determined based
on melting curve analyses of reactions with glioma
c¢DNA and human c¢DNA libraries. The product-specific
melting curves showed only single peaks and no primer-
dimer peaks or artefacts.

Quantitative real-time reverse transcription-PCR

Quantitative PCR amplification assays were performed
by a SYBR Green fluorescent assay using the ABI
PRISM 7500 real-time PCR sequence detection system
(Applied Biosystems, Foster City, CA, USA). Reactions
were performed in a 96-well plate with 20-pul reaction
solutions containing SYBR Premix Ex Taq 11 (10 pl)
(Takara Bio., Inc., Japan), ROX reference dye II (0.4 pl),
10 uM forward and reverse primers (0.8 ul), 1 pl of
c¢DNA template, and nuclease-free water (7 pl). Cycling
conditions included an initial denaturation for 10 sec at
95°C, followed by 40 cycles of 5 sec at 95°C and 34 sec
at 60°C. For determination of the reference gene, a
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standard curve was generated for each assay using seven
serial dilutions of an amplified human brain cDNA
library ranging from 20 ng to 20 fg.

The delta-delta Ct method was employed for the diag-
nostic assays. Ct values were calculated following the
manufacturer’s instructions (Applied Biosystems, Foster
City, CA, USA), using UBLS5 as the internal reference.
The diagnostic genes fulfilled the criterion that the
absolute value of the slope of the log input amount vs.
ACt should be < 0.1.

Data analysis

Thirty primers for the selected gene candidates and for
the internal and negative controls were added in tripli-
cate to 96-well plates, and the samples were measured
using one plate per sample. The negative controls
showed no detectable amplification or background levels
of amplification (Ct > 37, compared with 16 to 31 with
sample DNAs). The mean and the standard deviation of
differences of Ct values between duplicates were 0.060
and 0.086, respectively. Sequence detection software
(Applied Biosystems) results were exported as tab-
delimited text files and imported into Microsoft Excel
for further analysis.

Statistical data processing was performed using Excel
and SPSS, and Pearson’s correlation coefficients (r) were
computed for each cross-platform comparison. Progres-
sion-free survival was measured from the day of surgery
to the time of the first event of progression or to the
last day of follow-up, according to the Kaplan-Meier
method. Curves were compared using the log-rank test.

Results and Discussion

Selection of the reference gene

We chose the delta-delta Ct method [9] for real-time
PCR measurement rather than using calibration curves.
Although the delta-delta Ct method has stricter require-
ments, it can substantially reduce the number of PCR
reactions.

The handling of gene expression data obtained by
ATAC-PCR was similar to the handling of data from
two-colour microarrays [12]. In both methods, the rela-
tive gene expression level compared to a control sample
is measured and used for statistical analysis after data
normalisation. In data normalisation of ATAC-PCR,
each expression value was divided by the median of
gene expression and then logarithmically converted. To
choose the reference gene candidates whose expression
was least changed between gliomas, we selected twelve
genes exhibiting expression patterns that were most
similar to the median gene expression pattern from
3,456 genes in the previous gene expression data matrix
of 152 gliomas [5]. These twelve genes were expected to
produce minimal variations in expression between
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glioma samples. To select the best reference gene, the
expression levels of the twelve genes were measured in
32 glioma samples using real-time PCR. The results are
shown in Figure 1. Gene expression values are influ-
enced by the amount of mRNA and the random varia-
tion caused by biological and experimental factors [13].
Because variation in the amount of mRNA was common
to all of the genes, the difference in measurement was
primarily due to the latter. The measurement of UBL5
had the smallest variation; therefore, we selected it as
the reference gene. Although the use of multiple refer-
ence genes is recommended by several reports [13,14],
we chose a single reference gene for this case because
the use of multiple reference genes would increase var-
iations in measurement.

The first prognosis predictor developed for gliomas
was based on the expression of 58 genes [5]. For the
delta-delta Ct method, the amplification efficiency of a
gene must be approximately equal to that of the refer-
ence gene. We performed real-time PCR amplification
and fulfilled this criterion for 30 of the 58 genes. The
original prognosis predictor classified gliomas into good
and poor prognosis groups. The diagnostic scores calcu-
lated with the original 58 genes and the 30 genes chosen
in this study had a high correlation (r = 0.95), and there
was no difference between the classification results in
the test set and those in the previous study [5]. There-
fore, we decided to proceed with the 30 genes. A list of
the genes and primer sequences is shown in Table 1.

Strategy for conversion

In our previous report of gene expression profiling of
gliomas [5], we measured the relative expression levels
against a control sample. Because the Ct value is inver-
sely proportional to the amount of target nucleic acid
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Figure 1 Expression levels of control gene candidates. Expression
levels in 32 glioma tissues were measured and plotted for each gene.
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present in the sample, the relative expression level of
gene i of sample x, ery(x), is described as follows:

er,(x) = (1 + E) (Cul-Cu(e)

Here, Ct;(x) and Ct;(c) are the Ct values of gene i of
sample x and of the control sample, respectively. “1+E*
represents the amplification efficiency of the real-time
PCR, where 0 < E < 1. The log-normalised gene expres-
sion, en,(x), is obtained by the following conversion:

en;(x) = log(er;(x) / eryps5(x))
=—log(1 + E) * (Ct;(x) — Ctyp5(x))
+log(1 + E) * (Ct;(c) — Ctypy5(c))

Linear classifiers are most commonly used for molecu-
lar classification by gene expression profiles; an example
is MammaPrint [2]. With a linear classifier, the diagnos-
tic score is the sum of the normalised expression values
multiplied by a coefficient determined from the learning
data set. The diagnostic score of the prognosis predictor,
the PC1 score, is described with Ct values as follows:

n

PCl(x) = Zui * en;(x)

i=1

=—log(1+E)* ) a; “(Ct;(x) = Ctypys())
i=1
+log(1+E)* )" a; *(Ct;(c) - Cypys(c))

i=1

Here, PCI(x) is the PC1 score of sample x. “a,“ is a
constant determined from the learning set in the pre-
vious study [5]. “#“ is the number of diagnostic genes.
PCI(x) is alternatively described as follows, defining
PC1I,,(x) as the PC1 score of sample x measured by real-

time PCR.
PC1(x) = By * PC1,,(x) + By

Here, PC1,(x), B, and B, are as follows:

PC1,(x) = 2“1 #Ct;(x) — Ctyprs(x))
i=1
B, =-log(1+E)
Bo =log(1+E)* Y a; #(Ct(¢) - Cryypis(c))

i=1

Because the PCI(x) value of the learning set was
already determined, f3; and By can be determined by lin-
ear regression through measurement of Ct;(x) and
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Table 1 Primer sequences of the diagnostic genes
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Gene Symbol Forward Reverse
IGFBP2 GCACATCCCCAACTGTGACA TTCAGAGACATCTTGCACTGTTTG
VMP1 TGTCTTCTGTTGGGCTTGGAA TGAGGCTATATGTGGACCCAGATA
MSN GCCCCGGACTTCGTCTTC AGGCCAAGATCCGCTTGTTA
TIMP1 CACAGACGGCCTTCTGCAAT TGGTGTCCCCACGAACTTG
LGALST CTCCTGACGCTAAGAGCTTCGT GAAGTGCAGGCACAGGTTGTT
D63 CCCGAAAAACAACCACACTGC GATGAGGAGGCTGAGGAGACC
NES CAACAGCGACGGAGGTCTC CCTCTACGCTCTCTTCTTTGAGT
CLICT TGTTCATGGTACTGTGGCTCAAG GTCCGCCTTTTGGTGTCAAC
TNC ACCACAATGGCAGATCCTTC GCCTGCCTTCAAGATTTCTG
TAGLN2 CCTCTGGGAAGGAAAGAACATG AGCCCACCCAGATTCATCAG
HES6 GACCAATGCCAGCCAGAG GCAAGCCATCCATCAGAGG
VEGF CCAAGGCCAGCACATAGGA TCTTTGGTCTGCATTCACATTTG
VIM TCCAAACTTTTCCTCCCTGAAC GGGTATCAACCAGAGGGAGTGA
LDHA CTGGGAGTTCACCCATTAAGCT CAGGCACACTGGAATCTCCAT
RPIP8 CCCCCGTGGTCATCGA GGTAGTCGTAGCTCTGCGTGAA
IFITM3 GGCTTCATAGCATTCGCCTACT TCACGTCGCCAACCATCTT
PPIB GGAGAGAAAGGATTTGGCTACAAA CCTGGATCATGAAGTCCTTGATT
ALDOC CGTCCGAACCATCCAGGAT CCACACCCTTGTCAACCTTGAT
ZYX CAGCAGCTAATGCAGGACATG CAGAGTTCGTTGACAGCCACAT
UPAR GTGTGTGGGTTAGACTTGTGCAA AGGTAACGGCTTCGGGAATAG
LAMB2 CCACTGAAGGCGAGGTCATC CCCGTAGGTTGGTGATCTTCAA
RTNT CCGCATCTACAAGTCTGTTTTACAA AAGCTCCAAGTAGGCCTTGAAAG
HMOX1 GGCAGAGAATGCTGAGTTCATG AGGCCATCACCAGCTTGAAG
GM2A GTCCCCCTGAGTTCTCCTCT GCTCTTGGGCAGTGAGTAGG
S100A10 TGGAAAAGGAGTTCCCTGGAT TACACTGGTCCAGGTCCTTCATT
BRSK2 GGAGGAGATGTCCAACCTGACA AAGTTCCCAAACCAGGACTTCTT
MRCL3 AACAGAGATGGTTTCATCGACAAG GTTGGATTCTTCCCCAATGAAG
GPX1 GCGGGGCAAGGTACTACTTA CTCTTCGTTCTTGGCGTTCT
SOD2 AATCAGGATCCACTGCAAGGA CGTGCTCCCACACATCAATC
RHOC AATAAGAAGGACCTGAGGCAAGAC ACGGGCTCCTGCTTCATCT
UBL5 AGCTGATTGCAGCCCAAACT TCGTGTACCACTTCTTCAGGACAA

Ctyprs(x) of the corresponding samples. The conversion
formula would then be validated with the test set. It
should be noted that this method does not require the
use of a control sample (i.e., measurement of Ct;(c) and
Ctuprs(c)).

Construction of the prognosis predictor based on real-
time PCR

Using 44 samples from the learning set, we determined
PC1I,,(x) by measuring the Ct values. As expected, there
was a high linear correlation between PCI(x) and PCI,,
(x) (r = 0.94), as shown in Figure 2.

We then measured the correlation in individual gene
expression (Table 2) between the ATAC-PCR data (log-
normalised) and the ACt values (ACt(x) = Ct;(x) - Ctyprs
(x)). The correlation for individual genes was less robust
than that for the PC1 score: the correlation coefficients
ranged from 0.6 to 0.9. These results suggest that the
PC1 score could eliminate errors in measurement

through the weighted averaging of gene expression.
Because three genes (VMPI, TNC and RHOC) exhibited
no correlation, we eliminated them from the diagnostic
gene set. Because ATAC-PCR uses a single gene-specific
primer designed for the 3’ end of the mRNA, it may be
less specific than conventional PCR using two primers.
The absence of correlation may be due to the amplifica-
tion of different genetic fragments or splicing variants.
The parameters of the conversion formula were deter-
mined by linear regression (8, -0.37: By, -0.002).

Specific features of the expression of each gene may
be obtained from the regression coefficient and inter-
cept. Because the ATAC-PCR data were converted to a
common logarithm during normalisation, the regression
coefficient should be somewhere between zero and 0.30
(= log102). In reality, the values ranged from 0.2 to 0.43,
and ten genes demonstrated values exceeding 0.30.
These results suggest a substantial degree of discrepancy
between measurements obtained with ATAC-PCR and
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Figure 2 The correlation of PC1 scores obtained using ATAC-
PCR and real-time PCR. Horizontal axis, PC1 score obtained with
real-time PCR; vertical axis, PC1 score obtained with ATAC-PCR.

those determined using real-time PCR. The intercept
indicates the general expression level of the gene; high
intercept values indicate low levels of gene expression.
With the exception of VMPI, the expression levels of
the diagnostic genes were within two orders of magni-
tude of each other. The expression level of UBLS5 was in
the middle range of all of the diagnostic genes.

Validation of the converted predictor

The converted predictor with 27 genes was validated
with an additional sample set consisting of 16 samples
from the previous test set [5] and 20 new samples. The
samples were from anaplastic astrocytoma (grade III) or
glioblastoma (grade IV). The PC1 score (PCi(x)) of each
sample was calculated using ACt values measured using
real-time PCR. The samples were classified into two
prognosis groups with the threshold value set at zero,
which was the threshold used in our previous study [5].
The performance of the classification was compared to
conventional histopathological diagnosis. To have clini-
cal utility, the predictor must have a classification ability
superior to that of histopathological classification. The
results of the Kaplan-Meier plot from the 36 samples
revealed that the molecular classification was superior to
histopathological diagnosis (log rank p-values, 0.023 and
0.137, respectively) (Figures 3A, B). The hazard ratio
was 2.70 (95% confidence interval, 1.05-6.92) (p = 0.039)
for molecular classification. No significant hazard ratio
was obtained with histopathology (p = 0.16). We also
noted that the classification results for the 16 samples
from the original test set were the same as those pre-
viously obtained by ATAC-PCR. Thus, the new
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Table 2 Parameters for correlation between ATAC-PCR
and real time PCR

gene correlation regression intercept
name coefficient coefficient
IGFBP2 0.90 027 032
VMP1 0.04 0.05 287
MSN 081 036 1.00
TIMP1 092 0.30 -0.31
LGALST 0.85 0.36 -0.56
CDbe3 051 0.20 -0.52
NES 0.69 0.26 0.69
CLIC 0.86 043 034
TNC 0.04 -0.02 -0.63
TAGLN2 0.66 0.34 013
HES6 0.77 0.29 0.60
VEGF 0.78 0.25 -0.11
VIM 0.77 030 -0.52
LDHA 0.73 0.33 -0.12
RPIP8 0.81 0.26 071
IFITM3 0.85 0.38 -0.75
PPIB 0.60 0.29 -0.10
ALDOC 0.73 0.28 -0.09
ZYX 0.68 036 054
UPAR 0.84 0.36 148
LAMB2 043 023 0.62
RTN1 0.82 0.29 0.66
HMOX1 087 030 062
GM2A 0.51 0.24 0.62
S100A10 0.79 0.28 -0.18
BRSK2 0.68 022 121
MRCL3 0.73 0.30 0.38
GPX1 0.70 033 -041
SOD2 0.74 031 023
RHOC 0.11 -0.08 -0.06

predictor based on real-time PCR is comparable to the
previous predictor based on ATAC-PCR.

Further considerations

In the delta-delta Ct method, the selection of the reference
gene is the most important technical point. It has been fre-
quently noted that housekeeping genes are not necessarily
adequate for use as reference genes [14,15] because of
their variable expression levels. Although it is possible to
use a combination of housekeeping genes [14], a reference
gene or a set of reference genes selected from the expres-
sion data matrix of the target tissues is more desirable
because the measurement of other tissues is not per-
formed in diagnostic practice. We selected a reference
gene from a set of genes exhibiting expression patterns
that were similar to the median gene expression pattern
for the glioma data. Alternative methods to select refer-
ence genes should also be applicable to the conversion
method described here [13,16].
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Figure 3 Kaplan-Meier analysis of grade lll and grade IV
glioma patients stratified either by (A) PC1 scores from real-
time PCR data or by (B) histopathological diagnosis. Horizontal
axis, month after diagnosis; vertical axis, progression-free survival
probability. Blue lines, poor prognosis group (n = 20) (A) or grade IV
(n = 26) (B); red lines, good prognosis group (n = 16) (A) or grade
Il (n = 10) (B). Log rank p-values were 0.023 (PC1 score) and 0.137
(histopathology). Dotted lines indicate 95% confidence intervals.

In the present study, the original classifier was devel-
oped from gene expression data obtained by ATAC-
PCR. Our conversion method is based on the linear cor-
relation between gene expression profiling data and ACt
values. A linear correlation was observed between nor-
malised microarray data and ACt values regardless of
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the normalisation procedure [17]. Thus, our method
should also be applicable to linear classifiers obtained
using microarrays. As described above, the correlation
between diagnostic scores is higher than that between
individual genes. As demonstrated by diagnostic tests
for breast cancer, the scores calculated from multiple
gene expression correlate with the biology (malignancy)
much better than individual gene expression, which
includes noise of biological and experimental origin.
The higher correlation of diagnostic scores between the
two PCR techniques is not surprising. This result sug-
gests that the conversion should be performed with the
diagnostic score; it is not appropriate to perform the
conversion at the level of individual gene expression.

It should be noted that validation experiments were
performed only for the conversion process and that the
predictor itself is in the preliminary stages of develop-
ment and still needs analytical clinical validation and
clinical utility studies. In particular, because the original
predictor may also be applicable for the prognosis pre-
diction of grade II gliomas [5], the future cohort should
include a large number of grade II gliomas. In grade II
and III glioma patients, the optimal timing of radiation
therapy is still controversial [18,19]. Precise risk assess-
ment, including the ability to predict possible malignant
transformation, may be useful for timing decisions and
is the most promising feature of the new classification
scheme.

Conclusions

We successfully converted a molecular classifier
obtained by ATAC-PCR into a Ct value-based classifier.
Our conversion procedure should also be applicable to
linear classifiers developed from microarray data.
Because errors in measurement are likely to be cancelled
out during the calculation, the conversion of individual
gene expression data is not an appropriate procedure.
The predictor for gliomas is still in the preliminary
stages of development and requires analytical clinical
validation and clinical utility studies.
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