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Abstract: Severe anaemia and invasive bacterial infections are common causes of childhood sickness
and death in sub-Saharan Africa. Accumulating evidence suggests that severely anaemic African
children may have a higher risk of invasive bacterial infections. However, the mechanisms underlying
this association remain poorly described. Severe anaemia is characterized by increased haemolysis,
erythropoietic drive, gut permeability, and disruption of immune regulatory systems. These pathways
are associated with dysregulation of iron homeostasis, including the downregulation of the hepatic
hormone hepcidin. Increased haemolysis and low hepcidin levels potentially increase plasma,
tissue and intracellular iron levels. Pathogenic bacteria require iron and/or haem to proliferate
and have evolved numerous strategies to acquire labile and protein-bound iron/haem. In this
review, we discuss how severe anaemia may mediate the risk of invasive bacterial infections through
dysregulation of hepcidin and/or iron homeostasis, and potential studies that could be conducted to
test this hypothesis.

Keywords: severe anaemia; bacteraemia; iron; hepcidin; Salmonella; E. coli; Staphylococcus; Haemophilus;
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1. Introduction

Child mortality due to preventable causes remains disproportionately high in sub-Saharan Africa [1].
Severe anaemia is prevalent in African children [2–4], and accounts for 6–28% of all hospital admissions
with case fatality rates of 4–10% [5–7]. The causes of severe anaemia are multiple, and often coexist,
including infections, haemoglobinopathies, and nutritional deficiencies [8,9]. At the same time, invasive
bacterial infections account for 6–15% of febrile hospital admissions with case fatality rates of 5–28% [10–13].
The commonest bacterial isolates observed in African children are Streptococcus pneumoniae, Staphylococcus
aureus, non-typhoidal Salmonellae (NTS), Haemophilus influenzae, and Escherichia coli [10–12].

Severe anaemia aetiologies can be grouped into hyporegenerative (anaemias due to iron and other
nutritional deficiencies, pure red cell aplasia, anaemia of inflammation, aplastic anaemia, erythropoietin
underproduction, and marrow infiltration), and regenerative (anaemias due to haemolysis, immune
dysregulation, haemorrhage, and non-immune factors (haemoglobinopathies, drugs, microangiopathy,
and hypersplenism)) [14]. Absolute iron deficiency (defined as low serum iron, low ferritin, and elevated
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transferrin iron binding capacity) results from blood loss, increased physiological demands of iron,
intake of staple foods with low iron bioavailability, and malabsorption. The diagnosis of iron deficiency
anaemia is usually based on observation of microcytic red cell features, although haemoglobin E/C and
alpha/beta thalassaemia need to be ruled out. Iron deficiency is a common cause of anaemia in
sub-Saharan Africa [4], but is less frequently observed in children with severe anaemia [8,9,15].
Deficiencies of vitamin A and vitamin B12 (cobalamin) are also common in African children [9], and are
associated with severe anaemia [9,15]. In sickle cell disease, anaemia is secondary to haemoglobin
polymerization leading to red blood cell deformation and lysis. Sickle cell disease may also induce iron
deficiency anaemia through increased iron utilization to replace damaged red blood cells or urinary
iron loss [16]. Anaemia of inflammation (low serum iron and normal/high ferritin levels) is found in
patients with infections (parasitic, bacterial, viral, and fungal), cancer, or autoimmune disorders [14,17],
and is thought to be induced by the hepatic iron regulatory hormone hepcidin [18]. While persistently
raised hepcidin levels may protect against invading pathogens [19,20], enhanced iron sequestration
may increase susceptibility to intracellular infections [21]. Regenerative anaemias are characterized
by high reticulocyte counts due to increased haemolysis or haemorrhage [14]. In sub-Saharan Africa,
little is known about the putative aetiologies of severe anaemia from a public health perspective.
Nonetheless, most of these aetiologies are important, often coexist in a single patient [9,15], and may
contribute to a risk of infection either individually or synergistically.

Epidemiological studies have found strong associations between severe anaemia and invasive
bacterial infections [9,22,23], in particular with NTS bacteraemia [24–26]. Individually, some of the
common causes of severe anaemia have been associated with an increased risk of invasive
bacterial infections in African children including severe malaria [27–29], malnutrition [11],
human immunodeficiency virus (HIV) [11,27], and sickle cell disease [30,31]. This may be due to
several interlinking pathways including increased haemolysis and erythropoietic drive, immune
dysfunction, and gut permeability ( Figure 1). Chronic haemolysis, haemolytic crisis, and increased
erythrophagocytosis are common features of haemoglobinopathies and infections such as
malaria [16,32]. In murine models, severe anaemia caused by haemolytic mechanisms (chemical,
parasitic or antibody-mediated), but not by phlebotomy, increases susceptibility to invasive bacterial
infections [33–36]. The pathophysiology of haemolytic anaemia is complex. One critical feature is tissue
iron overload and increased serum iron that exceeds the transferrin binding capacity. Additionally,
the production of the hepatic iron-regulatory and antimicrobial hormone hepcidin is downregulated
during severe anaemia due to the action of erythroferrone (ERFE) [37–40].
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Figure 1. The link between severe anaemia and bacteraemia. Severe anaemia may increase the risk of
invasive bacterial infections through several interlinking pathways including increased erythropoietic drive,
haemolysis, immune dysfunction, and gut permeability. In both haemolytic and non-haemolytic severe
anaemia, elevated erythropoietic drive increases erythroferrone levels, reducing hepcidin, and altering
macrophage iron sequestration. This increases iron availability for invading bacterial pathogens. Haemolysis
increases the levels of non-transferrin-bound iron, free haem, and haem oxygenase-1 (HO-1), which are
associated with immune dysfunction and dysregulation of iron homeostasis.
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In this review, we outline the hypothesis that severe anaemia contributes to the burden of
invasive bacterial infections in African children through the disruption of iron homeostasis and/or
iron-regulatory proteins.

2. The Severe Anaemia—Bacteraemia Hypothesis

We hypothesize that iron dysregulation is at the centre of the association between severe anaemia
and invasive bacterial infections. Iron is an essential micronutrient for all living organisms. The unique
ability of iron to serve as an electron donor and acceptor renders it critical for various cellular and
immune processes including nucleic acid synthesis, cellular proliferation, mitochondrial respiration,
and generation of microbicidal reactive oxygen species (ROS) [41]. Nonetheless, excessive iron is
toxic because harmful hydroxyl radicals are generated through the Fenton reaction that can dampen
the effector functions of mononuclear cells [41]. Due to its toxicity and biological significance,
iron homeostasis is tightly regulated. In circulation, the net iron concentration is maintained through
efficient macrophage-recycling of iron from senescent or damaged red blood cells, and the effective
use of iron in the bone marrow for erythropoiesis. Most intracellular iron is complexed to haem or
the iron-storage protein ferritin, while extracellular iron is bound to high-affinity chaperone proteins
including transferrin, haptoglobin, hemopexin, lipocalin-2, and lactoferrin. The hepatic hormone
hepcidin is the master iron regulator, and maintains iron homeostasis by controlling the absorption of
dietary iron, release of iron from storage cells, and sequestration of recycled iron in macrophages [42].
Infections by extracellular pathogens result in cellular iron import via various receptors including
those of transferrin, lipocalin-2, haem-haemopexin (CD91), and haemoglobin-haptoglobin (CD163)
complexes. Elevated hepcidin levels further ensure that iron is maintained intracellularly by degrading
the sole iron exporter, ferroportin [43]. The reduced availability of iron in plasma “starves” invading
pathogens and protects against extracellular infection. Low hepcidin levels, observed during severe
anaemia [37–40], may undermine this nutritional immunity. Intracellular infections, on the other hand,
are associated with reduction in cellular haem-iron content and rely on suppression of iron import
into macrophages and/or increased iron export out of cells. An additional defence strategy involves
iron export out of phagolysosomes, such as the Salmonella-containing vacuole (SCV), using the natural
resistance-associated macrophage protein 1 (Nramp1). Concomitant infections that promote iron
sequestration into macrophages may disrupt these iron regulation strategies [21,35], and predispose
African children with severe anaemia to an increased risk of intracellular bacterial infections.

Although iron deficiency is common in sub-Saharan Africa [4], epidemiological studies have
found either no association between iron deficiency and severe anaemia [8], or that iron deficient
children living in areas of very high infectious burden are less likely to be severely anaemic [9,44].
Infections and haemoglobinopathies are strongly associated with severe anaemia [7,9], and malaria
may be the commonest cause of severe anaemia among children in sub-Saharan Africa [7,45–47].
The link between infections, haemoglobinopathies, and iron deficiency is complex [30,32]. In African
children, iron deficiency has been reported to protect against infections such as malaria [48,49].
Unlike other aetiologies of severe anaemia [27–31], there is limited data on the risk of invasive bacterial
infections in children with absolute iron deficiency. While iron deficiency may restrict bacterial
growth due to limited iron availability [50], very low iron levels may also negatively impact immune
responses to invasive bacterial infections [51,52]. Iron is required for the development and effector
functions of immune cells, including proliferation of T cells and formation of ROS through the Fenton
reaction [51,53,54]. Severe anaemia and iron deficiency also strongly downregulate the antimicrobial
hormone hepcidin even during infection thus facilitating the release of iron from storage cells and
subsequent loss of hepcidin-induced “hypoferraemia of infection” and “nutritional immunity” [37,55].
In a population-based survey of Norwegian adults, iron deficiency was associated with increased risk
of bloodstream infections [56], possibly through immune dysregulation [57]. The study did not report
some measurements including haemoglobin, hepcidin, and ferritin levels, which limits how the data
may be interpreted in the context of severe anaemia. On the other hand, chronic infection may induce
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functional iron deficiency. Such “hypoferraemia of infection” is a host defence strategy to limit iron
availability from invading pathogens [58], and involves sustained production of proinflammatory
cytokines such as interferon-gamma (IFN-γ), tumour necrosis factor-alpha (TNF-α), interleukin (IL)-1
and IL-6 [17]. These proinflammatory cytokines can exacerbate existing severe anaemia by promoting
dyserythropoiesis, iron sequestration, and erythrophagocytosis [17,59]. IL-6 promotes the production of
hepcidin [18], and has been reported to be upregulated in children with severe malarial anaemia [60,61].
However, ERFE may have a stronger negative effect on hepcidin production during severe anaemia [39],
and low hepcidin levels have been observed in anaemic children and young women with concomitant
inflammation [37,62]. Whether and how IL-6 or other proinflammatory cytokines may increase iron
sequestration independently of hepcidin in severely anaemic children remain unknown.

The tight junctions between gut epithelial cells form a barrier that is normally impermeable to
enteric pathogens. However, African children with severe anaemia have a high risk of bacteraemia
due to enteric organisms, particularly NTS and E. coli [23–26], and this has been observed in severely
anaemic children generally [9] and in those with underlying sickle cell disease [30], malaria [27,63],
HIV [27,64], and malnutrition [65,66]. Severe anaemia may promote gut permeability through
persistent intestinal inflammation, immune dysfunction, and gut dysbiosis (Figure 1). Children with
low haemoglobin levels and those receiving iron supplementation have been reported to have dysbiosis
of gut microbiota and increased presence of pathogenic bacteria in the gut [67–69]. An in vitro study
using enterocyte-like Caco-2 cells found increased invasiveness and survival of Salmonella enteritidis
when iron concentrations were increased as might be expected in acute haemolysis [70]. In model
studies, neonatal mice with severe anaemia had a persistent increase in intestinal permeability
and electron micrographs showed abnormalities of epithelial adherens junctions probably due to
destabilization of the E-cadherin mRNA [71] or decreased expression of the tight junction protein
zonula occludens-1 (ZO-1) [72]. Phlebotomy-induced severe anaemia was associated with increased
intestinal mucosal hypoxia and production of IFN-γ by intestinal macrophages, which may contribute
to increased gut permeability and development of necrotizing enterocolitis [72]. Depletion of intestinal
macrophages ablated the effects of severe anaemia on the intestinal barrier activity. Whether other
immune cells, including neutrophils [73], also contribute to necrotizing enterocolitis remains unknown.
Gut inflammation may also directly induce dysbiosis, through the actions of ROS, calprotectin, and other
inflammatory mediators [74–76]. Further studies are required to elucidate the precise mechanisms of
gut dysbiosis during severe anaemia, inflammation-mediated gut permeability, and how this influences
the development of systemic infections.

Severe anaemia may also promote invasive bacterial infections through modulation of immune
responses. Protection against invasive bacterial infection relies on a coordinated and regulated
innate and adaptive immune response. In the initial stages of infection, local macrophages
engulf and destroy the invading pathogens, and produce cytokines and chemokines to induce
an inflammatory response. Monocytes and neutrophils are rapidly recruited to the site of infection.
These cells destroy phagocytosed organisms effectively using the NADPH oxidase-dependent ROS
production [77,78]. Neutrophils can also destroy extracellular organisms through degranulation,
releasing of neutrophil-extracellular traps (NETs), and/or production of ROS [77,79]. Severe anaemia
due to iron deficiency may promote impaired development and apoptosis of immune cells [51,53,54],
including neutrophil hypersegmentation [80] and impaired neutrophil/monocyte oxidative burst [81,82].
There is limited clinical research regarding the effect of severe anaemia on white blood cell differential
count. In some case reports, iron deficiency anaemia has been associated with neutropenia [83,84].
The effects on neutrophils are supported by murine models of severe malarial anaemia, which reported
reduced neutrophil influx and lower proinflammatory cytokine (IL-17 and IFN-γ) levels [85,86],
and higher levels of the anti-inflammatory cytokine IL-10 (IL-10) [34,87]. Elevated IL-6 levels have been
observed in field studies of children with severe malaria anaemia [60,61] and IL-6 may be upregulated
when hepcidin levels are low [88] further inhibiting neutrophil influx [89]. IL-6 is an important
checkpoint regulator of neutrophil trafficking and promotes clearance of neutrophils and recruitment
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of monocytes [89,90]. Downregulation of neutrophil responses may contribute to poor clearance of
invasive bacterial pathogens in children with severe anaemia.

Haemolytic anaemias induce sustained release of free haem and non-transferrin-bound iron
(NTBI), which may impair the recruitment and function of myeloid cells [33,91]. Free haem dampens
the ability of phagocytes to kill ingested bacteria, including through reduced neutrophil mobilisation
and oxygen burst activity [33,92]. Haem was also found to disrupt the actin cytoskeleton rearrangement,
which is crucial for recruitment and migration of phagocytic cells [91]. This may ultimately cause
immune paralysis and impede resistance to bacterial infections. The haem-catabolizing enzyme,
haem oxygenase-1 (HO-1), may also downregulate immune responses to bacterial infections. HO-1 is
normally expressed at low levels in most tissues but is highly induced by inflammation, hypoxia,
and other stimuli. In conditions with increased haemolysis, HO-1 is induced to break down elevated
free haem into equimolar amounts of carbon monoxide, biliverdin, and ferrous iron. Whilst its induction
reduces oxidative damage by free haem, HO-1 is associated with reduced elimination of pathogens
including systemic NTS, malaria, and leishmaniasis [33,92,93]. This may be a result of the direct
tolerogenic effects of HO-1 on the immune system [94], or due to the actions of its products. Biliverdin
and carbon monoxide are anti-inflammatory and scavenge radical molecules that kill intracellular
bacteria [92,95]. Moreover, intracellular iron inhibits the activity of IFN-γ in a dose-dependent
manner [96,97]. IFN-γ is central to the control of intracellular pathogens by inducing ROS generation
through the nitric oxide synthase pathway [98]. Inhibiting the expression of IFN-γ increases the
availability of iron for intracellular pathogens by increasing the uptake of transferrin-bound iron into
macrophages [99] and storage of iron in ferritin [100]. Iron may also inhibit the expression of other
inflammatory mediators including tumour-necrosis factor and nitric oxide synthase [101,102].

Invasive bacteria similarly require iron for their metabolic and pathogenic processes. As such,
bacteria have evolved multiple, and often redundant, strategies to acquire ferrous (Fe2+), ferric (Fe3),
and/or haem-containing proteins from their host. These strategies are varied depending on the lifestyle
(intracellular or extracellular) and preferred iron source (intracellular labile iron, protein-bound
iron/haem, or NTBI) of the organism and include: (1) siderophore or haemophore production,
(2) breakdown of ferroproteins including haem and haemoglobin, (3) ferric and ferrous iron uptake
systems, and (4) transferrin, lactoferrin, and ferritin receptors. Siderophores are high-affinity
low-molecular-weight iron chelators that can extract ferric iron from human chaperone proteins
including transferrin, and which are actively transported across bacterial membranes [103]. Severe
anaemia and haemolysis increase circulatory and tissue iron concentrations, making direct and
siderophore-mediated iron acquisition easier for invading pathogens (Figure 2). Additionally,
low hepcidin levels, observed during severe anaemia [37,39], promote increased dietary iron absorption,
and release of iron stored in macrophages [42].

Below we discuss iron acquisition strategies of the pathogenic bacteria that are commonly isolated
in blood cultures of African children [10–12], and how severe anaemia might influence iron availability
for these organisms.

2.1. Gram-Negative Organisms

Gram-negative bacteria have developed complex and redundant systems to acquire iron and/or
haem from a wide range of molecules. These include secretion of high-affinity siderophores or direct
binding of haem/haemoproteins, lactoferrin, or transferrin by substrate-specific receptors in the outer
membrane. The siderophore or iron-containing proteins are actively transported into the periplasmic
space, a process that is TonB dependent [104]. Subsequently, iron or haem is transported across the inner
membrane using binding-protein-dependent ATP-binding cassette (ABC) systems or the universal Feo
system. Gram-negative bacteria often have multiple iron transporters that utilize different substrates.
However, the preferred iron sources and transporter systems are highly bacteria specific.



Int. J. Mol. Sci. 2020, 21, 6976 6 of 18
Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 6 of 19 

 

 

Figure 2. The severe anaemia-bacteraemia hypothesis. Children with severe anaemia may have 
increased gut permeability promoting the invasion of pathogenic bacteria from the gut lumen (1); 
haemolysis, which increases the availability of haem and non-transferrin bound iron (NTBI) for 
extracellular and intracellular organisms (2); increased erythropoietic drive, which inhibits the 
antimicrobial hepcidin allowing increased availability of iron for extracellular bacteria and movement 
of iron into the Salmonella containing vacuole (SCV) (3); and immune dysregulation including the 
inhibition of recruitment and effector function of immune cells such as neutrophils or production of 
pro-inflammatory cytokines such as interferon-gamma (IFN-γ) (4). TfR denotes transferrin receptor; 
ERFE: Erythroferrone; HO-1: Haem oxygenase-1; Cp: Ceruloplasmin; ROS: Reactive oxygen species; 
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Figure 2. The severe anaemia-bacteraemia hypothesis. Children with severe anaemia may have
increased gut permeability promoting the invasion of pathogenic bacteria from the gut lumen
(1); haemolysis, which increases the availability of haem and non-transferrin bound iron (NTBI)
for extracellular and intracellular organisms (2); increased erythropoietic drive, which inhibits the
antimicrobial hepcidin allowing increased availability of iron for extracellular bacteria and movement
of iron into the Salmonella containing vacuole (SCV) (3); and immune dysregulation including the
inhibition of recruitment and effector function of immune cells such as neutrophils or production of
pro-inflammatory cytokines such as interferon-gamma (IFN-γ) (4). TfR denotes transferrin receptor;
ERFE: Erythroferrone; HO-1: Haem oxygenase-1; Cp: Ceruloplasmin; ROS: Reactive oxygen species;
FPN: Ferroportin; IL-10: Interleukin-10; FR: Ferric reductase; Heph: Hephaestin; HCP-1: Haem carrier
protein-1; and DMT-1: Divalent metal transporter-1. Black arrows indicate increased activity; red arrows,
inhibitory pathways; and dotted lines, suppressed activity.

2.1.1. Non-Typhoidal Salmonellae

NTS are a group of Gram-negative macrophage-tropic intracellular bacteria. NTS bacteraemia
is strongly associated with severe anaemia in African children [24–26]. NTS acquire iron through
high-affinity siderophores (salmochelin and enterobactin), capture of transferrin iron, and uptake of
Fe2+ [105–107]. In model studies, Salmonella was reported to preferentially infect haemophagocytic
macrophages [108] or impaired granulocytes [33], where it acquires iron for its growth and
proliferation [109]. The regulation of intracellular iron by hepcidin and its ligand ferroportin is
an important determinant of NTS survival [110,111]. Ferroportin is present on the phagolysosomal
membrane forming the SCV [112,113], and may transport iron into the SCV from the cytoplasm [113].
Model studies using exogenous hepcidin have reported an increase in Salmonella proliferation, [100,114]
probably due to increased iron sequestration [21]. On the other hand, increased risk of invasive
Salmonella infection has been observed in HAMP (hepcidin gene) knockout studies [115], suggesting
that the low hepcidin levels reported in children with severe anaemia [37,116] may contribute to
NTS susceptibility. Nonetheless, significant gaps remain in our understanding of the implications of
iron uptake through ferroportin on the SCV including: (1) Whether it promotes bacterial growth by
providing an essential nutrient or bacterial clearance by generating ROS through the Fenton reaction;
and (2) whether it works synergistically or antagonistically with Nramp1, which transports divalent
metals out of phagolysosomes.
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2.1.2. Escherichia coli

E. coli are Gram-negative extracellular bacteria that inhabit the gastrointestinal tract as commensals
but can also cause invasive disease and sepsis. E. coli bacteria acquire environmental iron using high
affinity siderophores (enterobactin, salmochelin, aerobactin, and yersiniabactin), the ferrous iron (Feo)
uptake system, and/or haem receptors [117–119]. The uptake of ferrous iron by E. coli requires the
reduction of extracellular ferric iron, and this is mediated by ferric reductases [120]. Studies using
serum from iron-supplemented individuals [121] or hypoferraemic cord blood [122] reported that the
growth rates of E. coli were substantially increased in the presence of iron. In murine models, E. coli was
reported to utilize NTBI [119], and its growth is repressed by exogenous hepcidin [114,119,123].
European children given intramuscular iron dextran [124], patients with aplastic anaemia [125], and an
adult with iron overload [126] had increased susceptibility to E. coli sepsis. Consequently, it is plausible
that increased serum and tissue iron levels during haemolysis and severe anaemia may similarly
increase the risk of E. coli infections. In model studies, iron deficiency is associated with protection
against E. coli sepsis [50,119], however severe iron deficiency anaemia reduces hepcidin production
even during inflammation [37,127], and very low hepcidin levels have been associated with increased
susceptibility to E. coli infections [119,128]. Iron deficiency may also be associated with poor immune
development and responses to infections [51,53,54]. Additionally, severe anaemia is associated with
increased gut permeability [71], which increases the risk of sepsis by gut pathogens such as E. coli.
Further studies are required to decipher precise iron acquisition strategies employed by E. coli during
systemic infections and the role of severe anaemia and/or haemolysis in the pathogenicity of E. coli in
African children.

2.1.3. Haemophilus influenzae

H. influenzae are fastidious Gram-negative bacteria that inhabit the human nasopharynx as
commensals. H. influenzae cannot synthesize protoporphyrin IX, and rely on exogenous haem or iron in
the presence of protopophyrin IX to grow [129]. As a result, H. influenzae encode several receptors that
bind host haemoproteins, including the haem- (HbpA), haemoglobin- and haemoglobin-haptoglobin-
(HgpA, HgpB and HgpC) binding proteins [130–132]. H. influenzae also secrete haemophores (HxuA)
that capture free haem or haem complexed to haemopexin [133]. Additionally, H. influenzae can acquire
transferrin-bound iron through the periplasmic ferric-ion binding protein, FbpA [134]. In observational
studies, H. influenzae has been reported to be associated with haemolytic anaemia [135] and severe
anaemia [136] in hospitalized children. In these studies, the development of anaemia was observed
over the course of the infection. It is plausible that haemolytic factors secreted by the bacteria to aid
acquisition of haem might contribute to the development of anaemia. The reverse could also be true,
where underlying haemolytic conditions promote growth and proliferation of H. influenzae. Indeed,
African children with sickle cell disease and HIV, which induce chronic haemolytic anaemias [137,138],
have an increased risk of H. influenzae infections [11,30].

2.1.4. Other Gram-Negative Organisms

Siderophilic bacteria, including Yersinia enterocolitica 09, Vibrio vulnificus, and a pneumonia model
of Klebsiella pneumoniae, utilize NTBI in iron overload conditions, and hepcidin-mediated hypoferraemia
protects against these pathogens [19,139,140]. This NTBI uptake may be facilitated by the universal
Feo system, which promotes the uptake of environmental iron in Gram-negative bacteria [104,141].
Yersinia enterocolitica also utilizes the hemin receptor (HemR) to obtain haem-bound iron [142].
Neisseria spp. encode a set of transferrin-binding proteins (TbpA and TbpB), lactoferrin-binding proteins
(LbpA and LbpB), and haemoglobin receptors (HmbR) [143,144]. Intracellular Francisella tularensis can
acquire cytoplasmic transferrin-bound iron using transferrin receptors [106]. Severe anaemia results in
increased circulating and intracellular iron and haem levels needed by these bacteria. Further work is
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needed to determine how haem, iron, and hepcidin dysregulation in severe anaemia influence the
proliferation and bactericidal activity of these organisms.

2.2. Gram-Positive Organisms

The iron acquisition strategies of Gram-positive bacteria are generally based on binding-protein-
dependent ABC transporter systems. They include cell surface proteins anchored to the membrane,
which bind Fe2+, Fe3+, and haem-containing compounds and transport them using ABC permeases [104].
Various Gram-positive bacteria employ additional iron acquisition strategies. Bacillus anthracis utilizes
two secreted haemophores, IsdX1 and IsdX2, which bind free haem or extract haem from
haemoproteins [145]. On the other hand, Bacillus cereus can use the near-iron transporter (NEAT)
domain protein to bind plasma ferritin and haemoglobin [146]. Nevertheless, little is known about the
implications of severe anaemia on the iron and haem acquisition systems of Gram-positive bacteria.

2.2.1. Staphylococcus aureus

S. aureus are Gram-positive extracellular organisms that normally colonize the anterior nares
and skin. Invasive S. aureus infections can cause numerous local, bloodstream, and tissue infections.
The preferred iron source for S. aureus is haem, whose uptake is mediated by the iron-regulated surface
determinant (Isd) system [147,148]. Interestingly, high exogenous haem concentrations were reported
to be toxic to S. aureus in in vitro studies [149]. However, the authors found that S. aureus can sense
and adapt to haem toxicity when the bacteria are first cultured in a medium containing sub-toxic
haem concentrations. S. aureus can also acquire iron from transferrin either directly [150], or using two
siderophores (staphyloferrin A, encoded by the sfaABCD gene cluster, and staphyloferrin B, encoded
by the sbnABCDEFGHI operon) [151,152]. However, there is conflicting information on the effect of
hepcidin and extracellular iron concentrations on the growth and proliferation of S. aureus. In vitro
growth rates of S. aureus were substantially reduced in media supplemented with hepcidin [123] or in
hypoferraemic cord blood [122]. Nonetheless, the impact of hepcidin or hypoferraemic cord blood on
the growth rates of S. aureus was substantially lower than for E. coli. Conversely, studies using murine
models [139] and serum from iron-supplemented individuals [121] found no effect of hepcidin or NTBI
on the growth rates of S. aureus. Further studies are required to ascertain how S. aureus acquires iron in
severely anaemic children, and the effects of very low haemoglobin levels and/or increased haemolysis
on the growth rates of S. aureus.

2.2.2. Streptococcus pneumoniae

S. pneumoniae are Gram-positive extracellular bacteria normally colonizing the respiratory tract,
but which can cause invasive and local infections. In epidemiological studies, pneumococci are
strongly associated with sickle cell disease [30,31] and HIV [11]. Relatively little is known about
pneumococci’s iron acquisition strategies. Growth of pneumococci in iron-restricted in vitro media is
supported by Fe2+, Fe3+, and haem-containing compounds, but not by human ferritin, holo-transferrin,
or holo-lactoferrin [153–155]. There are no known pneumococcal siderophores or haemophores.
Iron uptake by pneumococci is facilitated by three ABC transporter operons—piu, pia, and pit [156].
Pneumococcal haem uptake is mediated by the haemoglobin-binding membrane proteins Spbhp-22
and Spbhp-37 [154]. It is conceivable that severe anaemia increases the risk of pneumococci through
increased NTBI and free haem. In vitro studies report an upregulation in hepcidin expression upon
infection with S. pneumoniae, which is mediated by inflammatory stimuli [157]. However, there is
limited knowledge on how the hepcidin-mediated activity influences the growth and virulence
of pneumococci.
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3. Testing the Hypothesis

3.1. In Vitro and Animal Model Studies

In vitro studies have contributed greatly to the understanding of bacterial iron acquisition
mechanisms under artificially controlled conditions. Ex vivo studies, which use human blood or
tissues for investigation, offer minimal alteration of natural conditions. In vitro and ex vivo models
of monitoring bacterial growth in different concentrations of iron or human ferroproteins have been
established for some bacteria [122,152,158]. These studies offer an advantage, as they are easy to
perform and allow quick evaluation of bacterial responses to different physiological conditions created
by severe anaemia. However, severe anaemia involves a complex web of iron and immune regulatory
mechanisms that may not be captured in in vitro or ex vivo studies. It may also be difficult to establish
the consequences of such long-term exposures to anaemia aetiologies on bacterial growth.

Laboratory animals can be manipulated to mimic severe anaemia phenotypes, including
haemolysis, genetic predisposition, haemoglobin-depletion, and iron deficiency anaemia,
and susceptibility to different bacterial organisms can be measured. Murine studies also allow
the evaluation of inflammatory and iron biomarker responses to bacteraemia and severe anaemia.
The use of murine genetic knockout models enables estimation of the significance of particular proteins
or sets of genes in susceptibility to invasive bacterial infections during severe anaemia, and have
been widely used in hepcidin and ferritin studies [100,115]. Extrapolating findings from such studies
can enable basic understanding of processes that promote susceptibility to bacterial infections in
children with severe anaemia and can inform preliminary formulation of therapeutic approaches.
Nonetheless, laboratory mice do not have the same genetic diversity, which influences immune
responses to bacterial infection, as the human population. Additionally, mice and human iron- and
haem-containing molecules may not have similar properties, and this may influence the inferences
made from such studies. For example, bacterial iron acquisition proteins, such as IsdB for S. aureus,
have been reported to bind more readily to human than to mice haemoglobin [159].

3.2. Observational Studies

Cross-sectional and case-control studies have been used to study associations between severe
anaemia and invasive bacterial infections in African children. Such studies have provided information
on the strong association between severe anaemia and invasive bacterial infections, and particularly
with NTS in African children. However, such observational studies are marked with inherent
challenges including reverse causality, sampling biases, and unmeasured confounding. Invasive
bacterial infections may be predisposing factors for severe anaemia. Underlying conditions such
as malaria, malnutrition, and HIV infections, which are associated with both severe anaemia and
invasive bacterial infections [11,27,160] are common in African children and are important confounders.
The poor sensitivity of blood cultures may also contribute to sampling errors in such studies.

3.3. Mendelian Randomization

Randomized control trials (RCTs) are the “gold standard” for studying causal associations between
an exposure and an outcome. However, the severity and complexity of severe anaemia makes it
challenging to randomize children for treatment while investigating bacterial susceptibility. Mendelian
randomization (MR) studies utilize genetic variants, which act as instrumental proxies for modifiable
exposures (e.g., severe anaemia), to infer their causal relationship with health outcomes (invasive
bacterial infections) [161]. Similar to RCTs, MR studies are based on a random allocation of groups
based on Mendel’s laws of random segregation and independent assortment. This reduces biases of
environmental confounding and reverse causation, which regularly influence observational studies.
The validity of MR studies is based on three principle assumptions. The instrumental variable
(1) must be reliably associated with the health outcome, i.e., invasive bacterial infections; (2) should
not be associated with potential confounders; and (3) should influence the outcome only through the
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exposure of interest, that is, the genetic variant should influence invasive bacterial infections only
through severe anaemia causal pathways [161,162]. As discussed earlier, severe anaemia has multiple
causes with different clinical profiles. Consequently, bacterial susceptibility pathways may be different
with each underlying cause of severe anaemia. Additional polymorphisms associated with risk of or
protection from severe anaemia should be studied in relation to invasive bacterial infections. However,
this approach may also have limitations, including the identification of plausible genetic variants and
the very large sample sizes required.

4. Perspectives and Implications of the Hypothesis

Childhood iron supplementation is recommended in regions in which the prevalence of anaemia
is high [163]. In such regions, the incidence of both severe anaemia [3,8], and invasive bacterial
infections [10–13] is also high. If severe anaemia increases the risk of invasive bacterial infections
through haemolysis and iron dysregulation, then iron supplementation may exacerbate adverse
outcomes. The identification of organisms whose susceptibility is mediated by iron dysregulation,
and the precise mechanisms of such susceptibility, should be a research priority. Mechanisms to
minimize the risk of invasive bacterial infections by targeting iron regulatory pathways represent an
exciting novel therapeutic target, and would further boost efforts to reduce preventable deaths in
African children.
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