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1  |  INTRODUC TION

Phylogenomic methods, including improvements to both sequenc-
ing and analytical techniques, have facilitated the resolution of long- 
recalcitrant phylogenetic relationships across the tree of life (Blaimer 
et al., 2015; Brady et al., 2015; Brewer & Bond, 2013; Faircloth, 
2016, 2017; Haddad et al., 2018; Lemmon et al., 2012; Locke et al., 
2018; McCormack et al., 2012, 2016; McKenna et al., 2019; Misof 
et al., 2014; Van Dam et al., 2017). Ultraconserved elements (UCEs), 

conserved orthologous nuclear protein- coding genes, and other phy-
logenomic markers have traditionally been developed from a wide 
variety of starting material, including fresh tissue for DNA or RNA 
marker development, ethanol- preserved tissues, and museum spec-
imens more than 100- years- old (Blaimer et al., 2016; Branstetter 
et al., 2017; Brewer & Bond, 2013; Derkarabetian et al., 2019; Locke 
et al., 2018; McGuire et al., 2018; Shin et al., 2018; Van Dam et al., 
2017). Even formalin- fixed specimens have shown promise for use 
in phylogenomic analyses (Hykin et al., 2015; Peacock et al., 2017; 
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Abstract
Phylogenomics via ultraconserved elements (UCEs) has led to improved phylogenetic 
reconstructions across the tree of life. However, inadvertently incorporating non- 
targeted DNA into the UCE marker design will lead to misinformation being incor-
porated into subsequent analyses. To date, the effectiveness of basic metagenomic 
filtering strategies has not been assessed in arthropods. Designing markers from 
museum specimens requires careful consideration of methods due to the high levels 
of microbial contamination typically found in such specimens. We investigate if con-
taminant sequences are carried forward into a UCE marker set we developed from 
insect museum specimens using a standard bioinformatics pipeline. We find that the 
methods currently employed by most researchers do not exclude contamination from 
the final set of targets. Lastly, we highlight several paths forward for reducing con-
tamination in UCE marker design.
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Ruane & Austin, 2017). It is generally assumed that using either 
newer tissues or published genomes, the amount of contamination 
from microbes and parasites will be so small as to be inconsequential 
and will therefore have little or no negative impact on phylogenomic 
marker development. Consequently, when freshly sourced tissue or 
genomes from NCBI are used, no significant metagenomic filtering is 
generally carried out (Faircloth, 2017; Gustafson et al., 2019).

However, such contaminants are common in older specimens, 
laboratory reagents, and the environment. Since phylogenetic anal-
yses are likely to be affected by microbial contaminants, it is unset-
tling that this issue is not typically addressed in phylogenomic studies 
(Glassing et al., 2016; Hadfield & Eldridge, 2014; Sangiovanni et al., 
2019). For larger taxa, it may be possible to simply use a single tissue 
type not known to host symbiotic microbes as the source of DNA 
(Łukasik	et	al.,	2017;	Seutin	et	al.,	1991),	but	in	smaller,	soft-	bodied	
organisms, this may not be possible (e.g., Acari, micro- Hymenoptera, 
Coccoidea, Nematoda, protists). Additionally, some taxa, including 
many insects, contain symbionts whose bacteriome may be nearly 
impossible to physically remove (McKenna, 2020).

Although filtering of metagenomic contaminants from UCE 
bait- capture experiments has been performed (Bossert & Danforth, 
2018), this has only been done after the target loci have been de-
signed. Moreover, simply using a more stringent target cutoff will 
not remove baits that have inadvertently been designed from con-
taminants. Coverage- based approaches work well with clean start-
ing material, but when samples are old, coverage tends to be lower or 
uneven (Blaimer et al., 2016; McCormack et al., 2016; Van Dam et al., 
2017). Other authors have developed pipelines to harvest UCE’s 
from exons (Van Dam et al., 2021), or simply blast scaffolds to exon 
accessions on NCBI. While both of these approaches are likely to 
reduce bacterial contamination, they will not reduce contamination 
from microbial eukaryotes in the tissue, and worse still, they rely on 
the assumption that loci containing exons retrieved by blast to the 
database of choice are not underlying mis- annotations contributed 
by algorithm- based gene annotation programs, as opposed to exper-
imentally proven annotations. Presently, no standard metagenomic 
filtering strategy has been proposed as part of the UCE marker de-
velopment workflow. This can be problematic when designing UCE 
markers from museum specimens or organisms whose tissues are 
routinely contaminated by symbionts or other organisms from the 
same environment.

Recent metagenomic filtering methods, such as canopy cluster-
ing and machine learning, rely on a reference database and multiple 
samples to create metagenomic bins (Alneberg et al., 2014; Eren et al., 
2015; Nielsen et al., 2014; Nissen et al., 2018). While these methods 
are ideal, they are cost- prohibitive for UCE marker pilot studies be-
cause they require many tens of specimens to deliver enough sta-
tistical power (Kang et al., 2015; Nielsen et al., 2014). Instead, three 
main strategies of metagenomic filtering are most commonly used 
with single specimen assemblies. These are (1) Metagenomic filter-
ing of small specimens where symbionts are present. This method 
includes aligning reads to a reference genome of a model organism, 
for example, nematodes to Caenorhabditis elegans, or in ancient DNA 

studies on humans and many other animals, aligning reads back to 
the reference genome (Kumar et al., 2013; Rasmussen et al., 2015); 
(2) Examining nucleotide base composition bias, along with scaffold 
coverage, can also help cluster scaffolds (Kumar et al., 2013; Teeling 
et al., 2004); (3) Binning of scaffolds by taxonomic proximity and 
presence of exons in the hope that results provide the best guess as 
to taxonomic identity (Huson et al., 2018; Wood et al., 2019).

Binning scaffolds into taxonomic groups by genetic distance, 
base composition, and coverage should also have some merit for 
work with museum specimens; however, the degree of relatedness 
between non- model organisms and their model anchor is a limiting 
factor. Even eukaryotic model organisms require metagenomic fil-
tering to remove bacterial contamination (Fierst & Murdock, 2017). 
Throughout this paper, we refer to museum specimens as those 
specimens that are long preserved, poorly preserved, or dried and 
otherwise	not	from	single	tissue	sources	stored	at	or	below	−80°C.	
Because contamination may even exist in sequences from a refer-
ence genome (e.g., Koutsovoulos et al., 2016), the genomes derived 
from museum specimens of non- model organisms will almost cer-
tainly require some metagenomic filtering. This is critical for phy-
logenomic marker development to prevent contamination from 
being represented in the probe set. To circumvent this problem, sys-
tematists, particularly those that study arthropods, typically try to 
anchor non- model groups to a “clean” reference genome that is care-
fully extracted from fresh muscle tissue (Faircloth, 2017). However, 
“clean” material may not always be available in rare or small- bodied 
arthropod groups. Thus, there is a need to establish best practices 
for developing phylogenomic markers from tissues that may be 
contaminated.

We explored the taxonomic composition of low- coverage ge-
nome assemblies from insect museum specimens to produce a UCE 
probe set for the jewel weevils, tribe Pachyrhynchini (Coleoptera: 
Curculionidae: Entiminae). We then used these data to assess how 
metagenomic filtering affected UCE probe design. UCE alignments 
were constructed to determine whether anchoring UCEs to a base 
draft genome obtained from muscle tissue, as is standard practice, 
significantly reduces or eliminates contamination in the resulting 
probe design. If it does, the resulting UCEs should only contain 
endogenous insect DNA with few to no scaffolds originating from 
contaminant taxa. We describe our methods and findings below to 
investigate contamination levels resulting from using a clean draft 
genome to anchor museum specimens to develop a custom UCE 
marker set.

2  |  MATERIAL S AND METHODS

2.1  |  Taxon sampling

Pachyrhynchini weevils are a charismatic group of beetles con-
taining more than 155 species, with their center of diversity in 
the Philippines and Australasia (Rukmane, 2018). They are large 
and flightless, have aposematic coloration, and are ideal for 
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investigating the evolution of island- endemism and biogeography 
of the Philippines’ endemic fauna because of the large number 
of closely related species showing intriguing patterns of genetic 
and morphological divergence and (in contrast) convergent mor-
phological evolution in allopatry and parapatry (Wang et al., 
2018). While there are other phylogenomic markers for beetles 
(Faircloth, 2017; Haddad et al., 2018; Johnson et al., 2018; Shin 
et al., 2018), a phylogenomic marker set specifically tailored for 
optimal loci capture in the Pachyrhynchini does not yet exist. 
Here, we use three weevil species from the Philippines, one from 
Papua New Guinea (PNG), and a fourth species as an outgroup. 
The outgroup, Diaprepes abbreviatus, is an entimine weevil native 
to the Caribbean island of Puerto Rico. It is an economically im-
portant pest of a variety of fruit trees in the Caribbean region and 
the southern United States (Simpson et al., 1996). The addition 
of this outgroup taxon will ensure that the marker set is univer-
sal across the ingroup (Faircloth, 2017), and will likely also ensure 
utility across many other weevils in the extremely large subfamily 
Entiminae (more than 12,000 described species).

2.2  |  Collection localities

Oribius	 sp.:	 Papua	New	Guinea,	Mt.	Wilhelm,	 −5.714639	 145.275	
1680 m 7– 8- XI- 2014 leg. M Van Dam: Pachyrhynchus spp. and 
Metapocyrtus sp.: Makiling Forest Reserve Laguna, Calamba, Laguna, 
Philippines 2011. Pachyrhynchini samples were initially preserved 
in 95% EtOH upon collection in 2011, stored at room temperature, 
then extracted in 2017. The Oribius sp. Marshall, 1956 (placed in 
the tribe Celeuthetini) sample was preserved in 95% EtOH in 2014 
and kept at ambient temperature while in the field for 5 weeks, and 
then	preserved	at	−20°C	until	DNA	extraction	in	2017.	Diaprepes ab-
breviatus (DDM2014024) was obtained by DDM from a laboratory 
research colony maintained by Dr. S. L. Lapointe in 2013. USDA/
ARS, Horticultural Research Laboratory. 2001 South Rock Road. 
December 2013.

2.3  |  DNA extraction

For all DNA extractions only one sample was used to build down-
stream libraries and sequencing. Except for D. abbreviatus, DNA was 
extracted using DNeasy Tissue kits (Qiagen; Macherey- Nagel) fol-
lowing the methods of Van Dam et al. (2017). Briefly, using sterilized 
forceps (soaked in 10% bleach and flame sterilized between use). 
Muscle tissue was removed from the pronotum, mesothorax, and 
abdomen and placed in a 1.5– 2.0 ml centrifuge tube for tissue lysis 
and extraction (Van Dam et al., 2017). A single adult D. abbreviatus 
(DDM2938)	was	placed	live	in	cold	RNAlater	and	stored	at	−80	°C	
until extraction. Total genomic DNA was extracted from the pro-
thorax and one hindleg using the G- Biosciences Omniprep gDNA 
extraction kit/protocol and treated with RNAse A before genomic 
DNA library preparation following the methods of Shin et al. (2018).

2.4  |  Illumina library preparation and sequencing

2.4.1  |  Diaprepes	abbreviates

Following visualization on a 1× agarose gel, samples were sonicated 
to a size of approximately 400– 700 bp on a Covaris M220 ultra-
sonicator (Covaris). Dual- indexed shotgun genomic libraries were 
prepared by the University of Illinois Roy J. Carver Biotechnology 
Center/W.M. Keck Center (Champaign- Urbana, Illinois) using the 
Hyper Library construction kit from Kapa Biosystems following 
manufacturer's instructions. All libraries were constructed using 
six cycles of PCR and size selected for fragments 400 to 500 bp 
in length. Paired- end (PE) sequencing was conducted on a MiSeq 
v2 (250 bp PE reads) at the University of Illinois and using a HiSeq 
2500 (150 bp PE reads) at Florida State University (Tallahassee, FL). 
Paired- end SRA reads in FASTQ format were trimmed to remove 
low- quality bases and adapter sequences and used as the input file 
for de novo assembly using the CLC Genomics Workbench version 
4.9 (www.qiage nbioi nform atics.com/produ cts/clc- genom ics- workb 
ench/). Statistical parameters were maintained at their defaults.

2.4.2  |  Other	taxa

Following visualization on a 1× agarose gel, samples were sonicated 
to a size of approximately 400 bp on a Covaris M220 ultrasonica-
tor (Covaris). Library preparation procedures followed Van Dam 
et al. (2017). Sequencing was performed via an Illumina HiSeq4000 
at GeneWiz Next Generation Sequencing Center (South Plainfield, 
New Jersey).

2.4.3  |  Illumina	data	quality	filtering

Data were first inspected via a fastqc (Andrews, 2010) qual-
ity report. Data were then quality filtered with Trimmomatic v. 
0.36 (Bolger et al., 2014) using the settings “PE: ILLUMINACLIP: 
TruSeq3- PE.fa:2:30:10:2:keepBothReads LEADING:3 TRAILING:3 
SLIDINGWINDOW:4:20 MINLEN:36.” A summary of the quality- 
filtered reads, organized by sample, can be found in Table S1.

2.4.4  |  Nanopore	sequencing

Because the Oribius sp. sample was the most recently preserved, 
an attempt was made to add additional long reads to improve the 
assembly. This sample was not fragmented and went directly to li-
brary construction following the protocols in Oxford Nanopore 
Technologies (ONT) 1D PCR barcoding genomic DNA (SQK- LSK108) 
for version R9 chemistry to construct the libraries. We followed the 
ONT protocol for the SpotOn Flow Cell version R9 chemistry (ONT 
cat No. FLO- MIN 107 R9). The Library Loading Bead kit (ONT cat 
No. EXP- LLB001) was used to help load samples onto the flow cell. 

http://www.qiagenbioinformatics.com/products/clc-genomics-workbench/
http://www.qiagenbioinformatics.com/products/clc-genomics-workbench/
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The flow cell was loaded onto an ONT MinION sequencer and ran 
for 48 hours using ONT MinKNOW software.

2.4.5  |  Nanopore	data	quality	filtering

We used the albacore basecaller v2.1.3 (Oxford Nanopore 
Technologies, 2017a) to convert the fast5 data to FASTQ format 
(Oxford Nanopore Technologies, 2017b). Quality filtering was ex-
ecuted in NanoFilt 2.6.0 as part of NanoPack (De Coster et al., 2018). 
Read length, Phred quality scores, and other summary statistics 
were calculated using Pauvre (Schultz, 2018) and NanoPlot. A total 
of 171,816 and 87,639 reads met albacore quality standards on two 
flow cells. These data were combined with the Illumina data (Table 
S1) to generate a hybrid assembly. The ONT reads were then used in 
the gap closer process with the SPAdes assembler (Bankevich et al., 
2012).

2.4.6  |  Draft	genome	assembly

Kmergenie (Chikhi & Medvedev, 2014) was used to find the optimal 
k- mer size for assembly. The resulting optimal k- mer size was then 
added to k values of 21,33,55 and 77 in the SPAdes- 3.11.1 (Bankevich 
et al., 2012) genome assembly pipeline. BUSCO v1.22 (Seppey et al., 
2019; Simão et al., 2015) was used to assess draft genome complete-
ness of capturing conserved single- copy genes using the Arthropoda 
Odb10 database. For summary statistics on assembly quality bbmap 
stat.sh (Bushnell, 2015) script was used to assess the quality of draft 
genome assemblies.

2.5  |  Metagenomic clustering strategy to explore 
sources of contamination

2.5.1  | Metagenomic	filtering

Metagenomic filtering from a single library per sample necessitates 
using methods relying on scaffold coverage cutoff, GC content, and 
annotating the scaffolds via blast. The Blobology pipeline used here 
employs read coverage, blast+ (Kent, 2012) to the nt database for 
taxonomic annotation (blast v.2.7.1, nt database March 2019), and 
GC content to inform manual metagenomic clustering of assembly 
taxonomic annotation (Kumar et al., 2013). Blast+ settings were 
blastn megablast with an e- value of 1e- 5 cutoff. Reads that passed 
the quality trimming step from Trimmomatic were aligned to their 
respective genome using the mem algorithm in bwa version 0.7.3a, 
with default settings used to get an estimate of contig coverage 
and generate coverage plots (Li & Durbin, 2009). Plots produced via 
Blobology (Kumar et al., 2013) or BlobTools (Laetsch & Blaxter, 2017) 
assisted with annotation. This plotting method has proven success-
ful in a wide variety of Eukaryotic genome sequencing projects for 
exploring potential sources of contamination and host- symbiont 

relationships (Dentinger et al., 2016; Husnik & McCutcheon, 2016; 
Szitenberg et al., 2017). The blob graphs allow for the visualization 
of the relative degree of contamination in each draft genome, where 
scaffolds clustered based on taxonomy, coverage, and GC content 
(Figure 2).

2.5.2  |  UCE	marker	development

We used the PHYLUCE v 1.5.0 pipeline (Faircloth, 2016) to develop 
UCEs from our five weevil genome assemblies. We used the D. ab-
breviatus draft genome as the base genome for this analysis. The D. 
abbreviatus genome was repeat masked using RepeatMasker 4.0.6 
(Smit et al., 2015). A UCE combined probe length of 160 bp was 
used for probe development. UCE probes were culled to have an 
≥80%	match	 across	 the	 ingroup	 taxa.	 Duplicated	 probes	mapped	
via Lastz (Harris, 2007) to multiple regions in their host genomes 
were removed (Faircloth, 2016). This resulted in 9217 UCEs and 
86,079 master UCE probes. Probes were then mapped back to all 
five draft genomes via PHYLUCE and Lastz (Harris, 2007). The final 
data matrix was composed of genomic regions matching the master- 
UCE probes with 80% coverage and 80% match across the five taxa 
with 500 bp flanking regions.

2.5.3  |  UCE	taxonomic	annotation	and	
metagenomic binning

The taxonomic mapping from the initial blast+ mapping was used 
to provide an initial putative taxonomic assignment to UCE- based 
scaffolds (Figure 2). Blatq (Henderson, 2018; Kent, 2002, 2012) was 
used to rapidly align the UCEs to each genome (Figure 2). This ini-
tial taxonomic annotation revealed many scaffolds that remained 
unannotated.

2.5.4  |  UCE	probe	parent	scaffold	annotation

Briefly, three methods were chosen as binning strategies for UCE 
parent scaffolds using this custom database (1) blast+ alignment- 
based mapping (2) Kraken2 k- mer- based annotation (3) Lastz nucleo-
tide similarity- based cutoff mapping. In more detail, the UCE loci's 
parent scaffolds were identified via the Lastz PHYLUCE results.

Using the three methods described above, scaffolds were as-
signed a taxonomic identity using a custom reference database. The 
custom references included the Rice Weevil genome v- 2.0 (Sitophilus 
oryzae, NCBI RefSeq:13876818) and the Kraken2 (Wood et al., 2019) 
bacterial and fungal databases, as well as additional representative 
genomes from likely contaminant clades that were identified by 
the initial blast+ nt analysis. These clades were Acari, Nematoda, 
Platyhelminthes, Chordata, and Viridiplantae. A complete list of con-
taminating taxa used in the custom database is provided in Appendix 
S1: Table S4.



    |  5 of 13VAN DAM et Al.

Using the custom reference set, the UCE- based scaffolds were 
binned via Kraken2 using default settings (Wood et al., 2019). Using 
the Blast v 2.7.1 tool, “blastn megablast” was used to report only the 
annotation with the highest bit- score E- 5 cut- off. Lastz alignment 
tool was used with default settings and an 85% alignment cut- off (as 
in Bossert & Danforth, 2018).

Finally, a linear regression model was used to see if k- mer cover-
age was predicted by UCE parent scaffold length and contaminant 
taxa via R 3.3.3 (Cran, 2010). As short scaffolds are expected to 
contain more contaminants, the linear regression was used to help 
visualize contaminants by parent UCE scaffold size and coverage.

3  |  RESULTS

3.1  |  Illumina and nanopore sequencing and data 
quality filtering

After sequencing the Pachyrhynchini species, there were between 
109 M and 122 M paired- end reads (post Trimmomatic quality filter-
ing) for each sample. The Nanopore sequencing produced 171,816 
and 87,639 reads with a Q5 quality score or better on the two flow 
cells. See Appendix S1: Tables S1 and S2 and Figure S1 for a full sum-
mary of sequencing results.

3.2  |  Draft genome assembly

The Pachyrhynchini assemblies contained between 1.5 M and 0.5 M 
contigs, with an N50 ranging from 370– 2189 bp, revealing that the 
assemblies are generally low quality (see Appendix S1: Table S3 for 
a full summary). BUSCO scores were also low ranging from 60 to 
732 complete single- copy genes out of 1367 single copy genes from 
the Arthropoda Odb10 database (see Appendix S1: Figure S2 for 
full BUSCO score summary). The relatively low quality is acceptable 
for building UCEs and is expected from museum specimens (Locke 
et al., 2018; Van Dam et al., 2017, 2019). The D. abbreviatus draft 
genome was highly fragmented, with 3.8 M contigs and an N50 of 
437 (Appendix S1: Table S3), the BUSCO score of 164 was also low 
(Appendix S1: Figure S2).

3.3  |  Metagenomic clustering

The Blobology profile results revealed that every sample was heav-
ily contaminated with bacterial contigs (Figure 1). There were two 
to three major clusters of Bacteria clades in each sample (Figure 1). 
The most common clades of Bacteria in the samples were as follows: 
Acidobacteria, Actinobacteria, α- proteobacteria, β- proteobacteria, 
and γ- proteobacteria. Based on the Blast+ annotation in the Blob 
plots, it is clear that Blast+ retrieves a variety of spurious annota-
tions (e.g., tropical amphibian lineages; see Figure 1). It is less clear 
whether some of the other eukaryotic annotations are spurious, 

such as Acari (mites) and Cestoda (parasitic flatworms) (Figure 1), 
because both mites and cestodes are common symbionts of beetles 
(Baumann, 2018; Shostak, 2014). Some scaffolds were annotated 
to Mammalia and could be spurious annotations and/or laboratory 
contamination (Figure 1). The D. abbreviates draft genome was quite 
clean compared to the other four taxa with very few contigs as-
signed to Bacteria, and no Bacteria contigs forming noticeable blob- 
like clusters (Figure 1).

The bacterial contaminants are unlikely to be spurious since 
these formed distinct blobs that tended to have higher GC content 
than the insect contigs and less than 100x coverage. There is also a 
scattering of both insect and contaminant reads with high coverage 
and lower GC content (Figure 1). Also, there is a significant overlap 
of low coverage contigs between the eukaryote/insect blob and the 
bacteria blobs (Figure 1).

3.4  |  UCE markers and metagenomic UCE 
loci binning

PHYLUCE produced 9217 UCE loci that were conserved across the 
five taxa. From this master- probe list, there were 8688 UCE loci in 
the final matrix. The count of UCE loci that is comprised of the final 
matrix by taxon are as follows: 8404 Metapocyrtus (Artapocyrtus) 
c.f. geniculatus, 8073 Pachyrhynchus erichsoni, 7970 Pachyrhynchus 
reticulatus, 7780 Oribius sp., and 7732 Diaprepes abbreviatus. The 
rapid UCE scaffold annotation via blatq revealed that the final UCE 
dataset consistently mapped to various contaminating sequences, 
including Bacteria, Acari, and Cestoda, across all five weevil taxa 
(Figures 2 and 3).

The metagenomic binning via Kraken2 of the UCE loci in the final 
data matrix also had significant bacterial contamination (Figure 3). 
The Kraken2 annotation retrieved >160 UCE loci of Insecta for each 
of the five species compared to the Blast+ annotation to the same 
database (Figure 3). The Kraken2 binning revealed that all taxa 
had significant bacterial contamination (4%– 10%; range 341– 966 
Bacteria UCE contigs Figure 3). The blast+ annotation with both the 
nt and custom database revealed that the UCE parent scaffolds had 
bacterial and/or fungal contamination across all five weevil species 
(see Figure 3). Similar results were obtained via the Kraken2 annota-
tion but with more scaffolds identified as contaminants than Blast+ 
(Figure 3). While the lastz methods produced a consistent set of UCE 
scaffolds across the species, many were dubious because they over-
lapped with contaminant scaffolds using blast+and Kraken2 (Figures 
3 and 4).

The linear regression model of UCE parent scaffolds length and 
k- mer coverage did not show any significant breaks in coverage de-
marcating potential contaminants (Figure 5). Scaffolds of both con-
taminant UCEs and Insecta UCEs had lengths over 10 kb and over 
100× coverage (Figure 5), making it impossible to discriminate be-
tween insect and non- insect scaffolds by coverage/length alone. K- 
mer coverage and scaffold length were also significantly correlated 
(p- value: <2.2e−16).
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F I G U R E  1 Blob	plots	of	draft	genome	assembly	scaffolds,	Y- axis is read coverage via the bwa- mem algorithm, X- axis is GC content of 
individual scaffolds. Color is coded by taxonomic class
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F I G U R E  2 Blob	plots	of	UCE-	bearing	
scaffolds from the master UCE probe set. 
The Y- axis is read coverage via the bwa- 
mem algorithm, and the X- axis is the GC 
content of individual scaffolds. Color is 
coded by taxonomic class
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4  |  DISCUSSION

In all five taxa, <50% of the UCE parent scaffolds had their origins 
definitively binned by either blast+, lastz, or Kraken2 (Figure 2). We 
have demonstrated that despite careful extraction to avoid con-
tamination, museum specimens of weevils consistently contain high 
levels of bacterial and non- target contamination. This contamination 
was carried over to the UCE alignment matrix in the form of UCEs 
that reside in scaffolds of bacterial origin. The level of contamina-
tion varies by reference database (nt vs. custom) and the method 
of metagenomic binning (blast+, Kraken2, lastz). Contamination is 
consistent across all methods and databases via cross- checking the 
methods against each other. The UCE contamination does not ap-
pear to be restricted to low coverage (<10×), short scaffolds (~1 kb), 
but appears to populate long scaffolds (>10 kb) with high coverage 
(>50×). In fact, many of the contaminant scaffolds that were incor-
porated into the UCE data matrix had high coverage and were rela-
tively long. An artifact of de Bruijn graph assembly programs is that 
smaller genomes tend to have higher coverage (Kumar et al., 2013). 
While coverage may be an excellent method to eliminate low- level 
laboratory contamination (Douglass et al., 2019), it is doubtful that 
contamination in museum specimens would be eliminated by cov-
erage and length alone because of near- complete coverage- depth 
overlap in these specimens (Figures 1, 2 and 5). Simply running 
blast+ to an exemplar bacterial genome (e.g., Wolbachia or E. coli) 
or an exemplar eukaryote model organism (e.g., Sitophilus orizae or 
Drosophila) will produce hundreds to thousands of ambiguous un- 
annotated scaffolds. Most of the systematics community works on 
organisms distantly related to model organisms, suggesting that 
this metagenomic binning approach will continue to be problematic 
across taxa. Because of the costly nature of phylogenomic studies, 
a reduction in loci is not ideal. Most studies that benchmark the ac-
curacy and recall of metagenomic mapping/binning methods fail to 
consider the genetic distance between non- model organisms and 

the data in the NCBI nt and RefSeq databases (Sarmashghi et al., 
2019). This problem is manifested here, as the majority of contigs 
remained unannotated.

4.1  |  Paths forward for museum- based insect 
phylogenomics

With the advent of truly high- throughput Illumina sequencers (e.g., 
NovaSeq), the cost of producing draft genomes is greatly reduced, 
so it is possible to create relatively decent draft genomes and ex-
tract loci from a single museum specimen (Cotoras et al., 2017; 
Derkarabetian et al., 2019; McGuire et al., 2018; McKenna et al., 
2019). The lower cost of sequencing will also make it possible to use 
more statistically robust methods, such as canopy clustering- based 
methods, for example, CONCOCT or MetaBAT, assuming you have a 
close reference genome (Alneberg et al., 2014; Kang et al., 2015). 
Machine deep learning metagenomic binning methods (e.g., VAMB) 
should also be explored and could be a way to rescue these types 
of heterogeneous multi- taxa data (Nissen et al., 2018). These meth-
ods could potentially work for studies entirely composed of museum 
specimens but remain untested. Another potential path is reference 
assemblies that incorporate Hi- C data (Dudchenko et al., 2017). 
These data types group scaffolds into ordered chromosomes based 
on their Hi- C mapping interactions. Consequently, genomes that do 
not map to the other chromosomes, such as bacteria, can easily be 
identified and removed.

Another possible way to reduce the chances of contamination is 
using Anchored Hybrid Enrichment (AHE) probe sets or other exon- 
based markers (Bi et al., 2012; Haddad et al., 2018; Lemmon et al., 
2012; Shin et al., 2018). With these methods, the initial probe set is 
anchored to single- copy nuclear genes, ideally derived from tran-
scriptomes. Anchoring marker sets to poly- A tailed RNA- seq data 
would certainly eliminate most if not all bacterial contamination 

F I G U R E  3 UCE	bar	chart.	Y- axis is the 
total number of UCEs, and the X- axis is 
the method used to annotate associated 
species. Color is coded by taxonomic 
annotation
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but may still require screening for microbial eukaryotes. However, 
these methods typically require an annotated genome and/or tran-
scriptomes for their design (Bi et al., 2012; Lemmon et al., 2012), 

limiting their use to clades where freshly collected material is avail-
able (i.e., not preserved museum specimens). To capture a diverse set 
of genomic categories, using UCEs for their intergenic and intronic 

F I G U R E  4 Venn	diagrams	of	UCE	
bearing scaffolds annotated by taxonomic 
groups. The groupings are the same ones 
used in the final data matrix

F I G U R E  5 Linear	regression	of	log	
UCE loci length versus the log of coverage 
for Pachyrhynchini taxa in the final data 
matrix
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markers (Van Dam et al., 2021) coupled with AHE seems to be a ben-
eficial combination (Wood et al., 2018).

Several other aspects of contamination on UCE datasets remain 
unresolved. DNA degradation in museum specimens may further 
confound the accuracy of binning because longer scaffolds may be 
more accurately binned than shorter scaffolds (Leidenfrost et al., 
2020). Examining the effects of UCE parent scaffold or contig length 
on the accuracy of metagenomic binning should also be explored in 
the future to potentially improve the accuracy of novel UCE marker 
set development. While we demonstrate that contaminants are in-
corporated into a UCE dataset, the effects of contamination on the 
subsequent phylogeny remain unexplored.

The potential contamination of UCE data used in phylogenomic 
papers involving museum specimens is not limited to insects. Similar 
levels of contamination are likely prevalent in other invertebrates 
and in herbaria or archeological specimens. The methods used by 
the systematics community have advanced rapidly in the era of 
phylogenomics. However, relatively little attention has been given 
to potential contamination in these datasets. Future studies should 
incorporate a robust metagenomic binning method (beyond just a 
blast+filtering step) to eliminate sources of contamination from 
downstream phylogenomic analyses.
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