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Abstract: In this study, we identified a novel glossy mutant from Chinese cabbage, named SD369, and
all wax monomers longer than 26 carbons were significantly decreased. Inheritance analysis revealed
that the glossy trait of SD369 was controlled by a single recessive locus, BrWAX3. We fine-mapped the
BrWAX3 locus to an interval of 161.82 kb on chromosome A09. According to the annotated genome
of Brassica rapa, Bra024749 (BrCER60.A09), encoding a β-ketoacyl-CoA synthase, was identified as the
candidate gene. Expression analysis showed that BrCER60.A09 was significantly downregulated in
all aerial organs of glossy plants. Subcellular localization indicated that the BrCER60.A09 protein
functions in the endoplasmic reticulum. A 5567-bp insertion was identified in exon 1 of BrCER60.A09
in SD369, which lead to a premature stop codon, thus causing a loss of function of the BrCER60.A09
enzyme. Moreover, comparative transcriptome analysis revealed that the ‘cutin, suberine, and wax
biosynthesis’ pathway was significantly enriched, and genes involved in this pathway were almost
upregulated in glossy plants. Further, two functional markers, BrWAX3-InDel and BrWAX3-KASP1,
were developed and validated. Overall, these results provide a new information for the cuticular wax
biosynthesis and provide applicable markers for marker-assisted selection (MAS)-based breeding of
Brassica rapa.
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1. Introduction

The lipidic cuticle exists on the aerial surface of many land plants, working as a
physical barrier to prevent nonstomatal water loss [1,2]. The main components of cuticles
are cutin and cuticular wax. Cutin is a cross-linked polymer of modified long-chain fatty
acids (C16 and C18 hydroxy and epoxy fatty acids) and glycerol, which provides mechanical
strength to the surface layer [3,4]. Cuticular wax is a mixture of very-long-chain fatty acids
(VLCFAs) and their derivatives [5,6]. Cuticles also protect plants from various biotic and
abiotic stresses [7,8], profoundly affect plant-insect interactions [9], affect the pollen-stigma
signaling [10], and prevent epidermal fusions [11].

Wax biosynthesis begins with de novo C16 and C18 fatty acid biosynthesis in the
plastids of epidermal cells, and further elongates into VLCFAs in the endoplasmic reticu-
lum (ER). The VLCFAs are then modified via two pathways: the alkane-forming pathway
and the alcohol-forming pathway. The former generates aldehydes, alkanes, secondary
alcohols, and ketones, while the latter produces primary alcohols and wax esters [2,5,6]. As
the essential precursors of wax, VLCFAs are synthesized under the consecutive catalyzes
of four different enzymes, namely, β-ketoacyl-CoA synthase (KCS), β-ketoacyl-CoA re-
ductase (KCR), β-hydroxyacyl-CoA dehydratase (PAS2/HCD), and enoyl-CoA reductase
(ECR/CER10), which formed a fatty acid elongase (FAE) complex [5,6,12]. Among the en-
zymes, KCSs determine substrate specificity, and are key rate-limiting condensing enzymes.
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In Arabidopsis, a large family of 21 KCS genes has been annotated [13]. To date, several KCSs
have been reported. FAE1/KCS18 encodes a seed-specific condensing enzyme that catalyzes
the elongation of C18 to C20 and C22 [14]. KCS2 and KCS20 are responsible for the elonga-
tion of C20 to C22 and are functionally redundant [15]. KCS9 is involved in the elongation
of C22 to C24 fatty acids, which play multiple roles in the production of suberins, cuticular
waxes, and membrane lipids [16]. KCS1 is required for the elongation of C24 VLCFAs [17].
KCS5/CER60 and KCS6/CER6 play redundant roles in the elongation of C26 to C28 during
wax biosynthesis, among which KCS6 (CER6) plays a major role [10,18–20]. Together with
KCS5/CER60 or KCS6/CER6, three BAHD acyltransferases members, CER2, CER2-like1,
and CER2-like2, participate in the synthesis of VLCFAs longer than C28 [9,21,22].

For economically important leafy vegetables in Brassica species, such as Brassica rapa
(A genome) and Brassica oleracea (C genome), the waxless and glossy phenotype is an
important commodity trait in breeding [23,24]. Therefore, identifying genes responsible
for the glossy phenotype facilitates the breeding of new varieties with a glossy green
phenotype. In Brassica oleracea, Bol018504 (CER1) is responsible for the glossy trait of
four materials, in which the alkane-forming pathway of wax biosynthesis is significantly
affected [4,25,26]. Bol013612 (CER4) is the candidate gene in two glossy materials, in
which the primary alcohols and wax esters from the alcohol-forming pathway are severely
reduced [27,28]. Recently, Ji et al. (2021) identified a new glossy cabbage genotype and
found that Bo1g039030 (BoCER2) was the candidate gene, in which wax monomers longer
than C28 were significantly decreased [23]. In Brassica rapa, only two wax biosynthesis-
related genes have been identified. BrWax1 was first reported and Bra013809 (CER2) was the
candidate gene [29]. Bra032670 (CER1), with different sequence variations, was responsible
for the glossy trait in three B.rapa materials [24,30,31].

In this study, we characterized a novel glossy green Chinese cabbage mutant, SD369,
which showed a significant reduction of wax monomers longer than C26. Genetic analysis
suggested that the glossy trait was controlled by a single recessive gene. Map-based cloning
revealed that the Bra024749 gene, which is homologous to CER60 (KCS5) in Arabidopsis,
was the candidate gene, which has never been reported in Brassica species. Furthermore,
sequence analysis and expression analysis showed that a 5567-bp insertion blocked VLCFA
elongation from C26 to C28 in SD369, thus causing a wax deficiency. Additionally, we
developed and validated two functional markers. These findings will provide new insight
into the plant cuticular wax metabolic networks and will promote molecular marker-
assisted breeding in B.rapa.

2. Results
2.1. Phenotypic Characterization and Genetic Analysis of Glossy Trait in SD369

SD369 is a spontaneous wax-deficient mutant found in the Chinese cabbage field. In
contrast to the typical waxy appearance of R16-11 (P2), all aerial organs of SD369 (P1), such
as the leaves (Figure 1a), stems (Figure 1b), flower buds (Figure 1c), and seedpods, were
glossy green. Cryo-SEM analysis revealed many more wax crystals on R16-11 (Figure 1h)
than on the SD369 (Figure 1d). The wax crystals on R16-11 were mainly flaky and columnar.
However, the leaves of SD369 were covered with only a few wax crystals (Figure 1d), and
the wax crystal shape was granular.

F1, F2, BC1P1, and BC1P2 populations were generated to investigate the SD369 glossy
trait inheritance. The F1 plants were all waxy, indicating that the waxy phenotype was
dominant in the glossy phenotype. In a small F2 population, 102 plants were waxy and 40
were glossy, corresponding to a segregation ratio of 3:1 by the chi-square test (Table 1). A
larger F2 population showed similar results (3026 waxy: 954 glossy, χ2 = 2.25 < χ2

0.05 = 3.84).
A ratio of 1:1 (540 waxy:494 glossy, χ2 = 2.05 < χ2

0.05 = 3.84) was obtained in the BC1 P1
population, while in the BC1 P2 population, all 200 individuals were waxy (Table 1). These
results indicated that the glossy phenotype of SD369 is controlled by a single recessive gene
(Table 1). We tentatively named this locus BrWAX3.
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Figure 1. Phenotypic characterization of cuticular waxes in the two parent lines (SD369 and R16-11). 
The stem (a), leaf (b), and flower buds (c) of SD369 showed glossy phenotype at the bolting stage, 
as compared to the waxy appearance of R16-11 stem (e), leaf (f), and flower buds (g). Cryo-scanning 
electron microscopy images of leaves from SD369 (d) and R16-11 (h). Bar = 10 μm in (d,h). 
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larger F2 population showed similar results (3026 waxy: 954 glossy, χ2 = 2.25 < χ20.05 = 3.84). 
A ratio of 1:1 (540 waxy:494 glossy, χ2 = 2.05 < χ20.05 = 3.84) was obtained in the BC1 P1 pop-
ulation, while in the BC1 P2 population, all 200 individuals were waxy (Table 1). These 
results indicated that the glossy phenotype of SD369 is controlled by a single recessive 
gene (Table 1). We tentatively named this locus BrWAX3. 

Table 1. Genetic analysis of the glossy trait in crosses between SD369 and R16-11. 

Population Total Waxy Glossy Expected ratio χ2 χ20.05 
P1 (SD369) 10 10 0 - - - 
P2 (R16-11) 10 0 10 - - - 

F1 15 15 0 - - - 
F2-small 142 102 40 3:1 0.76 3.84 
F2-large 3980 3026 954 3:1 2.25 3.84 

BC1P1 (F1 × SD369) 1020 540 494 1:1 2.05 3.84 
BC1P2 (F1 × R16-11) 300 300 0 - - - 

2.2. Cuticular Wax Analysis via GC-MS 
To investigate the reason of wax depletion in SD369, cuticular wax from W-bulk and 

G-bulk was examined by GC-MS. The wax load on waxy leaves reached, on average, 
149.67 μg per g fresh weight, whereas wax loads on glossy leaves were severely reduced, 
with an average of 48.56 μg/g fresh weight, which reduced 68% of the wax load when 
compared to W-bulk (Figure 2b, Table S1). Wax composition analysis revealed that most 
products from alkane-forming pathways decreased severely in G-bulk. For instance, the 
C29 alkane, C30 aldehyde, and C29 ketones in G-bulk reached only 2.5, 0, and 4.4%, re-
spectively, of the levels found on the leaves of W-bulk (Figure 2a, Table S1). However, the 
C25 alkane and C26 aldehyde were significantly increased in G-bulk than in W-bulk (Fig-
ure 2a, Table S1). Considering the products from the alcohol-forming pathway, the 

Figure 1. Phenotypic characterization of cuticular waxes in the two parent lines (SD369 and R16-11).
The stem (a), leaf (b), and flower buds (c) of SD369 showed glossy phenotype at the bolting stage, as
compared to the waxy appearance of R16-11 stem (e), leaf (f), and flower buds (g). Cryo-scanning
electron microscopy images of leaves from SD369 (d) and R16-11 (h). Bar = 10 µm in (d,h).

Table 1. Genetic analysis of the glossy trait in crosses between SD369 and R16-11.

Population Total Waxy Glossy Expected ratio χ2 χ2
0.05

P1 (SD369) 10 10 0 - - -
P2 (R16-11) 10 0 10 - - -

F1 15 15 0 - - -
F2-small 142 102 40 3:1 0.76 3.84
F2-large 3980 3026 954 3:1 2.25 3.84

BC1P1 (F1 × SD369) 1020 540 494 1:1 2.05 3.84
BC1P2 (F1 × R16-11) 300 300 0 - - -

2.2. Cuticular Wax Analysis via GC-MS

To investigate the reason of wax depletion in SD369, cuticular wax from W-bulk and
G-bulk was examined by GC-MS. The wax load on waxy leaves reached, on average,
149.67 µg per g fresh weight, whereas wax loads on glossy leaves were severely reduced,
with an average of 48.56 µg/g fresh weight, which reduced 68% of the wax load when
compared to W-bulk (Figure 2b, Table S1). Wax composition analysis revealed that most
products from alkane-forming pathways decreased severely in G-bulk. For instance, the
C29 alkane, C30 aldehyde, and C29 ketones in G-bulk reached only 2.5, 0, and 4.4%,
respectively, of the levels found on the leaves of W-bulk (Figure 2a, Table S1). However,
the C25 alkane and C26 aldehyde were significantly increased in G-bulk than in W-bulk
(Figure 2a, Table S1). Considering the products from the alcohol-forming pathway, the
amount of C28 primary alcohol decreased by 62% in G-bulk, whereas the amount of C26
primary alcohol increased approximately 2.8-fold in G-bulk. Similarly, the amounts of
C28 and C30 fatty acids decreased significantly, whereas the amount of C26 fatty acids
increased significantly in G-bulk (Figure 2a, Table S1). Overall, wax components with chain
lengths beyond C26 decreased severely in glossy plants, while shorter chains increased
several-fold compared with those in the waxy plants. These findings suggested that the
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glossy phenotype of SD369 might be caused by the interruption in VLCFA carbon-chain
elongation from C26 to C28 during cuticular wax biosynthesis.
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Figure 2. Cuticular wax composition in leaves from W-bulk and G-bulk. (a) Wax composition
of W-bulk and G-bulk. (b) Total wax load of W-bulk and G-bulk. Error bars indicate SD (n = 3).
** p-value < 0.01.

2.3. Fine Mapping of the BrWAX3 Gene

To identify candidates of the BrWAX3 gene, 50 waxy (W-pool) and 50 glossy (G-pool)
individuals were selected from the F2 population and used to construct two extreme pools
for Bulked Segregant Analysis (BSA). In total, we obtained 168 and 173 million raw reads
for the W-pool and G-pool (Table S2), and 1418,060 SNPs and 201,519 InDels were identified
between the two DNA pools. Through sliding window analysis with the absolute value of
∆(SNP-index), a 6.5-Mb candidate region from 19.65 to 26.15 Mb on chromosome A09 was
identified at a 0.01 confidence level (Figure 3a).
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Figure 3. Map-based cloning of BrWAX3 gene in Chinese cabbage. (a) BSA-seq analysis for BrWAX3.
The ∆(SNP-index) was calculated at 1-Mb intervals with a 50-kb sliding window. One candidate
region was identified on chromosome A09. (b) Initial mapping of BrWAX3. The genetic map of
BrWAX3 was showed with cM as the unit. (c) Fine mapping of BrWAX3. The BrWAX3 gene was
delimited to an interval between LF3-seq8 and LF3-K60 on chromosome A09, with an estimated
physical length of 161.82 kb, and 16 genes were annotated in this region based on the reference genome
sequence. The genetic structure of each recombinant type is depicted as white for homozygous glossy
phenotype, black for heterozygous alleles, respectively. The number of each recombinant type is
indicated in the brackets.

Based on BSA-seq analysis results, 56 KASP markers were developed, and 20 markers
(Table S3) were polymorphic between the parents. Using these 20 KASP markers, 93 F2
plants were genotyped for linkage analysis (Table S4). As shown in Figure 3b, the BrWAX3
locus was initially mapped to a region on chromosome A09 between KASP markers LF3-
K47 and LF3-K56, with a physical interval of 232 kb. The genetic distances between the
BrWAX3 locus and LF3-K47 and LF3-K56 were 0.1 and 0.5 cM, respectively (Figure 3b).

To further finely map the BrWAX3 locus, 954 glossy F2 plants were screened using
flanking markers, LF3-K33 and LF3-K51, and a total of 115 recombinants (type 1 and
type 10) were identified (Figure 3c). All the 115 recombinants were further genotyped
using LF3-K36, LF3-K37, LF3-K40, LF3-K42, LF3-K46, LF3-K47, LF3-K56, and LF3-4K9,
based on which 6 recombinants (type 6 and type 8) were identified (Figure 3c). Then,
4 KASP markers and 7 sequencing markers were further developed to genotype the
6 recombinants. The results delimited the BrWAX3 gene to a 161.82-kb interval between
markers LF3-seq8 and LF3-K60 (type 7 and type 8) (Figure 3c), with 1 recombinant between
BrWAX3 and LF3-seq8 and 3 recombinants between BrWAX3 and LF3-K60. Five markers,
namely, LF3-seq7, LF3-seq2, LF3-seq3, LF3-seq5, and LF3-seq9, co-segregated with the
BrWAX3 gene in the fine-mapping population (Figure 3c).

2.4. Candidate Gene Analysis

According to the annotation of B.rapa reference genome (V1.5), a total of 16 annotated
or predicted genes were found within the 161.82-kb candidate interval (Table 2). Among
these 16 genes, only the Bra024749 gene, which is homologous to CER60 in Arabidopsis,
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could be the candidate gene (Table 2). CER60 encodes a β-ketoacyl-CoA synthase that is
involved in the biosynthesis of very long-chain fatty acids (VLCFAs) during cuticular wax
biosynthesis.

Table 2. Annotated genes in the candidate interval of the BrWAX3 locus.

Gene Name Gene Position on A09 Arabidopsis Homolog Gene Function

Bra024763 24151883-24153849 AT1G25280 Member of TLP family
Bra024762 24164515-24164946 AT5G05020 Pollen Ole e 1 allergen and extension family protein
Bra024761 24171584-24174217 AT1G25320 Leucine-rich repeat protein kinase family protein
Bra024760 24179389-24180542 AT1G25340 putative transcription factor (MYB116)

Bra024759 24185650-24190615 AT1G25350 glutamine-tRNA ligase, putative/glutaminyl-tRNA
synthetase

Bra024758 24192301-24193325 AT1G25370 hypothetical protein (DUF1639)

Bra024757 24197064-24199869 AT1G25375 Metallo-hydrolase/oxidoreductase superfamily
protein

Bra024756 24207077-24209333 AT1G25380
Encodes a mitochondrial-localized NAD+ transporter

that transports NAD+ in a counter exchange mode
with ADP and AMP in vitro

Bra024755 24210118-24212198 AT1G25390 Protein kinase superfamily protein
Bra024754 24226168-24227349 AT2G05970 F-box protein (DUF295)
Bra024753 24253251-24253559 AT1G25422 hypothetical protein

Bra024752 24279278-24280968 AT1G29470 S-adenosyl-L-methionine-dependent
methyltransferases superfamily protein

Bra024751 24285640-24285933 AT1G25425 CLAVATA3/ESR-RELATED 43

Bra024750 24299524-24301114 AT1G25440 B-box type zinc finger protein with CCT
domain-containing protein

Bra024749 24304800-24306911 AT1G25450
Encodes KCS5, a member of the β-ketoacyl-CoA
synthase family involved in the biosynthesis of

VLCFA (very long chain fatty acids); CER60

Bra024748 24311235-24312823 AT1G69710 Regulator of chromosome condensation (RCC1) family
with FYVE zinc finger domain-containing protein

The genomic sequence (gDNA) and coding sequence (CDS) of Bra024749 in the
parental lines were amplified and sequenced using the primer pairs BrWAX3-Ful-F and
BrWAX3-Ful-R1 (Table S5). The results showed that the Bra024749 gene in the waxy parent
R16-11 was 2112 bp in length and contained 2 exons and 1 intron (Figure 4a). The CDS of
the Bra024749 gene in R16-11 was 1494 bp in length, which shares 87% identity with CER60
(KCS5) in Arabidopsis. Therefore, Bra024749 was also designated BrCER60.A09 in this study.
However, in the glossy parent SD369, the Bra024749 gene was 7679 bp in length, which was
caused by a 5567-bp insertion at 590 bp in the first exon (Figure 4a,c). The large fragment
insertion disrupted the normal transcription and translation of Bra024749 in SD369. As
shown in Figure 4a, no CDS products were detected in glossy SD369 using full-length
primer pairs BrWAX3-Ful-F and BrWAX3-Ful-R1. Five primer pairs (P2-P6) (Figures 4b
and S1, Table S5) spanning the full length of Bra024749 in SD369 were further designed.
Two of the five cDNA products, amplified using primers BrWAX3-P3 and BrWAX3-P5
(Figure 4b), could not be detected, which explained why the full-length CDS of Bra024749 in
SD369 could not be detected when the full-length primer pairs were used. We also mapped
the RNA sequencing (RNA-seq) reads from G-bulk to the Bra024749 gDNA sequence of
SD369, and the results showed that very few reads were mapped to the 3200–3450 bp
region and the 5500–5650 bp region (Figures S2 and S3), among the amplified regions of
primers BrWAX3-P3 and BrWAX3-P5, respectively, which supported that transcription
of Bra024749 in SD369 was interrupted. Most importantly, the 5567-bp insertion caused
premature translation termination at the 205 amino acid position, which caused the loss of
function of BrWAX3 (Figure 4c,d).
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Figure 4. Candidate gene analysis of BrWAX3. (a) Amplification products of the full length primer
using DNA and cDNA from SD369 and R16-11. The full length CDS of glossy SD369 could not be
detected. (b) Amplification products of each fragmental primer using cDNA from SD369. (c) BrWAX3
includes 2 exons and 1 intron. (d) A 5567-bp insertion in glossy SD369 caused a premature stop codon.
(e) Validation of the functional marker BrWAX3-InDel in F2 individuals. (f,g) Validation of the functional
marker BrWAX3-KASP1 in BC1P1 population (f) and in (SD369 × SD2135)-F2 population (g).

Based on the 5567-bp insertion, a functional marker BrWAX3-InDel (primer pairs
BrWAX3-InDel-F and BrWAX3-InDel-R, Table S5), which could amplify a 222-bp and 5789-
bp product from lines R16-11 and SD369, respectively, was developed. When Phanta®

High-Fidelity DNA Polymerase (5 s/kb amplification rate) (Vazyme, Nanjing, China) with
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30 s PCR extension time was used, all glossy F2 individuals showed 5789-bp products, and
waxy F2 individuals presented either a homozygous 222-bp band or both bands (Figure 4e),
which revealed that BrWAX3-InDel co-segregated with the cuticular wax phenotype in
the F2 population. We also assayed the BrWAX3-InDel marker in the BC1P1 population
and another F2 population (SD369 × SD2135)-F2 via EasyTaq DNA Polymerase (1 min/kb
amplification rate) (Trans, Beijing, China) in conjunction with a 30 s PCR extension time.
The results also showed 100% consistency between the cuticular wax phenotype and
genotype (Figures S4 and S5) with no band in glossy individuals and a 222-bp band
in waxy individuals, as the 30 s PCR extension time (1 min/kb amplification rate) was
not enough for the 5789-bp product in glossy plants but was sufficient for the 222-bp
product in waxy plants. We also developed and validated a KASP marker BrWAX3-KASP1
based on the 5567-bp insertion (Figure 4f,g), which could be used for high-throughput
genotyping systems.

Taken together, the above findings suggest that the Bra024749 gene is the candidate
gene for the cuticular wax gene BrWAX3.

2.5. Expression Pattern Analysis and Subcellular Localization of BrWAX3

The expression levels of Bra024749 (BrCER60.A09) in different tissues of the two parent
lines were examined by qRT-PCR analysis using primer pairs BrWAX3-qF and BrWAX3-qR
(Table S5). The results suggested that the Bra024749 transcript was found in various tissues,
including the stems, leaves, sepals, petals, stamens, and pistils, but not in the roots, with
the highest level in leaves (Figure 5a). The expression of Bra024749 was much lower in
SD369 than in the waxy parent R16-11 in any of the tissues we examined (Figure 5a).
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Figure 5. Gene expression data analysis. Quantitative RT-PCR of BrWAX3 (BrCER60.A09) (a) and
Bra004034 (BrCER6.A07) (b) in different tissues of the two parents. The BrGAPDH was used as an
internal control. Error bars indicate SE (n = 3). * p < 0.05. ** p < 0.01.

To evaluate the subcellular localization, a fusion protein of BrCER60-GFP under the
drive of 35 S CaMV promoter was transiently expressed in tobacco leaf epidermal cells.
The results showed that the green fluorescent signals from BrCER60-GFP were found in
the ER (Figure 6a), exactly overlapping with the red fluorescent signals from the ER marker
(Figure 6b–d), indicating that Bra024749 (BrCER60.A09) was localized to the ER.
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2.6. Sequence and Expression Pattern Analysis of BrCER6.A07

In Arabidopsis, CER6 (AT1G68530) is a paralog of CER60 (AT1G25450) [18]. Therefore,
we blasted the coding sequence of CER6 (AT1G68530) against the B.rapa genome, and
found that the best-hit gene was Bra004034 (BrCER6.A07), which shared 82.2% identity
with the candidate Bra024749 (BrCER60.A09) at the coding sequence level. We designed
a gene-specific primer pair, BrCER6.A07-ful-F and BrCER6.A07-ful-R (Table S5), to am-
plify the full-length CDS of BrCER6.A07 in SD369 and R16-11. The CDSs of BrCER6.A07
from SD369 and R16-11 were submitted to GeneBank under accession numbers OPO46432
and OPO46431. Eight SNPs were identified between the coding sequences of R16-11 and
SD369 (Figure S6, Table S6). Even though two SNPs caused nonsynonymous mutations,
they did not affect protein function (Figure S7, Table S6). We also compared the expres-
sion level of BrCER6.A07 in the parental lines using primer pairs BrCER6.A07-qF and
BrCER6.A07-qR (Table S5). As shown in Figure 5b, the stamen showed the highest ex-
pression levels, whereas much lower levels were found in stems and leaves. Furthermore,
BrCER6.A07 showed a comparable level in stems between SD369 and R16-11 and was lower
in leaves of waxy R16-11, which suggested that the BrCER6.A07 gene was not responsible for
glossy phenotype.

2.7. Transcriptome Analysis in Waxy and Glossy Stems

We performed comparative transcriptome analysis between the W-bulk and G-bulk to
identify the gene regulatory networks involved in cuticular wax biosynthesis. We obtained
approximately 261 million raw reads for the six cDNA libraries, ranging from 42.3 to
44.4 million reads per library (Table S7). The raw data were submitted to SRA database
under accession number PRJNA860219 (accessed on 19 July 2022). Among the clean reads,
75.1–79.7% were uniquely mapped to the reference genome (Table S7). In total, we identified
5314 differentially expressed genes (DEGs) between the W-bulk and G-bulk, among which
2513 genes were upregulated and 2801 were downregulated in the G-bulk compared with
the W-bulk.

KEGG pathway enrichment analysis revealed that ‘cutin, suberine, and wax biosyn-
thesis’ was significantly enriched (Figure 7a). In accordance with the reduced amount of
cuticular wax in glossy plants, the candidate gene Bra024749 (BrCER60.A09) was signifi-
cantly downregulated in G-bulk, but most of the other genes involved in wax biosynthesis
and its regulation were upregulated (Figure 7b, Table S8). For example, the genes LACS2
(Bra032284), ECR (Bra007154), CER2 (Bra013809), KCS2 (Bra015296), and KCS20 (Bra033694),
which participate in fatty acid elongation, were upregulated in G-bulk (Figure 7b, Table S8). Most
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of the genes in alkane-forming pathways, such as CER3 (Bra002692), MAH1 (Bra027907,
Bra027906, Bra027904, Bra027898 and Bra027897), and genes in alcohol-forming pathway,
such as CER4 (Bra011470) and WSD1 (Bra000019), were all upregulated in glossy plants
(Figure 7b, Table S8). Additionally, the SHINE1 (Bra026140), SHINE3 (Bra009837 and
Bra036543), MYB30 (Bra033067, Bra039040 and Bra025361) and MYB106 (Bra039140) genes,
which participate in transcriptional regulation of cutin and wax biosynthesis, were also
upregulated in G-bulk (Figure 7b, Table S8). Our qRT-PCR analysis of wax metabolism-
related genes was consistent with the RNA-seq results (Figure S8). Cuticular waxes contain
not only VLCFAs and their derivatives, but also other secondary metabolites, such as ter-
penoids, sterols, and flavonoids [6,24,32]. As expected, pathways of ‘flavonoid biosynthe-
sis’, ‘phenylalanine metabolism’, ‘glucosinolate biosynthesis’, ‘stilbenoid, diarylheptanoid
and gingerol biosynthesis’ were significantly enriched (Figure 7a), and most genes in these
pathways were downregulated in G-bulk (Table S8), which was consistent with the reduced
number of waxes in glossy plants.
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3. Discussion

In the present study, the BrWAX3 gene, which confers wax biosynthesis, was suc-
cessfully and finely mapped to a physical interval of 161.82 kb. Several lines of evidence
indicate that Bra024749 (BrCER60.A09) is the candidate gene for BrWAX3. (1) Among
the 16 annotated genes within the 161.82 kb interval, only one gene, Bra024749, which is
homologous to CER60/KCS5 in Arabidopsis, might be involved in cuticular wax biosynthesis.
(2) The expression level of BrCER60.A09 in all aerial organs was much lower in glossy
plants than in waxy plants. (3) A 5567-bp insertion was found in glossy plants, which
resulted in a premature stop codon and loss of function of the CER60 enzyme. (4) Two
functional markers for BrCER60.A09 co-segregated with the wax phenotype. (5) Subcellular
localization analysis showed that the BrCER60.A09 was localized to the ER, which is the
site of wax biosynthesis. (6) Cuticular wax composition analysis showed a reduction of wax
monomers with chain lengths beyond C26 and an increased proportion of shorter chains,
which was in agreement with the CER60 function in Arabidopsis [19]. Overall, the 5567-bp
insertion of BrCER60.A09 in SD369 was the main cause of the glossy phenotype.

Studies in Arabidopsis showed that several cer mutants (cer1, cer2, cer3, and cer6)
are male sterile due to defective pollen recognition or failed pollen hydration [18,33,34].
CER6/KCS6 is involved in VLCFA elongation of C26 to C28 during cuticular wax biosyn-
thesis. The cer6 mutant showed a substantial reduction of derivatives beyond C26, nearly
abolished stem wax accumulation, and exhibited conditional male sterility [10,18–20].
CER60/KCS5, a paralog of CER6/KCS6, plays a redundant role with CER6/KCS6 in wax
biosynthesis, but CER6/KCS6 plays a major role [19]. The mutation in CER60/KCS5 caused
only a slight reduction in total wax amounts in leaves and flowers, and the wax amounts
in stems barely changed [19]. In our study, the mutation of BrWAX3 (BrCER60.A09) in
SD369 caused a significant reduction of wax monomers with chain lengths beyond C26 and
an increased number of shorter chains, which was the same as CER60/KCS5 in Arabidop-
sis [19]. However, BrWAX3 (BrCER60.A09) showed a higher expression level in stems and
leaves than Bra004034 (BrCER6.A07) did (Figures 5a and S9), and the mutation of BrWAX3
(BrCER60.A09) in SD369 caused an obvious glossy appearance of its stems, leaves, and
flower buds, reflecting the predominant role of BrWAX3 (BrCER60.A09) in wax biosyn-
thesis on aerial organs in Chinese cabbage. These results were different from those for
CER60/KCS5 in Arabidopsis, which is transcribed at a low level in all the mature shoot
tissues [20] and plays a minor role in wax biosynthesis [19]. However, another study
revealed that GUS expression driven by the AtKCS5 promoter was much higher than that
driven by AtKCS6 [35], which is consistent with the results of our study. Additionally,
we obtained many seeds after self-pollination of SD369, suggesting that the mutation of
BrWAX3 (BrCER60.A09) in glossy SD369 did not cause male sterility, which was different
from the male sterility that occurred for the cer6 mutant [10,18]. We speculated that the
higher expression of BrCER6.A07 in stamens might compensate for the loss of function of
BrWAX3 (BrCER60.A09) in stamens of SD369 and restore the fertility. Further studies, such
as those involving the generation of BrWAX3 (BrCER60.A09) and BrCER6.A07 single and
double mutants, the identification of their possible roles in wax biosynthesis, and functional
analysis of these two genes, are needed to provide more evidence for the involvement of
these genes in wax formation and pollen development in B.rapa.

The SD369 mutant and the cloned BrWAX3 gene are important for breeding B.rapa
varieties. B.rapa includes a variety of vegetables, such as Chinese cabbage, Pakchoi, Cai-
xin, and purple cai-tai. The edible parts of Cai-xin and purple cai-tai are tender stems,
for which the glossy appearance is preferred by customers [30]. Therefore, breeders can
introduce the locus from SD369 to Cai-xin and purple cai-tai, which would create new
varieties with glossy phenotype but does not influence male fertility (unlike the cer1
mutant in B.rapa). We also developed two functional markers, BrWAX3-InDel and BrWAX3-
KASP1, for BrWAX3 (BrCER60.A09) based on the 5567-bp insertion, which could be used
for molecular marker-assisted breeding either through agarose gel electrophoresis or by
high-throughput genotyping platforms.
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The global effect of BrWAX3 (BrCER60.A09) mutation on gene expression in Chinese
cabbage was also investigated via comparative transcriptome analysis. In contrast to the
lower expression level of BrWAX3 (BrCER60.A09) in glossy plants, most genes in the fatty
acid elongation, alkane-forming, and alcohol-forming pathways of wax biosynthesis, and
in the transcriptional and posttranscriptional regulation of wax biosynthesis, were upreg-
ulated in glossy plants, indicating that a feedback mechanism occurred in glossy plants,
which was consistent with the feedback observed in nwgl glossy cabbage [25]. However,
we could not confirm it was the downregulation of BrWAX3 (BrCER60.A09) or the reduced
amount of wax that caused the feedback. Additionally, genes involved in cutin biosynthesis,
such as CYP77A6 (Bra029852) and CYP86A4 (Bra032642), were also upregulated in glossy
plants (Table S8), which are similar to those in our previous studies [24].

4. Materials and Methods
4.1. Plant Materials

SD369 (P1), a doubled haploid (DH) line of Chinese cabbage with glossy phenotype,
and R16-11 (P2), a DH line with wax phenotype, were used as the parents to construct the
F1, F2, and BC1 populations for inheritance analysis and map-based cloning. Additionally,
another F2 population, (SD369 × SD2135)-F2, was generated for marker validation by
crossing the glossy line SD369 with the waxy line SD2135. All generations were grown in
open fields at Henan Academy of Agricultural Sciences. At the bolting stage, the glossy
and waxy phenotypes were assessed visually. Chi-square test (χ2) was used to examine the
phenotype segregation ratios.

4.2. Cryo-Scanning Electron Microscopy (cryo-SEM) and Gas Chromatography-Mass
Mpectrometry (GC-MS)

A Hitachi SU3500 (Japan) scanning electron microscope was used to observe the
abundance and morphology of wax of leaves from SD369 and R16-11. The method for
cryo-SEM was followed as in our previous study [24].

W-bulk and G-bulk were constructed by mixing equal amounts of leaves from
10 waxy or 10 glossy F2 plants, respectively. In total, three biological replicates of W-
bulk and G-bulk were constructed. The cuticular wax composition and components in
W-bulk and G-bulk were assessed via GC-MS at Shanghai Jiao Tong University, which was
performed as described in our previous study [24].

4.3. Identification of Candidate Genes via Bulked-Segregant Analysis Sequencing (BSA-Seq) and
Kompetitive Allele-Specific PCR (KASP) Assays

Candidate genes were identified according to the BSA-seq method [36]. Two DNA
pools were constructed by mixing equal amounts of DNA from 50 waxy F2 individuals
(W-pool) and 50 glossy F2 individuals (G-pool). The two DNA pools were resequenced by
Anoroad Biotech Co., Ltd. (Beijing, China) using 150-bp PE strategy. The raw data were
deposited in the Sequence Read Archive (SRA) in NCBI as PRJNA859942. The Burrows-
Wheeler Aligner (BWA) [37] was used to map the clean reads to the B.rapa reference genome
V1.5 [38]. The SAMtools software (V1.3.1) [39] was used to detect the single-nucleotide
polymorphism (SNP) and insertion/deletion (InDel) variants between the W-pool and
G-pool. Then, we calculated the SNP-index and ∆(SNP-index) for all genomic positions in
the W-pool and G-pool, which was performed as in our previous studies [24,40]. Finally,
the absolute value of ∆(SNP-index) was calculated for sliding window analysis, with a
1-Mb window width and a 50-kb sliding window step.

We used KASP assay to conduct the initial linkage analysis of the BrWAX3 gene, which
was performed as our previous studies [24,40,41]. First, SNPs showing polymorphism
between the two DNA pools and nearing the candidate BSA-seq region were selected
for KASP marker development [40]. Then, KASP markers (Table S3), showing polymor-
phism between the two parents, were employed to genotype the F2 population containing
93 individuals. The genetic linkage map was constructed using JoinMap 4.0 software [42],
and followed as in our previous studies [24,40].
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954 individuals with glossy phenotypes were used for fine mapping of the candidate gene.

4.4. Gene Cloning and Sequence Analysis

BrCER60.A09, the candidate gene of BrWAX3, and its homologue BrCER6.A07, were
cloned using Phanta® High-Fidelity enzyme Mix (Vazyme, Nanjing, China) in a total
volume of 50 µL reaction: 3 µL DNA template, 3 µL of both forward and reverse primers,
25 µL enzyme mix, and 16 µL ddH2O. The PCR conditions were performed as in the
manuals. The PCR products were sequenced by Sunya Biotech Co., Ltd. (Zhengzhou,
China). The sequences of SD369 and R16 were aligned using DNAMAN.

4.5. RNA Extraction and Expression Analysis

Various tissue samples (root, stem, leaf, sepal, petal, stamen, and pistil) of SD369 and
R16-11 were collected. The total RNA of each sample was extracted using RNAiso Plus
reagent (TaKaRa, Japan), and the first-strand cDNA was synthesized using the TransScript
One-Step gDNA Removal and cDNA Synthesis Kit (Trans, Beijing, China). Quantitative
real-time PCR (qRT-PCR) was performed with SYBR Premix Ex TaqTM II (TaKaRa, Japan).
The analysis of gene relative expression data was performed using the 2-∆∆Ct method [43].
BrGAPDH was employed as the reference gene [24,40]. The primers are listed in Table S5.

4.6. Subcellular Localization

The coding sequences of BrCER60.A09 without the stop codon were amplified from
waxy R16-11 using the primer pairs BrWAX3-fulF and BrWAX3-fulR2 (Table S5). The
amplified cDNA fragments were subsequently inserted into the modified pBWA(V)HS
vector under the control of the 35 S promoter. The resultant binary plasmid was referred
to as pBrCER60-GFP. A pAtPIN5-RFP construct was used as an ER marker [44]. Vector of
pBrCER60-GFP, pAtPIN5-RFP, and the blank control vector were infiltrated into epidermal
cells of tobacco leaves through Agrobacterium-mediated transformation. Fluorescence
signals were observed with a confocal laser scanning microscope (Nikon C1, Japan).

4.7. Transcriptome Analysis

The W-bulk and G-bulk each with three replicates were subjected to mRNA sequencing
by BioMarker Tech Co., Ltd. (Beijing, China). The clean reads of each sample were aligned
to the B.rapa reference genome (V1.5) using HISAT2 software (V2.1.0) [45]. Then, the
fragments per kilobase of transcript per million mapped reads (FPKM) value of each
gene were calculated to estimate gene expression levels. Genes with a q-value ≤ 0.05 and
|log2(fold change)| ≥ 1 identified by DESeq2 (V1.6.3) [46] were recognized as differentially
expressed genes (DEGs). Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analysis was implemented using TBtools [47].

5. Conclusions

The present study showed the molecular mechanism of wax deficiency in SD369. The
BrWAX3 locus was fine-mapped to an interval of 161.82 kb, and Bra024749 (BrCER60.A09),
which encodes a β-ketoacyl-CoA synthase, was the most likely candidate gene for BrWAX3.
A 5567-bp insertion of BrWAX3 (BrCER60.A09) in glossy SD369 caused a loss of protein
function, thus blocking the VLCFA elongation of C26 to C28, and ultimately resulting in
the glossy phenotype. The loss of function of BrWAX3 (BrCER60.A09) in glossy plants also
caused feedback of genes involved in cutin and wax biosynthesis pathways. Besides, two
functional markers for BrWAX3 were developed and validated. Our research will promote
molecular research on wax synthesis in Brassica rapa.
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