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Abstract

Type 1 Epstein-Barr virus (EBV) strains immortalize B lymphocytes in vitro much more efficiently than type 2 EBV, a difference
previously mapped to the EBNA-2 locus. Here we demonstrate that the greater transforming activity of type 1 EBV correlates
with a stronger and more rapid induction of the viral oncogene LMP-1 and the cell gene CXCR7 (which are both required for
proliferation of EBV-LCLs) during infection of primary B cells with recombinant viruses. Surprisingly, although the major
sequence differences between type 1 and type 2 EBNA-2 lie in N-terminal parts of the protein, the superior ability of type 1
EBNA-2 to induce proliferation of EBV-infected lymphoblasts is mostly determined by the C-terminus of EBNA-2.
Substitution of the C-terminus of type 1 EBNA-2 into the type 2 protein is sufficient to confer a type 1 growth phenotype
and type 1 expression levels of LMP-1 and CXCR7 in an EREB2.5 cell growth assay. Within this region, the RG, CR7 and TAD
domains are the minimum type 1 sequences required. Sequencing the C-terminus of EBNA-2 from additional EBV isolates
showed high sequence identity within type 1 isolates or within type 2 isolates, indicating that the functional differences
mapped are typical of EBV type sequences. The results indicate that the C-terminus of EBNA-2 accounts for the greater
ability of type 1 EBV to promote B cell proliferation, through mechanisms that include higher induction of genes (LMP-1 and
CXCR7) required for proliferation and survival of EBV-LCLs.
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Introduction

Epstein-Barr Virus (EBV) is a B-lymphotropic gamma herpesvi-

rus which persistently infects over 90% of the adult population

world-wide. EBV infection is usually asymptomatic, although in

some cases the virus can be the causative agent of infectious

mononucleosis [1]. EBV is also involved in some B cell cancers, such

as Burkitt’s Lymphoma (BL), Hodgkin’s Lymphoma and lympho-

proliferative disease in immunocompromised hosts, in addition to

various epithelial tumors, for example nasopharyngeal carcinoma

(NPC) and gastric cancer [2]. In vitro, EBV can efficiently immor-

talize primary B cells, converting them into permanently growing

lymphoblastoid cell lines (LCLs), in which the viral genome is

maintained in an episomal form. A specific viral gene expression

program, known as latency III [3], is activated in LCLs and this

involves expression of six nuclear antigens (EBNA-1, -2, -3A, -3B, -

3C and -LP), three membrane proteins (LMP-1, -2A and -2B), and

various non-coding small RNAs (EBERs and miRNAs). Together

these viral gene products activate the resting B cells and sustain their

continuous proliferation. [1]. Work with recombinant EBV viruses

has demonstrated that at least five of the latent proteins (EBNA-1, -

2, -3A, -3C and LMP-1) are essential for EBV-mediated B cell

transformation, while EBNA-LP and LMP-2 can contribute to

optimal efficiency of this process [4-11].

EBV isolates can be classified as type 1 or type 2 (also known as

type A and B) based on linked sequence variation in the latent

genes EBNA-2, EBNA-3A, -3B, -3C and EBNA-LP. The most

divergent locus between the two viral types is EBNA-2, which

defines the viral types. There is about 50% difference in the

predicted primary amino acid sequence, which is strikingly high if

compared to the extremely low degree of variation in the rest of

the EBV genome [12–17]. Type 1 strains of EBV are ubiquitous in

the world, whereas type 2 strains are frequent in some areas of

Central Africa and some other parts of the world where malaria is

endemic. In these regions, type 1 and type 2 EBV have

approximately equal prevalence [18]. The major biological

difference between the two viral types is that type 1 EBV

immortalizes B cells in vitro much more efficiently than type 2 EBV

[19]. Experiments with a recombinant type 2 EBV virus carrying a

type 1 EBNA-2 sequence showed that this virus gained a type 1

immortalization phenotype, demonstrating that the difference in

transformation efficiency is determined by the EBNA-2 locus [5].

The in vitro transforming activities of type 1 and type 2 EBV also

correlate with the frequency of tumor formation in SCID mice

inoculated with type 1 or type 2 EBV in vitro-transformed LCLs

[20,21]. Despite the clear difference in growth phenotype in vitro,

there is so far no obvious disease association or in vivo phenotype

known for type 1 and type 2 EBV strains, although one study
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reported that type 1 EBV strains are significantly more likely to

cause infectious mononucleosis, compared to type 2 strains [22].

Upon EBV infection of naı̈ve B cells in vitro, EBNA-2 and EBNA-

LP are the first viral latent proteins expressed. EBNA-2 is a

transcription factor that can activate expression of the viral Cp and

LMP promoters and many cell genes crucial for B cell survival and

proliferation [1,23–26]. Activation of some of these promoters by

EBNA-2 is enhanced by cooperation with EBNA-LP [27-31].

Sequence comparison analysis of the EBNA-2 allele from type 1 and

type 2 EBV and different primate lymphocryptoviruses, led to

identification of nine evolutionary conserved regions (CR1 to CR9)

which represent much of the total sequence homology between type

1 and type 2 EBNA-2 proteins and define some functional domains

and important structures of the protein [13,32] (see diagram below).

CRs 1 to 4 at the N-terminus of the protein correspond to two self-

association domains [33,34] and a poly-proline region, which

consists of a variable number of consecutive proline residues,

depending on the virus strain. CRs 5 to 9 are located in the C-

terminal half of the EBNA-2 protein, separated from the N-terminal

cluster of CRs by the diversity region, where the sequence similarity

between type 1 and type 2 EBNA-2 is very low. CR5 is involved in

association with the host DNA-binding protein RBP-Jk and CR6

mediates the interaction with the cell protein SKIP, which facilitates

EBNA-2/RBP-Jk complex formation [35,36]. CR8 is part of an

acidic transactivation domain (TAD), which mediates gene

transcriptional activation, whereas CR9 coincides with a nuclear

localization signal (NLS). An additional karyophilic signal is

represented by the RG sequence, which consists of an 18-amino

acid stretch rich in arginines and glycines [32]. Four domains of

EBNA-2 have been shown to be involved in EBNA-2/EBNA-LP

cooperation: the TAD, amino acids 1 to 58, the RG motif and the

CR7 [31,37]. Detailed mutational analysis of the type 1 EBNA-2

protein led to mapping the regions essential for transformation.

These regions are mostly also essential for transactivation of the

LMP-1 promoter, suggesting that transformation and transactiva-

tion functions of EBNA-2 are closely related [38]. In the N-terminal

half of EBNA-2, residues 3 to 30 have been shown to be required for

induction of LMP-1 expression and, consequently, for immortali-

zation maintenance, using the EREB2.5 trans-complementation

system [39]. CR4 has been shown to contribute to EBNA-2

mediated immortalization of B cells, as mutant viruses with a

deleted CR4 are drastically impaired in B cell transformation [40].

B cell infection experiments with recombinant viruses suggested that

a minimum of seven prolines in the poly-proline region is required

for transformation, whereas in the EREB2.5 trans-complementation

assay, the whole poly-proline region was found to be dispensable for

EBNA-2-mediated immortalization maintenance [41,42]. In the C-

terminal half of the protein, the transactivation domain and the

RBP-Jk-binding region are absolutely required for B cell immor-

talization and LMP-1 induction [38,43]. The RG motif has been

demonstrated to be important for optimal B lymphocyte transfor-

mation efficiency [44]. However, a deletion mutant EBNA-2

protein lacking the RG sequence displayed a four-fold increase in

the activation of the LMP-1 promoter in reporter assays, compared

to wild-type EBNA-2, suggesting that the RG domain is a negative

regulator of EBNA-2 activity on the LMP-1 promoter [44].

EBNA-2 mechanisms of transcriptional activation have been

identified by many studies, which have mainly involved type 1

EBNA-2, whereas less is known about the type 2 EBNA-2. EBNA-

2 does not bind directly to DNA but is tethered to EBNA-2

responsive promoters by interacting with various cell DNA-bound

transcription factors. For example, it interacts through its

conserved WWPP motif with the transcriptional repressor RBP-

Jk (CBF1), thereby converting RBP-Jk to the transcriptionally

active form [35,45]. Additional cell sequence-specific transcription

factors are involved in EBNA-2 recruitment at some target

promoters, such as Spi-1/PU.1, AP-2 and AUF1 [46–50]. EBNA-

2-mediated gene transcription is activated by the transactivation

domain which interacts with several cell basal transcription factors

(TFIIH, TAF40, TFIIB and p100/TFIIE) and histone acetyl-

transferases (p300/CBP and PCAF) [51–54]. Other EBNA-2-

interacting partners are involved in chromatin remodelling, such

as proteins of the cell SWI-SNF complex [55,56].

EBNA-LP contains multiple copies of an N-terminal 66-aa

domain encoded by two exons (W1 and W2), located within each

of the BamHI W repeats of the EBV genome, and a unique C-

terminal 45-aa domain encoded by the Y1 and Y2 exons within

the downstream BamHI Y fragment [57–59]. Due to variations in

the number of BamHI W repeats in different viruses and

alternative splicing between the repeated W1W2 exons and the

unique Y1Y2 exons, EBNA-LP proteins of different sizes can be

expressed in EBV-infected cells. Genetic studies showed that

recombinant viruses lacking the C-terminal 45 amino acids display

a markedly lower immortalization efficiency compared to wild-

type viruses and require feeder cells, suggesting that EBNA-LP is

important but not essential for EBV-induced immortalization

[6,9]. Importantly, EBNA-LP has been shown to cooperate with

EBNA-2 and enhance EBNA-2 transcriptional activation of both

viral (LMP-1/LMP-2B, Cp) and cell (cyclin D2) target promoters

[27–31]. Most of the cooperative function of EBNA-LP maps to

the W1W2 repeats, whereas the unique carboxyl-terminal Y1Y2

domains modulate EBNA-LP function [28,29]. Only proteins with

2 or more copies of the W1W2 repeat are capable of cooperating

with EBNA-2 and viruses with two BamHI W repeats are

immortalization-competent [17,29,60,61].

LMP-1 is required for establishment of B cell transformation in

vitro [8] and is also required for continuous proliferation of EBV-

infected LCLs [62]. Regulation of LMP-1 by EBNA-2 is complex

and involves many cell proteins, including RBP-Jk, PU.1, AP-2,

SWI-SNF, CBP/p300, ATF/CREB [46-49,54,63]. Unlike other

EBNA-2 target promoters (e.g. LMP-2A), the EBNA-2/RBP-Jk

interaction plays only a minor role in EBNA-2-induced activation

of the LMP-1 promoter [64]. Since the EBNA-2 domains that are

essential for B cell transformation and LMP-1 induction are

Author Summary

Epstein-Barr virus (EBV) is a common human virus that is
involved in several types of cancer and directly causes
human B lymphocytes to proliferate when they become
infected. EBV occurs naturally as two different viral types
(type 1 and type 2). The genomes of these viruses are
mostly very similar but they differ in a few genes,
particularly the EBNA-2 gene. For many years it has been
known that type 1 EBV is much more effective than type 2
EBV at causing B lymphocyte proliferation and this
difference is mediated by the EBNA-2 gene. Here we have
shown that the greater ability of type 1 EBNA-2 to cause B
cell proliferation is due to superior induction of the EBV
LMP-1 and the cell CXCR7 genes, both of which are
required for growth of EBV-infected lymphocytes. We
mapped the section of type 1 EBNA-2 responsible for this
to the C-terminus of the protein, including the transactiva-
tion and EBNA-LP interaction domains. The results provide
a mechanism for the long-standing question of the
functional difference between these two major types of
EBV and will be important in understanding the signifi-
cance of the EBV types in human infection.

EBNA-2 Type Specific Regulation of LMP-1 and CXCR7

PLoS Pathogens | www.plospathogens.org 2 July 2011 | Volume 7 | Issue 7 | e1002164



similar, transactivation of LMP-1 by EBNA-2 is considered to play

a key role in EBNA-2-induced B lymphocyte transformation [65].

Several studies have used microarray analysis to identify human

genes that are targets of type 1 EBNA-2 [23–25] but until recently

little was known about the ability of type 2 EBNA-2 to regulate gene

expression. In earlier reports the abilities of type 1 and type 2 EBNA-

2 to up-regulate gene expression were compared only on two

individual promoters, LMP-1 and CD23 [66,67]. Recently we

compared the host genes induced by type 1 EBNA-2 to those induced

by the type 2. Only a few genes were found to be differentially

regulated (CXCR7, MARCKS, IL1b and ADAMDEC), with a

stronger induction by type 1 EBNA-2 [26]. Among these, CXCR7

was the most differentially regulated gene and was also shown to be

required for proliferation of EBV-infected LCLs. Expression of

MARCKS, IL1b and ADAMDEC was very low in LCLs and may

not be significant [26]. CXCR7 (RDC1, CMKOR1) is a G-protein

coupled chemokine receptor with seven trans-membrane domains

[68,69]. CXCR7 binds with high affinity to the inflammatory and

homing chemokines CXCL12/SDF-1 and CXCL11/ITAC, which

are also ligands for CXCR4 and CXCR3 respectively [70,71].

CXCR7 is believed to be an atypical chemokine receptor since

neither coupling of the receptor to G-proteins nor CXCR7-mediated

triggering of typical chemokine responses, such as chemotaxis or

receptor-induced calcium mobilization, could be demonstrated [70-

73]. Therefore, CXCR7 has been proposed to be mainly a

modulator of CXCR4 and CXCR3 signalling, possibly acting as a

‘‘decoy’’ receptor to scavenge and sequester CXCL12/SDF-1 and

CXCL11/ITAC [74,75]. This is suggested by the observation that

CXCR7 expression on mature B cells inversely correlates with the

activity of CXCR4 [76]. Alternatively, a function for CXCR7 as co-

receptor for CXCR4 has also been proposed, as the two receptors

can heterodimerize [77]. Analysis of CXCR7 expression in normal

human leukocytes revealed that the mRNA is broadly expressed in

various fractions of resting PBMCs, including B cells [76,78], whereas

the protein seems to be strictly expressed at the plasma membrane of

monocytes and B cells [76]. However, surface CXCR7 was not

consistently detected on B cells in another study [78]. CXCR7 has

been implicated in tumorigenesis based on the observation that

ectopic expression of the gene induces tumor formation in nude mice

[79]. Moreover, CXCR7 protein has been shown to be expressed on

many human and mouse tumor cell lines and to confer a strong

growth and survival advantage to the cells [71,80–82].

In this study we show that LMP-1 and CXCR7 mRNAs are

differentially induced by type 1 and type 2 EBV during the early

stages of infection of primary B cells with recombinant EBV

viruses, consistent with differential induction of these genes being

the basis for the weaker ability of type 2 EBV strains to transform

primary B cells. EBNA-2 type, rather than the type of EBNA-LP,

is shown to be the major determinant of the differential induction

of LMP-1 oncoprotein and the C-terminal region of EBNA-2 is

responsible for the superior ability of the type 1 protein to

maintain proliferation of B cells. Within this region, the RG, CR7

and TAD are the minimum type 1 domains required for type 1

growth phenotype and sufficient LMP-1/CXCR7 expression

levels. The results demonstrate a mechanism for the enhanced

capability of type 1 strains of EBV to transform B cells into LCLs.

Results

Differential regulation of LMP-1 and CXCR7 mRNA by ER-EBNA-
2 shows that type 1 EBNA-2 induces LMP-1 and CXCR7 to a
higher level and more rapidly than type 2 EBNA-2

We previously identified CXCR7 as the most differentially

regulated type-specific EBNA-2-target gene in the human genome,

being more strongly induced by type 1 EBNA-2 in a BL cell

background [26]. RNAi experiments demonstrated that CXCR7

is required for proliferation of EBV-LCLs [26]. We also showed, in

an EBV-positive BL cell line with oestrogen-regulated EBNA-2

proteins, that type 1 EBNA-2 induced LMP-1 protein more

rapidly and to a higher extent compared to the type 2 [26]. This

has been now verified at the RNA level using the same system.

Briefly, this consists of Daudi cells (which lack the EBNA-2 locus

[83] and therefore expression of LMP-1) engineered to stably

express type 1 or type 2 chimaeric EBNA-2 proteins fused to the

hormone-binding domain of the oestrogen receptor (ER-EBNA-2)

[26]. In the absence of oestrogen, the ER-tagged EBNA-2 proteins

are localized to the cytoplasm and therefore inactive [84].

Addition of oestrogen results in normal localization of the

EBNA-2 fusion proteins to the nucleus and therefore in activation

of the LMP-1 gene from the resident EBV genome. In a time-

course experiment of oestrogen stimulation over 48 hours, total

cell RNA from the cell lines containing type 1 or type 2 ER-

EBNA-2 was analyzed by ribonuclease protection assay (RPA)

using an LMP-1 specific probe (Figure 1 A). When type 1 EBNA-2

function was activated, LMP-1 mRNA levels were strongly

induced as soon as 8 hours after the stimulation and were

maintained thereafter throughout the time-course. In contrast,

after induction of type 2 EBNA-2 function, markedly lower levels

of LMP-1 transcripts were detected. Analysis by qRT-PCR for

LMP-1 mRNA gave a similar result (Figure 1 B) and qRT-PCR

analysis was also performed for CXCR7 transcripts levels in the

same experiment (Figure 1 C). These were found to be

significantly higher in type 1 EBNA-2 cell lines stimulated with

oestrogen than in type 2 cells that had undergone the same

treatment. Agarose-gel electrophoresis analysis of total cell RNA

used for the RPA analysis confirmed equal loading and no

degradation of the samples (data not shown). The somewhat

higher expression of type 2 ER-EBNA-2 in the Daudi cell line

(Figure S1 and [26]) further emphasizes the superior induction of

target genes by type 1 ER-EBNA-2.

The more rapid induction of LMP-1 by type 1 EBNA-2 was also

confirmed in the type 2 EBV P3HR1 cl.16 BL cell line. The

resident EBV genome in P3HR1 cl.16 line also lacks the EBNA-2

locus and the Y1Y2-coding region of EBNA-LP, having a deletion

similar but not identical to that present in Daudi cells [83,85].

Plasmids expressing type 1 or type 2 ER-EBNA-2 (p554-4 and its

type 2 derivative, described in Materials and Methods and in

[26,86]) were transfected into P3HR1 cl.16 cells and stable cell

lines were selected with G418. In P3HR1 cl.16 cells, despite the

absence of EBNA-2, basal expression of LMP-1 can still be

detected, albeit at very low levels (Figure 1 D). Nevertheless, when

a time-course experiment of oestrogen stimulation was performed,

a clear increase of LMP-1 expression levels above background was

detected by western blotting when type 1 EBNA-2 function was

activated (Figure 1 D). LMP-1 induction was detected as soon as 4

hours after oestrogen stimulation; after 8 hours LMP-1 expression

level reached its maximum and was thereafter maintained

throughout the time-course. Conversely, when type 2 EBNA-2

function was activated by oestrogen, LMP-1 levels were induced

only moderately above the background, with a modest peak at

20 hours followed by a slight decrease (Figure 1 D).

Weaker induction of LMP-1 by type 2 EBNA-2 is not
affected by the EBNA-LP type

As EBNA-LP is important in cooperation with EBNA-2 for

induction of LMP-1 [28,29], we determined which isoforms of

EBNA-LP are expressed in normal Daudi and P3HR1 cl.16 cells

and in the derivative stable cell lines bearing the oestrogen-

EBNA-2 Type Specific Regulation of LMP-1 and CXCR7
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inducible EBNA-2 proteins (Figures S1 and S2). In several

previous reports, depending on the antibodies used, one or two

species of EBNA-LP (around 31 and 37 kDa) have been detected

in Daudi cells, both lacking the Y1Y2 domain [87–90]. Here we

used the 4D3 antibody and observed the 37 kDa isoform (Figure

S1, lane 4), which corresponds to a 4-repeat species, as

determined by comparison with the EBNA-LPs expressed in

B95-8 and in 293 cells transiently transfected with plasmids

coding for 3- or 7- repeat EBNA-LP as standards (Figure S1,

lanes 1, 2 and 3). P3HR1 cl.16 cells have been reported to

express Y1Y2-deleted EBNA-LP species migrating as a major

band of around 28–30 kDa and a minor band of about 48–

50 kDa on a SDS-PAGE [91] and this was confirmed by our

western blot analysis with the 4D3 antibody (Figure S2, lane 4).

We identified these species as containing 3 and 6 W repeats,

respectively (by comparison with B95-8). In both cell lines these

truncated EBNA-LP proteins are type 2, since they were detected

with the 4D3 antibody, which detects both type 1 and type 2

EBNA-LP [89], but not with the JF186 antibody, which is type 1-

specific [92]. In the stable cell lines expressing ER-EBNA-2

proteins several EBNA-LP isoforms were detected, with 2 to 4

repeats in Daudi:ER-EBNA-2 T1/T2 (Figure S1, lanes 5 to 8)

and with 2 to 7 repeats in P3HR1 cl.16:ER-EBNA-2 T1/T2

(Figure S2, lanes 5 to 8). These species are type 1, since they can

be detected with the JF186 antibody, and are expressed from the

plasmids that code for the ER-EBNA-2 proteins (p554-4 and its

type 2 derivative [26,86]). In fact, these vectors contain not only

the ER-EBNA-2 open reading frame, but also 2 W repeats and

the Y fragment, both of type 1 sequence. The expression of

EBNA-LP species that are larger in size than that predicted

simply from the number of W fragments has been already

reported by others [92-94] and may indicate splicing of RNA

transcribed more than once around the plasmid. In both systems

(Daudi and P3HR1 cl.16:ER-EBNA-2 T1/T2) several isoforms

of full-length type 1 EBNA-LP are present but no full-length type

2 EBNA-LP is available.

To exclude the possibility that type 1 EBNA-LP proteins are

able to enhance the ability of type 1 ER-EBNA-2 to induce LMP-1

but not that of the type 2 ER-EBNA-2, we performed an assay for

EBNA-LP function, similar to that used in earlier studies [17,29],Figure 1. LMP-1 and CXCR7 are differentially induced by type 1

and type 2 EBNA-2 in Daudi:ER-EBNA-2 T1/T2 and P3HR1
cl.16:ER-EBNA-2 T1/T2 stable cell lines. (A) (B) (C) 206106 Daudi
cells stably expressing type 1 (T1) or type 2 (T2) ER-EBNA-2 were
induced with 1 mM oestrogen (+) or ethanol (-) as a solvent control, for
8, 20 or 48 hours. (A) RPA for LMP-1 mRNA. 20 mg of total cell RNA were
used. The doublet protected fragment of around 175 nt, is marked by
arrows. M: size marker, the 179 nt band is shown; P: undigested probe;
Y: yeast RNA (RPAIIIkit, Ambion). 1 representative experiment of 3 is
shown. (B) and (C) LMP-1 and CXCR7 mRNA qRT-PCR analysis. 1 mg of
total cell RNA was used to synthesize cDNA and qPCR was performed to
quantify LMP-1 and CXCR7 transcripts. For LMP-1 qRT-PCR, values for
each sample are expressed as the ratio LMP-1/GAPDH mRNA relative to
the sample T1 stimulated with oestrogen for 20 hours, whereas for
CXCR7 qRT-PCR values shown represent the ratio between CXCR7 and
GAPDH mRNA levels, relative to the sample T1 stimulated with
oestrogen for 48 hours. Each time-point corresponds to the average
from 2 independent experiments both performed in duplicate. Error
bars represent standard errors. Data shown in panels (B) and (C) and
results presented in panel (A) are from different experiments. (D) P3HR1
cl.16 cells stably expressing type 1 (T1) or type 2 (T2) ER-EBNA-2 were
induced with 1 mM oestrogen (+) or ethanol (-) as a solvent control, for
4, 8, 12, 20, 24 or 48 hours. At these time-points proteins were extracted
and analyzed by western blotting for EBNA-2 (PE2 antibody), LMP-1 (CS
1-4 antibody) and b-actin, as a loading control. h p.i.: hours post-
induction; est: oestrogen.
doi:10.1371/journal.ppat.1002164.g001

EBNA-2 Type Specific Regulation of LMP-1 and CXCR7
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whereby the effect of EBNA-LP on EBNA-2-induced expression of

LMP-1 from the resident EBV genome can be examined. This

assay was adapted to compare the cooperative effect of type 1 and

type 2 EBNA-LP on type 1 and type 2 EBNA-2-induced

expression of LMP-1 in Daudi cells. Transfection of vectors

expressing type 1 or type 2 EBNA-2 alone did not produce any

significant induction of LMP-1, despite the strong expression of

both types of EBNA-2 proteins, as assessed by immunoblotting

(Figure 2). Likewise, no LMP-1 was detected when plasmids

coding for either type 1 or type 2 EBNA-LP bearing 3 repeats

were transfected, even though both EBNA-LP species were clearly

detected on a western blot as an approximately 30 kDa band. Co-

transfection of type 1 EBNA-2 and type 1 EBNA-LP plasmids

produced a clear induction of LMP-1 protein. A similar, but

slightly lower level of induction was observed when the type 2

EBNA-LP was co-expressed with type 1 EBNA-2. In contrast, up-

regulation of LMP-1 induced by the type 2 EBNA-2, in the

presence of either type of EBNA-LP, was very modest and equal

with either type 1 or type 2 EBNA-LP (Figure 2). These results

indicate that the weaker LMP-1 up-regulation induced by type 2

EBNA-2 can be ascribed to the EBNA-2 type and is not affected

by the type of EBNA-LP present. Type 1 EBNA-2 up-regulates

LMP-1 better than type 2 EBNA-2, in the presence of either type 1

or type 2 EBNA-LP. These observations support the conclusion

that, in the Daudi and P3HR1 cl.16:ER-EBNA-2 T1/T2 cell

lines, the impaired ability of type 2 EBNA-2 to induce LMP-1 is

not due to sub-optimal cooperation with the full-length type 1

EBNA-LP isoforms present in the systems, but is rather due to the

type 2 EBNA-2 protein.

Differential regulation of LMP-1 and CXCR7 genes during
early stages of infection of primary B cells with BAC-
derived EBV expressing type 1 EBNA-2 or type 2 EBNA-2

Having showed, in our previous report [26] and in the present

study in assays in cell lines, that type 1 and type 2 EBNA-2

differentially regulate LMP-1 and CXCR7, we examined whether

this phenomenon occurs also during infection of primary B cells

with BAC-derived EBV recombinant viruses, expressing either

type 1 or type 2 EBNA-2. Early stages of infection were studied

since the differences in kinetics of gene regulation induced by the

two types of EBNA-2 appeared rapidly in our cell line-based

systems. Normalized amounts of the EB viruses expressing type 1

or type 2 EBNA-2 (described in Materials and Methods) were used

to infect aliquots of 26106 human primary B cells, purified from

peripheral blood. Samples were taken at 1, 2, 4 and 8 days post-

infection and examined by western blotting and quantitative RT-

PCR (qRT-PCR) for EBNA-2-target gene expression. Similar

amounts of type 1 and type 2 EBNA-2 proteins were expressed, as

determined by the EBNA-2 immunoblot (Figure 3 A). In type 1

EBV-infected cells, LMP-1 transcripts were detected as soon as 2

days post-infection and gradually increased thereafter reaching

typical LCL levels of expression by day 8, whereas in type 2-

infected cells LMP-1 induction was delayed, with overall lower

levels than those observed in type 1 infection (Figure 3 B). These

different kinetics of LMP-1 mRNA induction were consistently

observed in 4 independent infection experiments, although the

overall level of expression and precise timing varied slightly in

different experiments, this variability perhaps being due to

Figure 2. In a transient transfection assay in Daudi cells, the weaker induction of LMP-1 by type 2 EBNA-2, compared to the type 1
EBNA-2, is not affected by the EBNA-LP type. 26106 Daudi cells were transiently transfected with an array of combinations of EBNA-2-
expressing plasmids (OriP-p294) and EBNA-LP-expressing plasmids (pSNOC) of type 1 (T1) and type 2 (T2). The Neon transfection system (Invitrogen)
was used. 24 hours after transfection, cells were lysed in RIPA lysis buffer and analyzed by SDS-PAGE followed by immunoblotting for LMP-1 (CS 1-4
antibody), EBNA-2 (PE2 antibody), EBNA-LP (4D3 antibody) and b-actin (to ensure equal loading of the proteins). The pSNOC plasmids express EBNA-
LP proteins with 3 W repeats (3R). Daudi cells already express an endogenous species of EBNA-LP which bears 4 repeats and lacks the Y1Y2 domains
(4R DY1Y2). Numbers next to the EBNA-LP blot indicate protein molecular weight in kDa. 1 representative experiment of 2 is shown.
doi:10.1371/journal.ppat.1002164.g002
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different B cell donors being used each time. As we were able to

perform these experiments only on a small scale, LMP-1 protein

could not be detected by western blotting at these early times after

infection.

qRT-PCR analysis for CXCR7 mRNA revealed that uninfect-

ed resting B cells (harvested at day 0) already expressed substantial

basal amounts of mRNA (Figure 3 C), an observation consistent

with other reports [76,78]. Following viral infection, CXCR7

mRNA increased up to 2 days after infection and then settled back

to the LCL level (Figure 3 C). On the other hand, in type 2

infection the mRNA for CXCR7 was consistently at about a 4-fold

lower level than in type 1 virus-infected cells (Figure 3 C). This

trend in CXCR7 mRNA levels was observed in 3 independent

experiments, with minor differences in the overall levels of

expression.

Expression of the chemokine receptor CXCR4, which shares

the ligand CXCL12/SDF-1 with CXCR7, has been shown to be

down-regulated in primary B cells upon infection by EBV [95-97].

Uninfected primary B cells were found to express high levels of

CXCR4 mRNA (Figure 3 D), in agreement with other reports

[98]. Upon viral infection, CXCR4 transcript levels were

effectively repressed in cells infected with both type 1 and type 2

EBNA-2 recombinant EB viruses (Figure 3 D).

In order to establish LCLs, serial dilutions of preparations of

EBV-BACs expressing type 1 or type 2 EBNA-2 were used to

infect primary B lymphocytes (106 cells) and their outgrowth was

monitored over time. As expected, type 1 EBV-BAC-infected cells

grew very rapidly, leading to LCLs within approximately 1 month

post-infection, whereas type 2 transformants were much more

difficult to expand and yielded cell lines only after approximately 4

months of culture. The growth phenotype observed with our

recombinant type 1 and type 2 EBNA-2-expressing viruses is

consistent with the growth behaviour originally reported for the

natural strains of EBV B95-8 (type 1 prototype) and AG876 (type

2 prototype) [19]. These differences in growth kinetics, which were

revealed by microscopic observation of the cells in culture, were

mirrored by the counts of proliferating cells assessed at a single

time-point after infection, for each of the cell lines originally

infected with serial dilutions of virus (Figure S3). For example, the

amount of live cells counted in type 1 LCLs originally infected

with either 1600 or 320 GRUs of viral preparation was increased

compared to the corresponding type 2 transformants by 53 and

22-fold, respectively (Figure S3). Once LCLs were established,

hygromycin selection was applied to ensure the cells contained the

BAC-EBV constructs, which bear the hygromycin-resistance gene,

and not an EBV genome that might potentially have been

endogenous at a low level in the donor B cells. The fully

established type 1 and type 2 EBNA-2 LCLs were then further

checked by examining the pattern of expression of all the EBV

latent antigens, using western blotting (Figure S4). The EBV latent

antigens examined are expressed at similar levels and display the

expected size. EBNA-LP isoforms with slightly variable number of

W repeats (from 3 to 5) were detected in type 1 and type 2 LCLs,

but this is well above the minimum required for cooperation with

EBNA-2 [17,60]. Some differences were observed in EBNA-3A

and -3C expression levels among the several clones analyzed, but

do not seem to be consistently associated with one specific type of

LCL (Figure S4).

Mapping the regions of type 1 EBNA-2 which confer
higher B cell immortalization efficiency compared to type
2 EBNA-2

We previously developed a functional assay that distinguishes

the ability of type 1 and type 2 EBNA-2 to maintain B cell

proliferation using the EREB2.5 cell line [26,86]. EREB2.5 cells

contain a P3HR1 EBV genome lacking the EBNA-2 locus and a

separate plasmid (p554-4) expressing the ER-EBNA-2 fusion

protein. Hence, EBNA-2 activity and therefore survival and

proliferation of the cells are dependent on oestrogen. In the

absence of oestrogen, EBNA-2 function is inhibited by retention of

the conditional ER-EBNA-2 protein in the cytoplasm but cell

proliferation can be rescued if an OriP plasmid expressing

constitutive type 1 EBNA-2 protein is transfected into the cells.

In this situation the wild-type type 1 EBNA-2 functionally replaces

the ER-EBNA-2 fusion protein. In contrast, if a wild-type type 2

EBNA-2-expressing OriP vector is transfected into oestrogen-

starved cells, the cells undergo growth arrest. In this assay only

type 1 but not type 2 constitutive EBNA-2 protein can provide

essential EBNA-2 functions in trans. The trans-complementation

assay was used in the present study to identify the regions of the

type 1 EBNA-2 protein that can complement the deficiency of the

type 2 protein to maintain proliferation of LCLs. For this, several

type 1/type 2 EBNA-2 chimaeras were generated (by swapping

sequences between the two types of protein) and these were tested

for their ability to sustain cell growth of oestrogen-starved

EREB2.5 cells. The complete set of chimaeras tested and the

respective growth phenotype observed in the trans-complementa-

tion assay are shown in Figure 4 B. The chimaeras were precise

swaps of EBNA-2 sequence without extraneous amino acids at the

point of fusion. OriP-p294 plasmids expressing the chimaeric or

wild-type type 1 or type 2 EBNA-2 proteins were Amaxa-

transfected into EREB2.5 cells that had been growing normally in

the presence of oestrogen. Immediately after transfection,

oestrogen was withdrawn from the culture medium and cell

proliferation was monitored over time by counting numbers of live

cells (Figure 4 C). When the C-terminal region of type 1 EBNA-2

protein spanning from the WWPP motif (codons 323–326), within

the RBP-Jk binding domain, to the end of the protein was

swapped at homologous amino acid positions into the type 2

EBNA-2 protein (chimaera 2), live cell counts were similar to those

Figure 3. Differential regulation of LMP-1 and CXCR7 genes during early stages of infection of primary B cells with BAC-derived
EBV expressing type 1 EBNA-2 or type 2 EBNA-2. Primary B cells were isolated from peripheral blood by negative selection using RosetteSep
(Stemcell Technologies). 26106 cells were infected with 5000 GRUs of either T1 E2 EBV-BAC (expressing type 1 EBNA-2) or T2 E2 EBV-BAC (expressing
type 2 EBNA-2) recombinant viruses. Cells were harvested at 1, 2, 4 and 8 days post-infection and processed for protein and total RNA extraction.
Uninfected cells, harvested at day 0, were included in the analysis. (A) Whole protein extracts from each well of infected cells were loaded on an SDS-
PAGE gel and subjected to western blot analysis using the anti-EBNA-2 antibody (PE2 clone). The blots were re-probed for GAPDH to show the total
amount of protein recovered from each sample. GAPDH levels at 4 and 8 days post-infection were lower in type 2-infected cells compared to type 1-
infected cells, due to faster proliferation of the latter. (B) (C) and (D) qRT-PCR analysis of total cell RNA samples using LMP-1, CXCR7 and CXCR4
specific primers. RNAs from LCLs established with T1 and T2 EBNA-2 EBV-BAC were included in the analysis (LCL T1 E2 and LCL T2 E2). For LMP-1 qRT-
PCR (B), values for each sample are expressed as the ratio LMP-1/GAPDH mRNA relative to the sample T1 day 8; for CXCR7 qRT-PCR (C), values shown
represent the ratio between CXCR7 and GAPDH mRNA levels relative to the sample T1 day 1; for CXCR4 qRT-PCR (D), values are reported as the ratio
CXCR4/GAPDH mRNA relative to mock infected cells. The qRT-PCR experiment was performed in duplicate and error bars represent standard errors. 1
representative experiment of 4 is shown. p.i.: post-infection.
doi:10.1371/journal.ppat.1002164.g003
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obtained with wild-type type 1 EBNA-2 in the EREB2.5 growth

assay (Figure 4 C). However, a null growth phenotype, similar to

wild-type type 2 or empty vector control, was observed with the

converse chimaera (chimaera 1), generated by joining together the

type 1 sequence from codon 1 to the WWPP motif with type 2

sequences spanning from the WWPP motif to the last codon of the

protein (Figure 4 C). Therefore, the C-terminus of type 1 EBNA-2

is able to confer a type 1 growth phenotype to type 2 EBNA-2 in

the EREB2.5 trans-complementation assay. The C-terminus of the

EBNA-2 protein includes the RG motif, the conserved region 7

(CR7), the transactivation domain (TAD) and the nuclear

localization signal (NLS) (Figure 4 A). To further map the

minimum type 1 sequences within the C-terminus of EBNA-2

responsible for the higher B cell immortalization efficiency,

additional chimaeras were constructed by swapping different

combinations of the RG, CR7, TAD and NLS regions from the

type 1 into the type 2 protein (chimaeras 3 to 7). Only when the

type 2 RG, CR7 and TAD regions were together replaced with

homologous type 1 sequences (chimaera 7), accumulation of

proliferating cells was restored to almost wild-type type 1 levels

(Figure 4 C). In contrast, chimaeras from 3 to 6 behaved like wild-

type type 2 EBNA-2, as they were unable to sustain proliferation

(Figure 4 C). Long-term culture of oestrogen-independent

EREB2.5 cells expressing the different EBNA-2 chimaeras and

wild-type proteins resulted in establishment of continuously

proliferating LCLs only in the case of chimaeras 2 and 7 and

wild-type type 1 EBNA-2. These results demonstrate that, within

the C-terminus of the type 1 EBNA-2, the RG, CR7 and TAD are

the minimum type 1 sequences required to complement the lack of

ability of type 2 EBNA-2 to rescue growth of oestrogen-depleted

EREB2.5 cells.

To ensure that the lack of growth of oestrogen-depleted

EREB2.5 cells was not due to either lack of expression or

inappropriate protein localization of the chimaeras, western blot

and immunofluorescence experiments were performed. Western

blot analysis for EBNA-2 on extracts from transfected EREB2.5

cells grown without oestrogen revealed that all the chimaeric

proteins display the expected size and are expressed at equal levels,

similar to wild-type type 1 and type 2 EBNA-2 proteins (Figure 4

D). Levels of EBNA-2 expressed from the OriP plasmids was

similar to those normally found in LCLs (Figure 4 D). For the

analysis, the PE2 antibody was used, which was previously shown

to detect the type 1 and the type 2 EBNA-2 with equal efficiency

on a western blot [26]. Immunofluorescence analysis of HeLa cells

transiently transfected with OriP-p294 plasmids, expressing the

chimaeric and wild-type EBNA-2 proteins, confirmed that all the

chimaeras are appropriately localized to the nucleus of the cells

with exclusion from nucleoli (Figure S5A), with a pattern similar to

that of wild-type type 1 and type 2 EBNA-2 (Figure S5B and [99]).

Expression of the EBNA-2-direct viral target and major EBV

oncogene LMP-1 was assessed in the EREB2.5 growth assay.

Western blot analysis revealed that at 3 and 5 days after

transfection, in oestrogen-starved cells expressing type 1 EBNA-2

and chimaeras 2 and 7, LMP-1 protein expression was maintained

at levels similar to those detected in EREB2.5 cells normally grown

in the presence of oestrogen (Figure 5 A). In contrast, LMP-1

expression was lost in type 2 EBNA-2 or empty vector-transfected

cells (Figure 5 A). qRT-PCR analysis for the mRNA of the cell

gene CXCR7 showed increased levels following expression of

either type 1 EBNA-2 or chimaeras 2 and 7, with a 14-fold

increase (type 1 EBNA-2) or approximately 7-fold increase

(chimaeras 2 and 7), compared to non-transfected cells, at 1 week

after transfection (Figure 5 B). In contrast, when type 2 EBNA-2-

expressing vector was transfected, CXCR7 mRNA was main-

tained at the same levels normally observed in non-transfected

cells (fold-increase of 1) up to 5 days after transfection but after this

time-point it was not further induced and the cells died (Figure 5

B). These results demonstrate that LMP-1 protein and CXCR7

mRNA expression levels, induced by type 1 and type 2 EBNA-2

and chimaeras 2 and 7, correlate with the growth phenotype in the

EREB2.5 trans-complementation system. Loss of LMP-1 and

CXCR7 expression in type 2 EBNA-2-expressing cells is rapidly

followed by growth arrest of the cells, whereas in cells expressing

type 1 EBNA-2, chimaera 2 or 7, maintenance of LMP-1 and

CXCR7 expression is accompanied by sustained proliferation of

the cells. Therefore the C-terminus of type 1 EBNA-2 in

chimaeras 2 and 7 is sufficient to confer induction of type 1

growth phenotype and approximately type 1 expression levels of

LMP-1 and CXCR7.

Functional differences between EBNA-2 types, mapped
to the C-terminus, are typical of type sequence

In our mapping analysis performed to identify the type 1 regions

of EBNA-2 important for B cell growth, EBNA-2 sequences from

the EBV strains B95-8 (type 1 prototype) and AG876 (type 2

prototype) were used. To ensure that the functional differences

being mapped are typical of EBV type sequences, the C-terminus

complements the deficiency of type 2 EBNA-2 in the EREB2.5 growth assay. RG, CR7 and TAD domains are the minimum type 1 sequences required.
(A) Structure of EBNA-2 protein. Type 1 EBNA-2 protein of the prototype B95-8 strain is 487 amino acids long, whereas the type 2 protein from the
strain AG876 comprises 455 amino acids. The two types of EBNA-2 proteins share around 50% of sequence identity, which consists mainly of 9 short
stretches of homology, named conserved regions (CR1 - CR9). Characteristic parts of the EBNA-2 protein are: two N-terminal self-association domains
(SAD1 and SAD2); a poly-proline region (PPR); a diversity region, a sequence with low similarity between EBV types; a region interacting with the cell
DNA-binding protein RBP-Jk (RBP-Jk); a short sequence rich in arginine and glycine residues (RG); a transactivation domain (TAD); a carboxyl-terminal
nuclear localisation signal (NLS). EBNA-LP indicates regions involved in cooperation between EBNA-2 and EBNA-LP in transcriptional activation. (B)
Panel of chimaeric proteins (C1 - C7) tested for their ability to rescue proliferation of oestrogen-starved EREB2.5 cells. The growth phenotype was
scored as ‘‘++’’ (type 1 and chimaera 2) and ‘‘+’’ (chimaera 7), when cell proliferation was maintained over time after transfection and oestrogen
withdrawal and LCLs were successfully established, or as ‘‘–’’ (type 2, chimaeras 1, 3, 4, 5 and 6), when proliferation ceased after transfection. (C) Live
cell counts of EREB2.5 cells expressing wild-type type 1/type 2 or chimaeric EBNA-2 proteins. EREB2.5 cells were transfected with OriP-p294 plasmids
expressing wild-type type 1 (T1), type 2 (T2) EBNA-2, chimaeras 1 to 7 (C1 - C7) or with empty vector (e.v.). Oestrogen was removed from the culture
medium and accumulation of proliferating cells was assessed at 1, 2, 3 and 4 weeks after transfection by counting cells that exclude Trypan Blue on a
haemocytometer. Data from 1 representative experiment of at least 4 is shown. Transfections were performed in duplicate and for each replica,
triplicate wells of cells were counted. Error bars indicate standard deviations. (D) Western blot analysis of protein extracts from EREB2.5 cells
transfected with wild-type type 1 (E2T1) and type 2 (E2T2) and chimaeric (C1 - C7) EBNA-2 proteins. Cells were harvested 4 days after transfection.
EBNA-2 was detected using the PE2 antibody, which recognizes both types. All the chimaeric EBNA-2 proteins were expressed at levels comparable to
wild-type type 1 and type 2 and displayed the expected size, which corresponds to 85 kDa (similar to type 1) for chimaera 1 and to 75 kDa (similar to
type 2) for all the other chimaeras. ER-EBNA-2 fusion protein (120 kDa) is also detected in every transfection. Triplicate samples were analyzed for
each transfection. B95-8 and AG876: positive controls for expression of EBNA-2 type 1 (85 kDa) and type 2 (75 kDa), respectively; E2.5 + est: non-
transfected EREB2.5 cells normally grown in medium supplemented with oestrogen. Immunoblotting for b-actin was performed as a loading control.
doi:10.1371/journal.ppat.1002164.g004
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of EBNA-2 from additional type 1 and type 2 isolates was

sequenced and compared to the prototypes B95-8 and AG876.

The EBV strains chosen for the analysis were derived from

laboratory LCL, BL and NPC cell lines (Table 1). Comparison of

type 1 isolates to the type 1 strain of reference B95-8 showed that,

in the region examined, there is a very high percentage of identity

(. 98%) with only a few nucleotide sequence variations detected.

Most of the changes are silent but a few produce a change in the

amino acid coded. Changes in the amino acid sequence were

almost always located outside the known EBNA-2 functional

domains; only in 2 strains (Mak 1 and MABA, Table 1) were there

changes within a functional domain (TAD and NLS respectively).

Similarly, alignment of the sequence coding for the C-terminus of

EBNA-2 from several type 2 isolates against the prototype strain

AG876, indicated that the sequence identity is almost 100%, with

only 2 strains (Alouek and Wewak, Table 1) displaying nucleotide

variations (2 silent and 1 non-silent, but localized outside

functional domains). These results indicate that the functional

differences between type 1 and type 2 EBNA-2, which we have

mapped to this region, are representative of viral type sequence.

Cooperation between type 1 or type 2 EBNA-2 and
EBNA-LP in the EREB2.5 growth system

EBNA-2-mediated activation of both cell (cyclin D2) and viral

promoters (LMP-1/LMP-2B and Cp) can be greatly augmented

Figure 5. LMP-1 and CXCR7 expression induced by type 1 and type 2 EBNA-2 and chimaeras 2 and 7 correlates with the growth
phenotype in the EREB2.5 growth assay. 66106 EREB2.5 cells were transfected with OriP-p294 plasmids expressing type 1 EBNA-2 (E2T1), type 2
EBNA-2 (E2T1), chimaera 2 (C2) and chimaera 7 (C7) or with an empty vector (e.v.) and grown in the absence of oestrogen. At 3, 5 (A) and 7 (B) days
after transfection (T), cells were harvested and lysed in either RIPA lysis buffer to extract proteins (A) or in Trizol (Invitrogen), to extract total RNA (B).
(A) Protein samples were subjected to western blot analysis, probing for EBNA-2 (PE2 antibody), LMP-1 (CS 1-4 antibody) and b-actin, as loading
control. Constitutive EBNA-2 proteins, wild-type type 1 (85 kDa), type 2 and chimaeric (75 kDa), as well as the conditional ER-EBNA-2 (120 kDa) are
detected with the PE2 antibody. Numbers alongside the EBNA-2 immunoblot panel represent the apparent molecular weight (in kDa). (B) Total cell
RNA samples were retro-transcribed into cDNA and analyzed by qPCR to quantify the levels of CXCR7 transcripts. No RNA could be extracted from
type 2 EBNA-2-transfected cells at the day 7 time-point, since the majority of the cells were dead (. 70% relative to type 1 EBNA-2-transfected cells).
The histograms show, for each transfection, the ratio CXCR7/GAPDH mRNA relative to non-transfected EREB2.5 cells grown in the presence of
oestrogen. The analysis was performed in duplicate. Error bars represent standard errors. Data from 1 representative experiment of 2 is shown.
doi:10.1371/journal.ppat.1002164.g005
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by cooperation with the EBV latent protein EBNA-LP, which has

been shown to be required for optimal virus-induced B cell

transformation [9,27–29]. Several EBNA-LP proteins, of different

type and size, are believed to be present in the EREB2.5 trans-

complementation system. To address whether these EBNA-LP

species may influence the growth phenotype induced by the wild-

type (type 1 and type 2) and chimaeric EBNA-2 proteins in

oestrogen-starved EREB2.5 cells we first determined which

specific EBNA-LP isoforms are expressed in the EREB2.5 cell

line and in the derivative oestrogen-independent LCLs established

with type 1 EBNA-2 and chimaeras 2 and 7 (Figure 6). For this,

western blot analysis was performed comparing two anti-EBNA-

LP antibodies: JF186 (type 1-specific) and 4D3, which recognizes

both types of EBNA-LP [89,92]. Using the 4D3 antibody, a type 2

EBNA-LP species of around 52 kDa was detected in non-

transfected EREB2.5 cells, normally grown in oestrogen-supple-

mented medium (Figure 6 A, lane EREB2.5 + est), and in all the

oestrogen-autonomous LCLs (Figure 6 A and B). This isoform is

encoded by the resident P3HR1 genome and is known to lack the

Y1 and Y2 domains [100]. Both antibodies detected a type 1

EBNA-LP isoform containing 3 W repeats, as determined by

comparison with lysates from 293 cells transiently transfected with

a plasmid expressing 3-repeat EBNA-LP (Figure 6 A, lane

T1ELP3R). This EBNA-LP is encoded by the endogenous plasmid

p554-4 and it was detected not only in non-transfected oestrogen-

dependent EREB2.5 cells (Figure 6 A, lane EREB2.5 + est), but

also in all the oestrogen-independent LCLs established by

transfecting chimaeras 2 and 7 or type 1 EBNA-2, analyzed over

a period of 6 and 3 months (Figure 6 A and B, respectively). This

observation suggests that in these experiments the p554-4 plasmid

is not completely lost from the oestrogen-free LCLs. This was

corroborated by the EBNA-2 immunoblot that showed continuous

expression of ER-EBNA-2 over time, although at variable levels. It

is likely that some of the p554-4 plasmid has become integrated in

these cells since, after extraction of low molecular weight DNA

from the oestrogen-independent LCLs, only the OriP-p294

plasmid (expressing constitutive EBNA-2 proteins) but not the

p554-4 vector was rescued (data not shown).

Since only a type 1 full-length EBNA-LP is present in the

EREB2.5 assay, it might be that a type-specific cooperation

between EBNA-2 and EBNA-LP would be important for optimal

proliferation in the EREB2.5 growth system and that the lack of a

full-length type 2 EBNA-LP species could hamper the growth-

promoting abilities of type 2 EBNA-2. We tested this issue directly

by transfecting plasmids expressing either type 1 or type 2 EBNA-

2 into EREB2.5 cells, in the presence or absence of a plasmid

expressing a 3-repeat type 2 EBNA-LP, to check whether the

presence of a full-length type 2 EBNA-LP (homologous to the

endogenous type 1 3-repeat EBNA-LP) would allow the type 2

EBNA-2 to sustain cell proliferation in an oestrogen-independent

fashion (Figure 7). Accumulation of proliferating cells was assessed

each week after transfection and oestrogen withdrawal over a

period of 3 weeks (Figure 7 A). Cells expressing type 1 or type 2

EBNA-2 alone displayed proliferation levels similar to those

observed in Figure 4 C. Addition of the type 2 EBNA-LP did not

produce any significant effect on growth of either type 1 or type 2

EBNA-2-expressing cells or control cells. There were no significant

differences in the levels of EBNA-2 proteins comparing the type 1

and type 2 forms, as assessed by western blotting with the PE2

antibody (Figure 7 B). Immunoblotting with the 4D3 antibody

confirmed good expression of the type 2 3-repeat EBNA-LP from

the transfected pSNOC vector. This EBNA-LP isoform displays a

slightly higher molecular weight on SDS-PAGE compared to the

endogenous type 1 3-repeat EBNA-LP (Figure 7 B) because of the

Table 1. Sequence analysis of the C-terminus of EBNA-2 from type 1 and type 2 EBV isolates obtained from laboratory LCL, BL and
NPC cell lines.

Cell line EBV type

Sequence identity
compared to
B95-81

Sequence identity
compared to
AG8762

Silent nucleotide
variations

non-silent nucleotide
variations outside
functional domains

non-silent nucleotide
variations within
functional domains

JAC-B2 1 100% ,76% 0 0 0

Akata 1 99.8% ,76% 1 0 0

Raji 1 99.8% ,76% 1 0 0

C2+Obaji 1 98.8% ,76% 3 3 0

C666.1 1 99% ,76% 3 2 0

Mak 1 1 98.6% ,76% 3 3 1 (Ala452Thr, within TAD3)

MABA 1 99.2% ,76% 2 1 1 (Pro478Ser, within NLS4)

SI-B1 1 100% ,76% 0 0 0

AF-B1 2 ,76% 100% 0 0 0

WEI-B1 2 ,76% 100% 0 0 0

Alouek 2 ,76% 99.8% 1 0 0

C2+BL16 2 ,76% 100% 0 0 0

Jijoye 2 ,76% 100% 0 0 0

Wewak 2 ,76% 99.6% 1 1 0

The laboratory cell lines analysed include: LCLs (B95-8, JAC-B2, C2+Obaji, MABA, AF-B1, WEI-B1, Aloueck, C2+BL16), one NPC (C666.1) and BLs (Akata, Raji, Mak 1, SI-B1,
AG876, Jijoye, Wewak).
1Genbank accession number AJ507799;
2Genbank accession number DQ279927;
3TAD: transactivation domain;
4NLS: nuclear localization signal.
doi:10.1371/journal.ppat.1002164.t001
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substantial differences (12 amino acids) in the primary amino acid

sequences between type 1 and type 2 EBNA-LPs. This experiment

demonstrates that the inability of type 2 EBNA-2 to rescue growth

of oestrogen-depleted EREB2.5 cells is not due to the absence of a

full-length type 2 EBNA-LP in the system.

Discussion

The most striking biological difference between type 1 and type

2 EBV is that type 1 strains are far better than type 2 at inducing

primary B lymphocyte transformation in vitro and the EBNA-2

gene is the key determinant of this difference [5,19]. Following

EBV infection of naı̈ve B cells in vitro, EBNA-2 drives B cell

transformation into LCLs by acting as a potent transcriptional

activator of both viral and cell genes which in turn will then cause

survival and proliferation of the infected cells [1,23–26]. Our

results demonstrate a mechanism that can account for the superior

ability of type 1 EBV to produce LCLs. Primary B cell infection

experiments using BAC-derived recombinant EB viruses showed

that higher and more rapid induction of some EBNA-2-target

genes (which are required for continuous proliferation of EBV-

infected LCLs) by type 1 EBNA-2-expressing virus correlates with

the enhanced B cell transforming capability of this virus (Figure 3

and Figure S3). In this study we have focussed our analysis on two

genes, among all the direct target genes of EBNA-2, based on their

crucial importance in B cell proliferation in the context of EBV

infection and these are the viral oncogene LMP-1 and the cell gene

CXCR7. Among the viral EBNA-2-targets, LMP-1 is the major

EBV oncogene and is required for initiation of primary B cell

transformation in vitro [8] and also for maintenance of continuous

proliferation of EBV-LCLs [62]. Our time-course analysis of

induction of LMP-1 and CXCR7 during the initial stages of

infection with type 1 or type 2 EBNA-2 BAC-EBV, revealed that

with type 2 EBNA-2 LMP-1 induction is delayed and weaker

compared to type 1 EBV-infected cells, and CXCR7 expression

levels are not maintained consistently throughout the time-points

Figure 6. Characterization of oestrogen-independent LCLs established from EREB2.5 cells expressing chimaeras 2 and 7. EREB2.5
cells transfected with OriP-p294 plasmids coding for type 1 EBNA-2 (A) or chimaeras 2 and 7 (B) and grown in the absence of oestrogen gave rise to
continuously proliferating LCLs. Protein samples were harvested from these LCLs at each month after transfection over a period of 6 months (A) or
after 1.5 and 3 months (B) and analyzed by western blotting. The anti-EBNA-2 antibody (PE2), detected the transfected type 1 (E2) and chimaeric
(chim E2) EBNA-2 proteins as well as the endogenous ER-EBNA-2 (ER-E2). EBNA-LP immunoblotting was performed with the antibodies JF186 (type 1-
specific) and 4D3 (recognizes both types). At any time-point analyzed, both antibodies detected a type 1 3-repeat EBNA-LP species (T1 3R), expressed
from the endogenous p554-4 plasmid, indicating that the plasmid was not lost from the cells. The number of repeats was judged by comparison to
293 cells transfected with a type 1 3-repeat EBNA-LP-expressing vector (T1ELP3R). A type 2 Y1Y2-truncated isoform of around 52 kDa (T2 DY1Y2),
expressed by the resident P3HR1 genome, was also detected by the 4D3 antibody. Numbers alongside the EBNA-LP immunoblot panel represent
protein molecular weight (in kDa). b-actin immunoblots ensure equal loading of the proteins.
doi:10.1371/journal.ppat.1002164.g006
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Figure 7. Cooperation between type 1 and type 2 EBNA-2 and EBNA-LP in the EREB2.5 growth system: The assay functionally
distinguishes between the ability of type 1 and type 2 EBNA-2 to sustain cell proliferation, regardless the type of EBNA-LP. (A)
66106 EREB2.5 cells were transfected with OriP-p294 plasmids expressing either type 1 (E2T1) or type 2 (E2T2) EBNA-2, or with empty vector (e.v.), in
the presence or absence of a pSNOC plasmid expressing a type 2 EBNA-LP with 3 repeats (T2 ELP). Oestrogen was removed immediately after
transfection and outgrowth of the cells was monitored over a period of 3 weeks. Transfections were performed in duplicate and for each replica,
triplicate wells of cells were counted. Error bars indicate standard deviations. (B) 4 days after transfection, proteins were extracted from the cells and
fractionated by SDS-PAGE. Western blot analysis was performed using PE2 and 4D3 antibodies in order to detect EBNA-2 and EBNA-LP respectively
and confirmed equal levels of expression. The PE2 antibody, detected the transfected type 1 (T1 E2) and type 2 (T2 E2) EBNA-2 proteins as well as the
endogenous ER-EBNA-2 (ER-E2). EBNA-LP western blot showed that empty vector-transfected cells express the 30 kDa type 1 full-length 3-repeat
EBNA-LP (T1 3R), encoded by the p554-4 plasmid, and the 52 kDa Y1Y2-truncated EBNA-LP species (T2 DY1Y2), expressed from the P3HR1 resident
genome. The full-length type 2 3-repeat EBNA-LP protein (T2 3R), expressed from the pSNOC vector, is detected on the gel at approximately the same
position of the endogenous type 1 3-repeat EBNA-LP (see main text for details). The levels of b-actin did not alter throughout the experiment.
Duplicate samples for each transfection are shown. B95-8, AG876 and T2 ELP 3R (+) lanes represent positive controls for expression of EBNA-2, type 1
and type 2, and type 2 3-repeat EBNA-LP, respectively. Numbers indicate apparent molecular weight (in kDa).
doi:10.1371/journal.ppat.1002164.g007
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analyzed with type 2 EBNA-2 (Figure 3 B and C). However, once

a type 2 LCL is eventually established (up to 4 months after

infection, with a delay of approximately 3 months compared to

type 1 LCLs), LMP-1 and CXCR7 expression levels are similar to

those detected in type 1 LCLs (Figure 3 B and C), confirming that

those genes are essential for long-term proliferation of EBV-LCLs.

Our results indicate that the key difference in transformation

efficiency between type 1 and type 2 EBV is determined by

differences in induction of the pro-survival genes LMP-1 and

CXCR7 occurring during the early stages of infection. Differential

regulation of LMP-1 and CXCR7 by the two types of EBNA-2-

expressing viruses during infection is consistent with the results

obtained in cell line based assays. We have shown that in Daudi

and P3HR1 cl.16 cell line backgrounds, using oestrogen-regulated

EBNA-2 proteins, LMP-1 protein and CXCR7 mRNA are more

potently and rapidly induced by the type 1 EBNA-2 (Figure 1 and

[26]).

Our finding that the CXCR7 gene, together with LMP-1,

accounts for the greater transforming potential of type 1 EBV,

compared to type 2, is particularly relevant in light of the fact that

two other oncogenic viruses, Kaposi’s Sacroma-associated herpes-

virus (KSHV) and human T-lymphotropic virus type 1 (HTLV-1),

have been shown to up-regulate this gene during infection.

CXCR7 induction by HTLV-1 Tax protein has been reported to

have a pro-survival effect on HTLV-1-infected T cells and in

KSHV-infected hDMVECs induction of CXCR7 is essential for

spindle cell transformation, much as occurs with EBV-mediated B

cell transformation [78,79,101-103]. Targeting of CXCR7 may

therefore represent a common mechanism exploited by oncogenic

viruses to induce cell transformation.

CXCR7 binds to the same ligand as CXCR4 (CXCL12/SDF-

1) and has been proposed to function as a modulator of CXCR4-

mediated signalling [77,104,105]. Several reports indicate that

CXCR4 is down-regulated in primary B cells upon infection by

EBV [95–97] and this was confirmed by our qRT-PCR time-

course analysis during infection with type 1 and type 2 EBNA-2

recombinant viruses (Figure 3 D). At least five EBV latent proteins

have been found potentially to be involved in modulation of

CXCR4 expression in EBV-LCLs. Stable expression of EBNA-2

and LMP-1 in the EBV-negative BJAB cell line was shown to

induce down-regulation of CXCR4 [96]. Moreover, whole

genome microarray studies indicated that CXCR4 expression is

down-regulated by EBNA-3A and EBNA-3B in EBNA-3A and -

3B knock-out LCLs, but up-regulated by EBNA-3C in LCLs with

conditional EBNA-3C protein [106–109]. In our infection

experiments CXCR4 was effectively repressed in both type 1

and type 2 EBNA-2-virus infected cells by the day 8 time-point

(Figure 3 D). In both type 1 and type 2 infections, the kinetics of

CXCR4 regulation were almost complementary to that of LMP-1

(Figure 3 B and D), consistent with the notion that both EBNA-2

and LMP-1 contribute to but are not the only determinants of

CXCR4 regulation.

From the EBNA-2 chimaeras tested, chimaeras 2 and 7

indicated that the RG, CR7 and TAD are the minimum type 1

sequences required to confer a type 1 growth phenotype to a type

2 EBNA-2 protein in the EREB2.5 trans-complementation assay

(Figure 4 B and C). This result was quite surprising and

unexpected as most of the sequence variation between type 1

and type 2 EBNA-2 lies in the N-terminal half of the protein,

mostly in the diversity region (Figure 4 A) and not in the C-

terminus. In fact, in the C-terminus the sequence homology

between the two types of EBNA-2 proteins is 62%, whereas in the

N-terminus this is 48% and only 30% in the diversity region.

Importantly, in the EREB2.5 assay the growth phenotype

correlated with the ability of the EBNA-2 proteins to induce

LMP-1 and CXCR7 genes. Type 1 EBNA-2 and chimaeras 2 and

7 maintained high levels of expression of those genes, which in

turn drive continuous proliferation of the cells leading to LCLs

establishment (Figures 5 and 6), whereas in cells expressing type 2

EBNA-2, LMP-1 and CXCR7 were not maintained at normal

physiological levels (Figure 5). These results show that the C-

terminus of type 1 EBNA-2 protein confers the ability to give

sufficient expression levels of those genes that are essential for

EBV-LCL proliferation (LMP-1, CXCR7). In summary, the data

indicate that the mechanism that accounts for the superior ability

of type 1 EBNA-2 to promote B cell growth, compared to the type

2, is higher induction of LMP-1 and CXCR7 mediated by the C-

terminal part of the protein. Although the differential effects on

LMP-1 and CXCR7 would be sufficient to cause the reduced

transformation by type 2 EBV, we have not shown that these are

the only genes involved. Attempts to complement the deficiency in

transformation by co-transfecting LMP-1 and CXCR7 expression

plasmids in the EREB2.5 growth assay were not successful (data

not shown). However, the technical difficulty of maintaining the

correct level of all the plasmids in the cells (EBV, p554-4, LMP-1

and CXCR7 expression vectors) may well account for that result.

The TAD of EBNA-2 is a strong transcriptional activator and is

essential for EBNA-2-mediated activation of viral and cell genes

and B cell transformation, since viruses lacking this domain are

immortalization-incompetent [38,65]. The TAD mediates tran-

scriptional activation at EBNA-2-target promoters by recruiting

histone acetyltransferases [54] and several host transcription

factors [51–53]. The RG sequence is involved in protein-protein

and protein-nucleic acid interactions and is important for efficient

B cell growth transformation [44]. The RG element down-

regulates EBNA-2 activation of the LMP-1 promoter but not of

the Cp [44]. The CR7 has been shown to be dispensable for B cell

growth transformation, although is important for transcriptional

cooperation with EBNA-LP [44]. In addition to the CR7, the RG

and TAD domains have also been shown to be involved in EBNA-

2/EBNA-LP transcriptional cooperation. In fact, the TAD of

EBNA-2 has been demonstrated to be required for EBNA-LP co-

activation with EBNA-2 in the context of LMP-1-promoter

reporter assays and represents a specific binding site for EBNA-

LP, as demonstrated by in vitro binding assays [31]. Moreover, the

RG and CR7 elements are able to down-regulate the high intrinsic

transcriptional activity of EBNA-2 TAD in the context of Gal4

DNA-binding fusions, suggesting a modulatory activity of these

domains on EBNA-LP function [37]. EBNA-LP has been shown

to enhance EBNA-2-mediated transcriptional activation of both

viral and cell promoters (LMP-1/LMP-2B, Cp and cyclin D2)

[27–31]; the mechanism of cooperative function is not entirely

clear but has been proposed to involve interaction with histone

deacetylase 4 [110]. EBNA-2 and EBNA-LP proteins do not

significantly associate in lymphoblasts, as demonstrated by co-

immunoprecipitation and immunofluorescence assays in previous

studies [30,31] and it has therefore been suggested that EBNA-LP

co-activation with EBNA-2 takes place only when transient

unstable interactions are established, which would allow recruit-

ment of positive transcriptional regulators to the EBNA-2 TAD at

EBNA-2-specific promoters [31].

Our mapping studies suggest that the difference in LMP-1/

CXCR7 activation and therefore in growth phenotype observed

between type 1 and type 2 EBNA-2 is determined by different

mechanisms of transcriptional activation, mediated by the TAD of

EBNA-2 and modulated by cooperation with EBNA-LP, through

the RG, CR7 and TAD EBNA-2 elements. Our results are

consistent with the crucial roles played by the EBNA-2 TAD-
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mediated transcriptional activation and the EBNA-LP cooperative

function during the EBV-driven B cell transformation process

[28,29,38]. Ongoing additional detailed mutational analysis of the

RG, CR7 and TAD sequences may identify the amino acids that

are the key determinants of the differing abilities of type 1 and type

2 EBNA-2 to transactivate target genes, and therefore sustain B

cell growth. At the biochemical level the differences between type

1 and type 2 transcriptional activation may be determined by

differences in cell transcription factors or histone acetyltransferases

recruited by type 1 EBNA-2 TAD, compared to the type 2,

resulting in higher induction of LMP-1 and CXCR7. It is

noteworthy in this context that EBNA-2 regulation of the LMP-1

promoter occurs mainly through other cell transcription factors

such as PU.1, rather than RBP-Jk [46–49,54,63]. It will be

interesting to determine in the future whether a similar situation

exists at the CXCR7 promoter. We envisage the most likely

mechanism for the differential regulation of LMP-1 and CXCR7

compared to other EBNA-2 target genes would be that their

promoters may both require specific transcription factors that

cooperate with EBNA-2, transcription factors not required for

most EBNA-2-responsive genes. We are currently investigating the

CXCR7 promoter that is active in EBV-LCLs to test this

hypothesis.

Bearing in mind the importance of EBNA-LP for enhancement

of the ability of EBNA-2 to activate genes essential for

proliferation, such as LMP-1 [28,29], we determined which

EBNA-LP species are expressed in the EREB2.5 assay and

detected a type 1 full-length EBNA-LP and a type 2 Y1Y2-

truncated isoform (Figure 6). Even though the Y1Y2 region has

been shown to have only a modulatory effect on EBNA-LP

cooperative function [28,29], one could speculate that the type 1

full-length EBNA-LP might cooperate more efficiently with the

type 1 EBNA-2 than with the type 2 EBNA-2, thereby

determining the null growth phenotype of the latter EBNA-2

type in the assay. However, the experiment illustrated in Figure 7

clearly demonstrates that this is not the case, since even in the

presence of a full-length type 2 EBNA-LP, the inability of type 2

EBNA-2 at maintaining cell proliferation was not complemented.

Therefore the EREB2.5 growth assay functionally distinguishes

between the ability of type 1 and type 2 EBNA-2 to sustain cell

proliferation, which is likely to be enhanced by cooperation with

EBNA-LP but is not influenced by the type of EBNA-LP present

in the system. A role in protection from caspase-induced apoptosis

has been recently proposed for the Y1Y2-truncated type 2 EBNA-

LP species in BL cell lines [88], however the possible contributions

of this additional function of the EBNA-LP mutant to our

EREB2.5 growth assay have not yet been explored.

Likewise, in the Daudi and P3HR1 cl.16 systems with

oestrogen-inducible EBNA-2 proteins used to analyse the time-

course induction of LMP-1 and CXCR7 by type 1 and type 2

EBNA-2 (Figure 1), several full-length type 1 EBNA-LP isoforms

are expressed from the ER-EBNA-2-coding vectors, in addition to

the type 2 Y1Y2-truncated species, encoded by the endogenous

EBV genomes (Figures S1 and S2). Similarly to the EREB2.5

assay, it might be speculated that the absence of a full-length type

2 EBNA-LP could account for the weaker induction of LMP-1/

CXCR7 by type 2 EBNA-2. By using a functional assay for

EBNA-LP cooperative function [17,29] based on the Daudi cell

line, we demonstrated that this is not the case (Figure 2). Co-

expression of type 2 EBNA-2 with either type 1 or type 2 full-

length EBNA-LP in the Daudi cell line induced only a weak up-

regulation of the endogenous LMP-1 gene, which was markedly

lower than that observed when type 1 EBNA-2 was co-expressed

with either type 1 or type 2 EBNA-LP. Therefore the weaker

induction of LMP-1 by type 2 EBNA-2 is not affected by the

EBNA-LP type. In all our assays for EBNA-LP cooperative

function an EBNA-LP construct with 3 repeat W1W2 domains has

been used, which is above the minimum (2 repeats) required for

optimal EBNA-LP function [17,29,60].

Our infection assays are similar to the EREB2.5 system and to

the Daudi/P3HR1 cl.16:ER-EBNA-2 systems in that both the

type 1 and the type 2 EBNA-2 BAC viruses express full-length type

1 EBNA-LP species (Figure S4), containing at least 3 W1W2

repeats. Based on the results discussed before and illustrated in

Figures 2 and 7, showing that the weaker induction of LMP-1 in

Daudi and the inability to maintain long-term growth in the

EREB2.5 assay by type 2 EBNA-2 is not affected by the type of

EBNA-LP present, we can infer that the gene-expression pattern

(Figure 3) and the growth phenotype (Figure S3) induced by type 2

EBNA-2-expressing BAC virus in the infection experiments is not

affected by the absence of a type 2 EBNA-LP. Moreover, the low-

efficiency transformation phenotype produced by our type 2

EBNA-2 BAC recombinant EBV is similar to that reported for the

wild-type type 2 AG876 EBV strain virus [19].

Our finding that type 2 EBNA-2 cannot rescue proliferation of

oestrogen-starved EREB2.5 cells when expressed in trans in the

EREB2.5 assay (Figure 4 B and C) is somehow surprising, if one

considers that a type 2 EBV virus is able to eventually establish

LCLs upon infection of primary B cells, albeit with very low

efficiency (Figures 3 and S3 and [19]). This difference might be

either ascribed to the truncated EBNA-LP protein present in the

EREB2.5 assay, or, more likely, to additional factors linked to the

virus/B cell interaction occurring during the process of infection.

These events occurring during the early stages of infection might

act as compensatory mechanisms for the poor ability of type 2

EBNA-2 to induce B cell proliferation. LCL outgrowth following

initial EBV infection of naı̈ve resting B cells is a stochastic event

whereby a few cells with the correct levels of expression of those

genes required for B cell proliferation (e.g. CXCR7, LMP-1) are

selected and clonally expanded. It seems likely that slower and

lower expression of LMP-1/CXCR7 induced by type 2 EBNA-2-

expressing virus during the initial stages of infection accounts for

the low transforming efficiency displayed by this viral type.

However, once a few cells infected with type 2 EBV eventually

express the correct levels of LMP-1/CXR7, these cells are selected

and can be amplified to give rise to an LCL. In fact, in both type 1

and type 2 established LCLs, LMP-1 and CXCR7 expression

levels were ultimately approximately similar (Figure 3 B and C and

[26]).

In this study we have identified a mechanism that accounts for a

very remarkable biological difference between type 1 and type 2

EBV, namely the poorer in vitro transforming ability of type 2

strains of EBV, compared to type 1. This mechanism consists of

lower and delayed induction of both viral (LMP-1) and host

(CXCR7) genes which are essential for continuous proliferation of

EBV-infected LCLs and is mediated by the C-terminal region of

the EBNA-2 protein.

Materials and Methods

Cell lines
P3HR1 clone 16, Daudi and Raji are EBV-positive BL cell lines

[111-113]. B cell lines were maintained in RPMI 1640 medium

(Gibco-BRL) supplemented with 10 to 20% (v/v) heat-inactivated

foetal bovine serum (FBS, BioWhittaker) and antibiotics (100

units/ml penicillin and 100 units/ml streptomycin, Gibco-BRL).

EREB2.5 cells [86] contain a conditional EBNA-2 protein

regulated by oestrogen and were maintained in RPMI 1640
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medium supplemented with 10% FBS, antibiotics and 1 mM b-

oestradiol (Sigma). Daudi:ER-EBNA-2 T1/T2 [26] and P3HR1

cl.16:ER-EBNA-2 T1/T2 stable cell lines were grown in RPMI

1640 medium supplemented with 10% FBS, antibiotics and 400 or

500 mg/mL G418 (Calbiochem) respectively. 293 and HeLa cell

lines were grown in Dulbecco Modified Eagle Medium (DMEM,

Gibco-BRL) supplemented with 10% FBS and antibiotics. 293 cell

lines stably transfected with EBV-BAC constructs were maintained

in DMEM with 10% FBS, antibiotics and 100 mg/ml Hygromycin

B (Roche).

Plasmids
The OriP-p294 plasmids used for expression of EBNA-2, type 1

and type 2, and the EBNA-2 chimaeras, were derived from the

CMVpEBNA-1 plasmid described in [114]. The EBNA-1 coding

region of the CMVpEBNA-1 plasmid was extracted and replaced

with a multiple-cloning site (MCS) comprising HindIII, BamHI and

NotI restriction sites, generating the OriP-p294 MCS plasmid. To

generate the wild-type type 1 EBNA-2-expressing plasmid, the

region comprising one BamHI W repeat and the type 1 EBNA-2

coding region from the p554 plasmid (kind gift from Bettina

Kempkes, described in [86,115]) was cloned as a BglII – NotI

fragment into OriP-p294 MCS, between BamHI and NotI sites. To

generate the homologous vector expressing a type 2 EBNA-2, the

fragment encompassing one BamHI W repeat and the type 2

EBNA-2 sequence from the pAG1 vector (described in [26]; this is

essentially homologous to p554, but carries a type 2 EBNA-2) was

extracted by BglII – NotI digestion and cloned between BamHI and

NotI sites in the OriP-p294 MCS vector. This procedure produced

the two OriP-p294 plasmids with either type 1 or type 2 EBNA-2

sequences (OriP-p294 E2T1/T2). The expression of the EBNA-2

proteins from these plasmids is driven by the EBV Wp promoter.

Additional features of these vectors include the EBV origin of

replication, OriP, and a hygromycin-resistance gene.

To generate the EBNA-2 chimaeric sequences, two pBluescript

plasmids carrying type 1 or type 2 EBNA-2 coding sequences

between EcoRI and NotI sites, extracted from the p554 and pAG1

plasmids respectively [26,86], were used. For chimaeras 1 and 2, a

fragment spanning between two BstXI sites (one in the EBNA-2

ORF, mapping to the WWPP amino acid motif, codons 323-326,

within the RBP-Jk domain, and one in the vector backbone,

downstream NotI site) was swapped between the two constructs.

To generate chimaera 3, the region comprising the CR7, TAD

and NLS elements from type 1 EBNA-2 was Pfu-PCR amplified

using a primer with overhanging SacII (59) restriction site and the

universal T3 primer. A SacII restriction site was artificially inserted

by site-directed mutagenesis, using the QuickChange Site-directed

mutagenesis kit (Stratagene), in type 2 EBNA-2 sequence, without

altering the amino acid sequence (codons 337-338, between the

RG sequence and the CR7). The type 1 PCR amplicon was then

cloned as a SacII – NotI fragment at homologous positions in the

type 2 EBNA-2 vector. A similar strategy was used to generate

chimaera 4. Briefly, a PCR amplicon, consisting of the TAD and

the NLS sequences of type 1 EBNA-2, was generated by Pfu-DNA

polymerase PCR using an oligonucleotide carrying an overhang-

ing EcoRV (59) restriction site and the universal primer T3. This

PCR product was then cloned as an EcoRV – NotI fragment into

the pBluescript plasmid carrying type 2 EBNA-2 ORF, in which a

silent EcoRV site had been previously introduced by in vitro

mutagenesis at codons 388-389, between the CR7 and the TAD.

To produce chimaera 5, the RG sequence from type 1 EBNA-2

was amplified by PCR with Pfu DNA polymerase using primers

with overhanging BstXI (59) and SacII (39) sites and cloned between

the same restriction sites into the type 2 EBNA-2 pBluescript

plasmid, carrying the artificial SacII site. Likewise, to make the

chimaera 6 construct, the type 1 sequences encompassing the RG

and the CR7 domains were Pfu-PCR amplified with primers

bearing overhanging BstXI (59) and EcoRV (39) restriction sites, the

PCR product was BstXI – EcoRV digested and then cloned

between the same positions into the type 2 EBNA-2 pBluescript

vector with the engineered EcoRV sequence. For construction of

chimaera 7, an artificial BstBI site was inserted in the type 2

EBNA-2 pBluescript plasmid, at the end of the TAD sequence

(codons 429-430). The RG, CR7 and TAD sequences were

amplified by Pfu-PCR from the type 1 EBNA-2 vector, using

primers with overhanging BstXI (59) and BstBI (39) sites. The PCR

product was then cloned into the type 2 EBNA-2 plasmid, between

the same restriction sites. The identity of all the chimaeric EBNA-

2 sequences was screened by restriction mapping and by

sequencing (data not shown). These were subcloned as EcoRI –

NotI fragments from the pBluescript background into an

intermediate vector (pSuper backbone) bearing the BglII – NotI

region from the pAG1 vector (described above), which consists of

one BamHI W repeat and the EcoRI – NotI EBNA-2 coding

sequence. The BglII – NotI sequences, comprising the BamHI W

repeat and the chimaeric EBNA-2 ORFs, were then cloned into

the OriP-p294 MCS expression vector, between BamHI and NotI

sites. Transcription of the chimaeric EBNA-2 ORFs in these

plasmids is driven by the EBV Wp promoter, similarly to the type

1 and type 2 EBNA-2 constructs.

The pSNOC vector expressing a type 1 3-repeat EBNA-LP

coding sequence is described elsewhere [116]. Briefly, this OriP

expression plasmid contains the G418-resistance locus and the

CMV immediate early promoter and the SV-40 poly A sequences,

expressing the EBNA-LP coding sequence. To generate a

homologous type 2 3-repeat EBNA-LP-expressing plasmid, a

cDNA clone from the type 2 cell line C2+BL16 was obtained by

Pfu-PCR using oligonucleotides 59- ATG CGG CCA TGT AGG

CCC ACT T -39 and 59- TGC CCA ACC ACA GGT TCA GGC

A-39, complementary to sequences within the C1 and YH exons,

respectively, of AG876 EBV strain (coordinates 11403-11425 and

36141-36119). The amplified product was subcloned into pCR2.1-

TOPO vector (Invitrogen) via TA cloning strategy and sequenced

to verify its identity to the published AG876 EBNA-LP sequence.

The type 2 3-repeat EBNA-LP cDNA was then cloned as an EcoRI

fragment into the pSNOC empty vector.

The p554-4 plasmid, bearing the coding sequences for a type 1

ER-EBNA-2 and 2 BamHI W repeats was a kind gift from Bettina

Kempkes [86,115]. The p554-4 derivative expressing type 2 ER-

EBNA-2 is described elsewhere [26]. These two vectors were used

to generate the stable cell lines P3HR1 cl.16:ER-EBNA-2 T1/T2

(described below).

Construction and characterisation of EBNA-2 EBV-BAC
mutant

EBNA-2 in the type 1 B95-8 EBV-BAC [117] was substituted

with the type 2 EBNA-2 gene by RecA-mediated homologous

recombination. The final targeting construct used for this was

cloned between the BamHI and Psp0MI sites of pKov-Kan-DCm

p4487.1 [118] and was called p121 (Figure S6). Starting from the

type 2 EBNA-2 pBluescript plasmid (described above), type 1

upstream flanking sequences were added by cloning a HindIII –

EcoRI fragment from the p554 vector [86,115] using a HindIII site

in the Bluescript polylinker. Type 1 downstream flanking sequence

was then added by substituting in a PmeI to NotI fragment from

p554. An XhoI site in the pBluescript polylinker upstream of the

HindIII site was converted into a BglII site using an oligonucleotide

adaptor and then the whole assembly was cloned as a BglII – NotI
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fragment between the BamHI and Psp0MI sites of p4487.1. The

resulting type 2 EBNA-2 with type 1 flanking sequences contained

type 2 EBV from 36201 – 38008 of the AG876 sequence [119].

B95-8 EBV-BAC (p2089, chloramphenicol resistant) in E. Coli

strain DH10B was kindly provided by W. Hammerschmidt [117].

For clarity, the name T1 E2 EBV-BAC is used for this plasmid in

this paper. RecA recombination to produce the type 2 EBNA-2

BAC mutant used the same methods as described previously for

construction of EBER mutants [120].

The integrity of the type 2 BAC was screened at each stage of

recombination by miniprep DNA isolation, restriction digest and

pulsed field gel electrophoresis (PFGE) in order to control for any

second-site mutations that may have occurred. Substitution of the

type 1 EBNA-2 ORF with the type 2 sequence introduced an

additional EcoRI restriction site into the EBV-BAC, in front of the

starting ATG of EBNA-2 open reading frame. Digestion with this

restriction enzyme followed by PFGE analysis therefore enabled

diagnosis of correct insertion of the type 2 EBNA-2 sequence (data

not shown). EcoRI digestion revealed also that the type 2 EBNA-2

construct had lost 2 copies (out of 6) of the BamHI W repeat

compared to the parental type 1 construct. This was confirmed by

digestion with another restriction enzyme, EcoRV (data not shown)

and was the only gross rearrangement that had occurred, as the

pattern of the remaining bands was identical in the type 1 and the

type 2 EBNA-2 BAC in both EcoRI and EcoRV digestions (data

not shown). Because the number of BamHI W repeats varies

considerably in different EBV strains, from 3 to 12 [94] and

because the repeat number found in the type 2 BAC is within this

range, this deletion was not considered to be undesirable.

Establishment of 293 stable cell lines containing EBV-BAC
with type 2 EBNA-2

EBV-BAC DNA was purified using EndoFree plasmid Maxi kit

(Qiagen) and 1 mg was transfected into 293 cells with Lipofecta-

mine2000 (Invitrogen) according to the manufacturer’s instruc-

tions. Stable 293 cell clones were isolated under Hygromycin B

selection (100 mg/ml), clonal cell lines were expanded and these

were then screened for integrity of the EBV-BAC DNA by

episome rescue and restriction digestion or PCR analysis (data not

shown). A 293 clone containing the T1 E2 EBV-BAC, used to

generate the type 2 BAC, was also produced.

Virus production and titration
Infectious virus was produced from the 293 stable cell lines

containing either T1 E2 EBV-BAC (with type 1 EBNA-2) or T2

E2 EBV-BAC (with type 2 EBNA-2) by transient transfection of

BZLF1 and BALF4-expressing plasmids using Lipofectamine2000

(Invitrogen) [117,121,122]. After 4 days, the virus-containing

supernatants were harvested, filtered (0.45 mm pore size) and titred

by infecting Raji cells and counting GFP-positive cells (Green Raji

Units, GRU) on an inverted fluorescent microscope, following

treatment with 5 nM TPA (Sigma) and 5 mM sodium butyrate

(Sigma), to enhance GFP expression.

Purification of B cells and virus infections
Primary B cells were isolated from mixed-donors buffy coat

residues by negative selection using RosetteSEP Human B cell

Enrichment cocktail (Stemcell Technologies) as described by the

manufacturer’s instructions. The isolated cells were analyzed by

flow cytometry for purity using fluorescein-isothiocyanate-conju-

gated anti-CD20 antibody (Dako). 26106 cells were infected with

5000 GRUs of recombinant viruses and cultured in RPMI 1640

medium supplemented with 20% FBS and antibiotics. At the

desired time-points cells were harvested and processed for RNA or

protein extraction. For LCL establishment, 106 cells were infected

with 5-fold serial dilutions of recombinant EBVs starting with

8000 GRUs. Cells were grown initially in RPMI 1640 medium

with 20% FBS and antibiotics and every 2-3 days half the medium

was replaced. Once LCLs had grown out in large culture volumes,

the FBS level in the medium was reduced to 10% and cells were

selected in Hygromycin B (Roche) at a concentration of 150 mg/

ml for 3 weeks. After this time, hygromycin selection was

discontinued and cells were not used for experimental investiga-

tion during hygromycin selection.

Transfections
To generate P3HR1 cl.16:ER-EBNA-2 T1/T2 stable cell lines,

26106 cells were transfected with 4 mg of p554-4 [86,115] or

pERT2 [26] plasmids expressing ER-EBNA-2 type 1 and type 2

respectively using Neon transfection system (Invitrogen) set at

1300 V, 30 pulse width, 1 pulse. 24 hours after transfection G418

(Calbiochem) selection was added at a concentration of 500 mg/

ml. Selected cell lines were grown out and tested for expression of

ER-EBNA-2 T1/T2 by western blotting.

For EBNA-2/EBNA-LP cooperation assays in Daudi cells, the

Neon system (Invitrogen) was used to transiently transfect 26106

cells with 4 mg of the OriP-p294 plasmids expressing type 1 or type

2 EBNA-2 and 2.4 mg DNA of the pSNOC plasmids expressing

either type 1 or type 2 EBNA-LP. Empty vector (OriP-p294 or

pSNOC) was added to normalize the total amount of DNA

transfected (6.2 mg). Electroporation conditions were 1400 V, 30

pulse width and 1 pulse, which routinely gave approximately 40%

transfection efficiency (assessed as GFP-positive cells when

transfecting a GFP-expressing plasmid) and 80% of cell viability.

For the EREB2.5 growth assay, 66106 EREB2.5 cells were

transfected with 5 mg of OriP-p294 plasmids bearing type 1/type 2

EBNA-2 sequences, either wild-type or chimaeric, using the

Amaxa system (Lonza), program A-23. b-oestradiol was with-

drawn immediately after transfection in order to select for b-

oestradiol – independent lymphoblastoid cell lines. Cells were

incubated overnight in 2 ml of complete medium supplemented

with 20% FBS and antibiotics, but without b-oestradiol, in 12-well

plates. The following day each transfected sample was diluted up

to 10 ml with culture medium and plated into 5 wells of a 24-well

plate. At the desired time-points cell samples were harvested for

cell count analysis and RNA or protein extraction.

For immunofluorescence experiments, 56106 HeLa cells,

grown on coverslips (VWR) in 6-well dishes, were transfected

with 4 mg of OriP-p294 plasmids encoding either type 1, type 2

EBNA-2 or the chimaeric EBNA-2 proteins using Lipofecta-

mine2000 (Invitrogen) as recommended by the manufacturer’s

instructions.

RNA extraction and qRT-PCR
Total cell RNA was extracted from growing cells using Trizol

reagent (Invitrogen) and then quantified by measuring its

absorbance at 260 nm. RNA samples were digested with RQ1

RNase-free DNase (Promega). cDNA was prepared using Proto-

script M-Mulv First strand cDNA Synthesis kit (New England

Biolabs) using random primer as recommended by the manufac-

turer’s instructions. To detect the expression of the EBNA-2-

regulated genes, quantitative RT-PCR (qRT-PCR) was used with

the primer pairs listed in Table S2. qRT-PCR was performed on

an ABI 7900HT real-time PCR machine using Absolute QPCR

SYBR Green ROX Mix (Thermo Scientific). The cycling

conditions were: 95uC for 15 min, followed by 40 cycles of

15 sec at 95uC, 30 sec at 60uC and 40 sec at 72uC on a fast block.
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Dissociation curve analysis was performed at the end of each run

to ensure absence of non-specific products. Quantification of

mRNA levels was carried out using the Delta-Delta Ct method.

Results were analyzed with SDS2.3 software (Applied Biosystems).

mRNA levels for each target gene analyzed were normalized on

the housekeeping gene GAPDH used as a loading control.

RNase protection assay (RPA)
The LMP-1-specific probe for use in RPA was generated by

PCR of genomic DNA derived from Daudi cells using the

following primers, designed based on the EBV genome sequence:

forward 59-CAC TCA TAA CGA TGT ACA GC-39 (coordinates

168881 to 169000 in EBV wild-type, accession number

NC007605) and reverse 59- CAA GAA ACA CGC GTT ACT

C-39 (coordinates 169103 to 169121 in EBV wild-type, accession

number NC007605). The PCR product (241 bp) was cloned into

pCR2.1-TOPO vector and sequenced and the plasmid was then

linearized by BamHI digestion at the 59 end of the PCR product.

1 mg of the linearized plasmid was in vitro-transcribed with T7

enzyme using the MAXIscript SP6/T7 in vitro transcription kit

(Ambion), according to the manufacturer’s instructions, for

production of 32P-labelled antisense RNA probe. RPAs were

carried out using RPAIII kit (Ambion) as recommended by the

manufacturer’s instructions. Briefly, 20 mg of total cell RNA were

hybridized overnight at 42uC with 50000 cpm of the probe. As

negative control, an equivalent amount of yeast RNA was included

in a hybridization reaction. Single-stranded RNA was digested

with an RNase A/T1 mixture for 30 min at 37uC. Protected

fragments were precipitated and separated on a polyacrylamide

gel and the gel was analyzed on a phosphoimager.

Immunoblotting and antibodies
Cell samples were lysed for 15 min on ice in 2 volumes of RIPA

lysis buffer (150 mM NaCl, 1% v/v Nonidet-P40, 0.5% v/v

deoxycholic acid, 0.1% w/v SDS, 50 mM Tris/HCl, pH 8.0)

supplemented with 1 mM PMSF (Fluka) and Complete protease

inhibitors (Roche). Samples were centrifuged at 16000 g for 15

min, to pellet cell debris, and the supernatant was harvested.

Proteins were fractionated by SDS-PAGE and transferred onto a

nitrocellulose membrane. After blocking for 1 h at room-

temperature with 5% milk powder in PBS/0.1% Tween-20

(Sigma), membranes were incubated overnight at 4uC with the

primary antibody diluted in blocking buffer. The primary

antibodies used are listed in Table S1. The secondary antibodies

were horseradish peroxidise-conjugated anti-mouse (GE Health-

care) or anti-rabbit or anti-human IgG (Dako) and were used at a

dilution of 1/2000 for 1 h at room-temperature. Bound

immunocomplexes were detected by using ECL western blotting

detection reagents (Amersham).

Indirect immunofluorescence
24 hours after transfection, HeLa cells were fixed using 4%

paraformaldehyde and permeabilized with 0.25% Triton-X 100

(Sigma) in PBS. Primary anti-EBNA-2 antibody (PE2 clone) was

diluted 1/100 in blocking buffer (1% bovine serum albumin in

PBS) and cells were incubated for 45 min at room-temperature.

The coverslips were washed 3 times with PBS and TRITC-

conjugated anti-mouse secondary antibody (Sigma) was applied at

a dilution of 1/5000 in blocking buffer for 45 min at room-

temperature. After 3 washes in PBS the coverslips were mounted

in Mowiol and visualized using a Zeiss 510 Meta laser confocal

microscope.

Accession numbers
Database entries for genes mentioned in this manuscript

include: CXCR7 (RefSeq NM 020311.2), EBV type 1 (accession

number AJ507799) and EBV type 2 (accession number

DQ279927). Annotation in the EBV genome shows EBNA-2

and LMP-1 genes.

Supporting Information

Figure S1 Analysis of EBNA-LP species expressed in
Daudi cells and Daudi:ER-EBNA-2 T1/T2 stable cell
lines. Protein extracts were prepared from Daudi:ER-EBNA-2

T1/T2 stable cell lines treated with oestrogen (est) for 4 hours (+)

or left untreated (-) and from Daudi cells. Western blot analysis

was performed using anti-EBNA-2 (PE2) and anti-EBNA-LP

(JF186 and 4D3) antibodies. In Daudi cells no EBNA-2 was

detected, because of the deletion that encompasses the EBNA-2

locus and the Y1Y2 exons of EBNA-LP. No EBNA-LP was

detected with the type 1-specific JF186 antibody, confirming that

EBNA-LP in these cells is type 2. The 4D3 antibody recognized

the 37 kDa EBNA-LP species, which corresponds to a 4-repeat

isoform and lacks Y1 and Y2 domains (marked by the arrow). In

the stable cell lines bearing the ER-tagged EBNA-2 proteins,

treatment with oestrogen produced a clear increase in abundance

of the fusion proteins. This was also accompanied by a shift in the

electrophoretic mobility, which is due to phosphorylation [115].

Full-length type 1 EBNA-LP species with 2, 3 and 4 repeats (2R,

3R and 4R) were detected with both JF186 and 4D3 antibodies,

indicating that they are expressed from the p554-4 plasmid.

Lysates from B95-8 cells and 293 expressing 3 or 7-repeat EBNA-

LP type 1 (T1 ELP 3R and 7R) were used as size markers to

determine the number of repeats in EBNA-LP proteins. b-actin

immunoblotting was performed to ensure equal loading of the

proteins. Numbers on the left hand-side of the EBNA-LP

immunoblots represent molecular weight (in kDa).

(TIF)

Figure S2 Analysis of EBNA-LP species expressed in
P3HR1 cl.16 cells and P3HR1 cl.16:ER-EBNA-2 T1/T2
stable cell lines. P3HR1 cl.16:ER-EBNA-2 T1/T2 stable cell

lines were treated with oestrogen (est) for 4 hours (+) or left

untreated (-) and proteins were extracted and analyzed by western

blotting. Protein samples from untreated P3HR1 cl.16 cells were

also included in the analysis. EBNA-2 was detected with the PE2

antibody and EBNA-LP with the JF186 and 4D3 antibodies.

Similarly to Daudi cells, no EBNA-2 was detected in P3HR1 cl.16

cells, because of the deletion, and no EBNA-LP was detected with

type 1-specific JF186 antibody, confirming that EBNA-LP in these

cells is type 2. A major ,30 kDa EBNA-LP species and a minor

,50 kDa isoform were detected with the 4D3 antibody: they both

lack the carboxyl-terminal Y1Y2 region and they comprise 3 and 6

repeats (marked by arrows). In the stable cell lines bearing the ER-

conjugated EBNA-2 proteins, both JF186 and 4D3 antibodies

detected full-length type 1 EBNA-LP species with 2, 3, 4, 5, 6 and

7 repeats (2R, 3R, 4R, 5R, 6R and 7R) expressed from the p554-4

mini-EBV genome. Protein samples from B95-8 cells and 293

expressing 3 or 7-repeat EBNA-LP type 1 (T1 ELP 3R and 7R)

were used as size markers for EBNA-LP repeats number. b-actin

immunoblotting was used as protein loading control. Numbers on

the left hand-side of the EBNA-LP blots represent protein

molecular weight (in kDa).

(TIF)

Figure S3 Live cell counts of type 1 and type 2 EBV-BAC
transformants. 106 primary B cells were either left uninfected
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(mock) or infected with 5-fold serial dilutions of recombinant EBVs

starting with 8000 GRUs of T1 or T2 E2 EBV-BAC recombinant

viruses, which express either type 1 or type 2 EBNA-2 respectively.

Infected cells were maintained in culture over time in order to

establish LCLs and 1 month after infection differences in cell

proliferation levels were assessed by counting the number of live

cells on a haemocytometer. Error bars represent standard

deviations. Data from 1 representative experiment of 2 is shown.

(TIF)

Figure S4 Validation of T1 and T2 E2 EBV-BAC LCLs.
(A) Western blot analysis of latency-associated EBV proteins in

LCLs established with type 1 (T1) and type 2 (T2) EBNA-2 (E2)

EBV-BAC viruses. There were no major differences in EBV latent

proteins expression levels between type 1 and type 2 LCLs for

most of the antigens examined. An exception is represented by

EBNA-LP, as a 3-repeat isoform was detected in the type 2 LCL,

whereas type 1 transformants expressed EBNA-LP species with 5

and 4 repeats and in one of the type 1 clone also a 3-repeat isoform

was detected. In both viruses the EBNA-LP is type 1 (detected by

JF186 antibody). Western blot analysis of an independent type 2

LCLs confirmed expression of an EBNA-LP protein with 3 repeats

(data not shown). This is consistent with the loss of 2 BamHI W

repeats, relative to the parental type 1 EBV BAC construct

(described in Materials and Methods). This variation is not likely

to affect transformation efficiency of the two types of recombinant

viruses, since EBNA-LP proteins with a number of repeats above 2

have been shown to be functionally equivalent at enhancing

EBNA-2-mediated activation of LMP-1 [17,60]. (B) Western blot

analysis of EBNA-3A and -3C in additional type 1 (T1) and type 2

(T2) LCLs. Minor variations in expression levels were detected in

EBNA-3A and -3C across all the clones examined (A) and (B),
but these do not seem to be consistently linked to one specific type

of LCL. Re-probing with anti-b-actin antibody ensured that equal

amounts of proteins were loaded on the gel.

(TIF)

Figure S5 Nuclear localization of the chimaeric EBNA-2
proteins (A) and wild-type type 1 and type 2 (B) in HeLa
cells. OriP-p294 plasmids either bearing chimaeric EBNA-2

sequences (chimaera 1 to 7, panel A) or expressing type 1 (E2T1)

or type 2 (E2T2) EBNA-2 (panel B) were transiently transfected

into HeLa cells. After 24 hours, cells were fixed, permeabilized

and probed with the anti-EBNA-2 antibody (PE2 clone) followed

by TRITC-conjugated anti-mouse secondary antibody. The

location of the EBNA-2 proteins was assessed by confocal

microscopy. All the chimaeric EBNA-2 proteins were localized

to the nucleus, with exclusion from nucleoli, as seen for wild-type

type 1 and type 2. e.v.: empty vector-transfected cells; n.t.: non-

transfected cells; E2T1 + II Ab: cells transfected with type 1

EBNA-2-expressing plasmid and stained with the secondary

antibody only.

(TIF)

Figure S6 Schematic of the EBV sequences used to
generate the type 2 EBNA-2 BAC mutant. The boxed region

shows the part of the EBV genome cloned into the targeting vector

p121 with the EBV type sequence indicated below. The filled box

marks the EBNA-2 coding region.

(TIF)

Table S1 Primary antibodies for immunoblotting.

(DOCX)

Table S2 qRT-PCR primer sequences to detect EBNA2-
regulated genes.

(DOCX)

Acknowledgments

We thank Prof. Henri-Jacques Delecluse and Prof. Wolfgang Hammersch-

midt for the B95-8 EBV-BAC, Dr. Bettina Kempkes for the EREB2.5 cell

line and the plasmids p554-4 and p554, Prof. Martin Rowe for the PE2

hybridoma cell line and Dr. Yasushi Kawaguchi for the 4D3 EBNA-LP

antibody.

Author Contributions

Conceived and designed the experiments: LC PJF. Performed the

experiments: LC RB WL CEK. Analyzed the data: LC PJF. Wrote the

paper: LC PJF.

References

1. Kieff E, Rickinson AB (2007) Epstein-Barr Virus and its replication. In:

Knipe D, Howley P, eds. Fields Virology, 5th edition. 5th ed. Philadelphia:

Lippincott. pp 2603–2654.

2. Crawford DH (2001) Biology and disease associations of Epstein-Barr virus.

Philos Trans R Soc Lond B Biol Sci 356: 461–473.

3. Rowe M, Rowe DT, Gregory CD, Young LS, Farrell PJ, et al. (1987)

Differences in B cell growth phenotype reflect novel patterns of Epstein-Barr

virus latent gene expression in Burkitt’s lymphoma cells. EMBO J 6:

2743–2751.

4. Lee MA, Diamond ME, Yates JL (1999) Genetic evidence that EBNA-1 is

needed for efficient, stable latent infection by Epstein-Barr virus. J Virol 73:

2974–2982.

5. Cohen JI, Wang F, Mannick J, Kieff E (1989) Epstein-Barr virus nuclear

protein 2 is a key determinant of lymphocyte transformation. Proc Natl Acad

Sci U S A 86: 9558–9562.

6. Hammerschmidt W, Sugden B (1989) Genetic analysis of immortalizing

functions of Epstein-Barr virus in human B lymphocytes. Nature 340: 393–397.

7. Tomkinson B, Robertson E, Kieff E (1993) Epstein-Barr virus nuclear proteins

EBNA-3A and EBNA-3C are essential for B-lymphocyte growth transforma-

tion. J Virol 67: 2014–2025.

8. Kaye KM, Izumi KM, Kieff E (1993) Epstein-Barr virus latent membrane

protein 1 is essential for B-lymphocyte growth transformation. Proc Natl Acad

Sci U S A 90: 9150–9154.

9. Mannick JB, Cohen JI, Birkenbach M, Marchini A, Kieff E (1991) The

Epstein-Barr virus nuclear protein encoded by the leader of the EBNA RNAs is

important in B-lymphocyte transformation. J Virol 65: 6826–6837.

10. Kim OJ, Yates JL (1993) Mutants of Epstein-Barr virus with a selective marker

disrupting the TP gene transform B cells and replicate normally in culture.

J Virol 67: 7634–7640.

11. Longnecker R, Miller CL, Miao XQ, Tomkinson B, Kieff E (1993) The last

seven transmembrane and carboxy-terminal cytoplasmic domains of Epstein-
Barr virus latent membrane protein 2 (LMP2) are dispensable for lymphocyte

infection and growth transformation in vitro. J Virol 67: 2006–2013.
12. Adldinger HK, Delius H, Freese UK, Clarke J, Bornkamm GW (1985) A

putative transforming gene of Jijoye virus differs from that of Epstein-Barr virus

prototypes. Virology 141: 221–234.
13. Dambaugh T, Hennessy K, Chamnankit L, Kieff E (1984) U2 region of

Epstein-Barr virus DNA may encode Epstein-Barr nuclear antigen 2. Proc Natl

Acad Sci U S A 81: 7632–7636.
14. Sample J, Young L, Martin B, Chatman T, Kieff E, et al. (1990) Epstein-Barr

virus types 1 and 2 differ in their EBNA-3A, EBNA-3B, and EBNA-3C genes.
J Virol 64: 4084–4092.

15. Rowe M, Young LS, Cadwallader K, Petti L, Kieff E, et al. (1989) Distinction

between Epstein-Barr virus type A (EBNA 2A) and type B (EBNA 2B) isolates
extends to the EBNA 3 family of nuclear proteins. J Virol 63: 1031–1039.

16. Peng R, Gordadze AV, Fuentes Panana EM, Wang F, Zong J, et al. (2000)

Sequence and functional analysis of EBNA-LP and EBNA2 proteins from
nonhuman primate lymphocryptoviruses. J Virol 74: 379–389.

17. McCann EM, Kelly GL, Rickinson AB, Bell AI (2001) Genetic analysis of the

Epstein-Barr virus-coded leader protein EBNA-LP as a co-activator of EBNA2
function. J Gen Virol 82: 3067–3079.

18. Young LS, Yao QY, Rooney CM, Sculley TB, Moss DJ, et al. (1987) New type

B isolates of Epstein-Barr virus from Burkitt’s lymphoma and from normal
individuals in endemic areas. J Gen Virol 68(Pt 11): 2853–2862.

19. Rickinson AB, Young LS, Rowe M (1987) Influence of the Epstein-Barr virus

nuclear antigen EBNA 2 on the growth phenotype of virus-transformed B cells.
J Virol 61: 1310–1317.

20. Rowe M, Young LS, Crocker J, Stokes H, Henderson S, et al. (1991) Epstein-

Barr virus (EBV)-associated lymphoproliferative disease in the SCID mouse

EBNA-2 Type Specific Regulation of LMP-1 and CXCR7

PLoS Pathogens | www.plospathogens.org 19 July 2011 | Volume 7 | Issue 7 | e1002164



model: implications for the pathogenesis of EBV-positive lymphomas in man.

J Exp Med 173: 147–158.

21. Cohen JI, Picchio GR, Mosier DE (1992) Epstein-Barr virus nuclear protein 2

is a critical determinant for tumor growth in SCID mice and for transformation

in vitro. J Virol 66: 7555–7559.

22. Crawford DH, Macsween KF, Higgins CD, Thomas R, McAulay K, et al.

(2006) A cohort study among university students: identification of risk factors

for Epstein-Barr virus seroconversion and infectious mononucleosis. Clin Infect

Dis 43: 276–282.

23. Spender LC, Lucchesi W, Bodelon G, Bilancio A, Karstegl CE, et al. (2006)

Cell target genes of Epstein-Barr virus transcription factor EBNA-2: induction

of the p55alpha regulatory subunit of PI3-kinase and its role in survival of

EREB2.5 cells. J Gen Virol 87: 2859–2867.

24. Zhao B, Maruo S, Cooper A, M RC, Johannsen E, et al. (2006) RNAs induced

by Epstein-Barr virus nuclear antigen 2 in lymphoblastoid cell lines. Proc Natl

Acad Sci U S A 103: 1900–1905.

25. Maier S, Staffler G, Hartmann A, Hock J, Henning K, et al. (2006) Cellular

target genes of Epstein-Barr virus nuclear antigen 2. J Virol 80: 9761–9771.

26. Lucchesi W, Brady G, Dittrich-Breiholz O, Kracht M, Russ R, et al. (2008)

Differential gene regulation by Epstein-Barr virus type 1 and type 2 EBNA2.

J Virol 82: 7456–7466.

27. Sinclair AJ, Palmero I, Peters G, Farrell PJ (1994) EBNA-2 and EBNA-LP

cooperate to cause G0 to G1 transition during immortalization of resting

human B lymphocytes by Epstein-Barr virus. EMBO J 13: 3321–3328.

28. Harada S, Kieff E (1997) Epstein-Barr virus nuclear protein LP stimulates

EBNA-2 acidic domain-mediated transcriptional activation. J Virol 71:

6611–6618.

29. Nitsche F, Bell A, Rickinson A (1997) Epstein-Barr virus leader protein

enhances EBNA-2-mediated transactivation of latent membrane protein 1

expression: a role for the W1W2 repeat domain. J Virol 71: 6619–6628.

30. Peng R, Moses SC, Tan J, Kremmer E, Ling PD (2005) The Epstein-Barr virus

EBNA-LP protein preferentially coactivates EBNA2-mediated stimulation of

latent membrane proteins expressed from the viral divergent promoter. J Virol

79: 4492–4505.

31. Peng CW, Xue Y, Zhao B, Johannsen E, Kieff E, et al. (2004) Direct

interactions between Epstein-Barr virus leader protein LP and the EBNA2

acidic domain underlie coordinate transcriptional regulation. Proc Natl Acad

Sci U S A 101: 1033–1038.

32. Ling PD, Ryon JJ, Hayward SD (1993) EBNA-2 of herpesvirus papio diverges

significantly from the type A and type B EBNA-2 proteins of Epstein-Barr virus

but retains an efficient transactivation domain with a conserved hydrophobic

motif. J Virol 67: 2990–3003.

33. Harada S, Yalamanchili R, Kieff E (2001) Epstein-Barr virus nuclear protein 2

has at least two N-terminal domains that mediate self-association. J Virol 75:

2482–2487.

34. Tsui S, Schubach WH (1994) Epstein-Barr virus nuclear protein 2A forms

oligomers in vitro and in vivo through a region required for B-cell

transformation. J Virol 68: 4287–4294.

35. Ling PD, Rawlins DR, Hayward SD (1993) The Epstein-Barr virus

immortalizing protein EBNA-2 is targeted to DNA by a cellular enhancer-

binding protein. Proc Natl Acad Sci U S A 90: 9237–9241.

36. Zhou S, Fujimuro M, Hsieh JJ, Chen L, Hayward SD (2000) A role for SKIP in

EBNA2 activation of CBF1-repressed promoters. J Virol 74: 1939–1947.

37. Peng CW, Zhao B, Kieff E (2004) Four EBNA2 domains are important for

EBNALP coactivation. J Virol 78: 11439–11442.

38. Cohen JI, Wang F, Kieff E (1991) Epstein-Barr virus nuclear protein 2

mutations define essential domains for transformation and transactivation.

J Virol 65: 2545–2554.

39. Gordadze AV, Onunwor CW, Peng R, Poston D, Kremmer E, et al. (2004)

EBNA2 amino acids 3 to 30 are required for induction of LMP-1 and

immortalization maintenance. J Virol 78: 3919–3929.

40. Grabusic K, Maier S, Hartmann A, Mantik A, Hammerschmidt W, et al.

(2006) The CR4 region of EBNA2 confers viability of Epstein-Barr virus-

transformed B cells by CBF1-independent signalling. J Gen Virol 87:

3169–3176.

41. Yalamanchili R, Harada S, Kieff E (1996) The N-terminal half of EBNA2,

except for seven prolines, is not essential for primary B-lymphocyte growth

transformation. J Virol 70: 2468–2473.

42. Gordadze AV, Poston D, Ling PD (2002) The EBNA2 polyproline region is

dispensable for Epstein-Barr virus-mediated immortalization maintenance.

J Virol 76: 7349–7355.

43. Yalamanchili R, Tong X, Grossman S, Johannsen E, Mosialos G, et al. (1994)

Genetic and biochemical evidence that EBNA 2 interaction with a 63-kDa

cellular GTG-binding protein is essential for B lymphocyte growth transfor-

mation by EBV. Virology 204: 634–641.

44. Tong X, Yalamanchili R, Harada S, Kieff E (1994) The EBNA-2 arginine-

glycine domain is critical but not essential for B-lymphocyte growth

transformation; the rest of region 3 lacks essential interactive domains. J Virol

68: 6188–6197.

45. Henkel T, Ling PD, Hayward SD, Peterson MG (1994) Mediation of Epstein-

Barr virus EBNA2 transactivation by recombination signal-binding protein J

kappa. Science 265: 92–95.

46. Johannsen E, Koh E, Mosialos G, Tong X, Kieff E, et al. (1995) Epstein-Barr

virus nuclear protein 2 transactivation of the latent membrane protein 1
promoter is mediated by J kappa and PU.1. J Virol 69: 253–262.

47. Laux G, Adam B, Strobl LJ, Moreau-Gachelin F (1994) The Spi-1/PU.1 and

Spi-B ets family transcription factors and the recombination signal binding
protein RBP-J kappa interact with an Epstein-Barr virus nuclear antigen 2

responsive cis-element. EMBO J 13: 5624–5632.

48. Sjoblom A, Jansson A, Yang W, Lain S, Nilsson T, et al. (1995) PU box-

binding transcription factors and a POU domain protein cooperate in the
Epstein-Barr virus (EBV) nuclear antigen 2-induced transactivation of the EBV

latent membrane protein 1 promoter. J Gen Virol 76(Pt 11): 2679–2692.

49. Jansson A, Johansson P, Yang W, Palmqvist L, Sjoblom-Hallen A, et al. (2007)
Role of a consensus AP-2 regulatory sequence within the Epstein-Barr virus

LMP1 promoter in EBNA2 mediated transactivation. Virus Genes 35:
203–214.

50. Fuentes-Panana EM, Peng R, Brewer G, Tan J, Ling PD (2000) Regulation of
the Epstein-Barr virus C promoter by AUF1 and the cyclic AMP/protein

kinase A signaling pathway. J Virol 74: 8166–8175.

51. Tong X, Drapkin R, Reinberg D, Kieff E (1995) The 62- and 80-kDa subunits
of transcription factor IIH mediate the interaction with Epstein-Barr virus

nuclear protein 2. Proc Natl Acad Sci U S A 92: 3259–3263.

52. Tong X, Wang F, Thut CJ, Kieff E (1995) The Epstein-Barr virus nuclear
protein 2 acidic domain can interact with TFIIB, TAF40, and RPA70 but not

with TATA-binding protein. J Virol 69: 585–588.

53. Tong X, Drapkin R, Yalamanchili R, Mosialos G, Kieff E (1995) The Epstein-

Barr virus nuclear protein 2 acidic domain forms a complex with a novel
cellular coactivator that can interact with TFIIE. Mol Cell Biol 15: 4735–4744.

54. Wang L, Grossman SR, Kieff E (2000) Epstein-Barr virus nuclear protein 2

interacts with p300, CBP, and PCAF histone acetyltransferases in activation of
the LMP1 promoter. Proc Natl Acad Sci U S A 97: 430–435.

55. Wu DY, Kalpana GV, Goff SP, Schubach WH (1996) Epstein-Barr virus

nuclear protein 2 (EBNA2) binds to a component of the human SNF-SWI

complex, hSNF5/Ini1. J Virol 70: 6020–6028.

56. Kwiatkowski B, Chen SY, Schubach WH (2004) CKII site in Epstein-Barr
virus nuclear protein 2 controls binding to hSNF5/Ini1 and is important for

growth transformation. J Virol 78: 6067–6072.

57. Bodescot M, Chambraud B, Farrell P, Perricaudet M (1984) Spliced RNA from
the IR1-U2 region of Epstein-Barr virus: presence of an open reading frame for

a repetitive polypeptide. EMBO J 3: 1913–1917.

58. Sample J, Hummel M, Braun D, Birkenbach M, Kieff E (1986) Nucleotide

sequences of mRNAs encoding Epstein-Barr virus nuclear proteins: a probable
transcriptional initiation site. Proc Natl Acad Sci U S A 83: 5096–5100.

59. Speck SH, Pfitzner A, Strominger JL (1986) An Epstein-Barr virus transcript

from a latently infected, growth-transformed B-cell line encodes a highly
repetitive polypeptide. Proc Natl Acad Sci U S A 83: 9298–9302.

60. Peng R, Tan J, Ling PD (2000) Conserved regions in the Epstein-Barr virus

leader protein define distinct domains required for nuclear localization and

transcriptional cooperation with EBNA2. J Virol 74: 9953–9963.

61. Yoo LI, Mooney M, Puglielli MT, Speck SH (1997) B-cell lines immortalized
with an Epstein-Barr virus mutant lacking the Cp EBNA2 enhancer are biased

toward utilization of the oriP-proximal EBNA gene promoter Wp1. J Virol 71:
9134–9142.

62. Kilger E, Kieser A, Baumann M, Hammerschmidt W (1998) Epstein-Barr

virus-mediated B-cell proliferation is dependent upon latent membrane protein

1, which simulates an activated CD40 receptor. EMBO J 17: 1700–1709.

63. Sjoblom A, Yang W, Palmqvist L, Jansson A, Rymo L (1998) An ATF/CRE
element mediates both EBNA2-dependent and EBNA2-independent activation

of the Epstein-Barr virus LMP1 gene promoter. J Virol 72: 1365–1376.

64. Fahraeus R, Jansson A, Ricksten A, Sjoblom A, Rymo L (1990) Epstein-Barr
virus-encoded nuclear antigen 2 activates the viral latent membrane protein

promoter by modulating the activity of a negative regulatory element. Proc

Natl Acad Sci U S A 87: 7390–7394.

65. Cohen JI, Kieff E (1991) An Epstein-Barr virus nuclear protein 2 domain
essential for transformation is a direct transcriptional activator. J Virol 65:

5880–5885.

66. Wang F, Kikutani H, Tsang SF, Kishimoto T, Kieff E (1991) Epstein-Barr
virus nuclear protein 2 transactivates a cis-acting CD23 DNA element. J Virol

65: 4101–4106.

67. Wang F, Tsang SF, Kurilla MG, Cohen JI, Kieff E (1990) Epstein-Barr virus

nuclear antigen 2 transactivates latent membrane protein LMP1. J Virol 64:
3407–3416.

68. Fredriksson R, Lagerstrom MC, Lundin LG, Schioth HB (2003) The G-

protein-coupled receptors in the human genome form five main families.
Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol 63:

1256–1272.

69. Joost P, Methner A (2002) Phylogenetic analysis of 277 human G-protein-

coupled receptors as a tool for the prediction of orphan receptor ligands.
Genome Biol 3: RESEARCH0063.

70. Balabanian K, Lagane B, Infantino S, Chow KY, Harriague J, et al. (2005) The

chemokine SDF-1/CXCL12 binds to and signals through the orphan receptor
RDC1 in T lymphocytes. J Biol Chem 280: 35760–35766.

71. Burns JM, Summers BC, Wang Y, Melikian A, Berahovich R, et al. (2006) A

novel chemokine receptor for SDF-1 and I-TAC involved in cell survival, cell

adhesion, and tumor development. J Exp Med 203: 2201–2213.

EBNA-2 Type Specific Regulation of LMP-1 and CXCR7

PLoS Pathogens | www.plospathogens.org 20 July 2011 | Volume 7 | Issue 7 | e1002164



72. Thelen M, Thelen S (2008) CXCR7, CXCR4 and CXCL12: an eccentric trio?

J Neuroimmunol 198: 9–13.

73. Hartmann TN, Grabovsky V, Pasvolsky R, Shulman Z, Buss EC, et al. (2008)

A crosstalk between intracellular CXCR7 and CXCR4 involved in rapid
CXCL12-triggered integrin activation but not in chemokine-triggered motility

of human T lymphocytes and CD34+ cells. J Leukoc Biol 84: 1130–1140.

74. Dambly-Chaudiere C, Cubedo N, Ghysen A (2007) Control of cell migration in

the development of the posterior lateral line: antagonistic interactions between

the chemokine receptors CXCR4 and CXCR7/RDC1. BMC Dev Biol 7: 23.

75. Boldajipour B, Mahabaleshwar H, Kardash E, Reichman-Fried M, Blaser H,

et al. (2008) Control of chemokine-guided cell migration by ligand
sequestration. Cell 132: 463–473.

76. Infantino S, Moepps B, Thelen M (2006) Expression and regulation of the
orphan receptor RDC1 and its putative ligand in human dendritic and B cells.

J Immunol 176: 2197–2207.

77. Levoye A, Balabanian K, Baleux F, Bachelerie F, Lagane B (2009) CXCR7

heterodimerizes with CXCR4 and regulates CXCL12-mediated G protein
signaling. Blood 113: 6085–6093.

78. Jin Z, Nagakubo D, Shirakawa AK, Nakayama T, Shigeta A, et al. (2009)
CXCR7 is inducible by HTLV-1 Tax and promotes growth and survival of

HTLV-1-infected T cells. Int J Cancer 125: 2229–2235.

79. Raggo C, Ruhl R, McAllister S, Koon H, Dezube BJ, et al. (2005) Novel

cellular genes essential for transformation of endothelial cells by Kaposi’s

sarcoma-associated herpesvirus. Cancer Res 65: 5084–5095.

80. Miao Z, Luker KE, Summers BC, Berahovich R, Bhojani MS, et al. (2007)

CXCR7 (RDC1) promotes breast and lung tumor growth in vivo and is
expressed on tumor-associated vasculature. Proc Natl Acad Sci U S A 104:

15735–15740.

81. Wang J, Shiozawa Y, Wang Y, Jung Y, Pienta KJ, et al. (2008) The role of

CXCR7/RDC1 as a chemokine receptor for CXCL12/SDF-1 in prostate
cancer. J Biol Chem 283: 4283–4294.

82. Meijer J, Ogink J, Roos E (2008) Effect of the chemokine receptor CXCR7 on
proliferation of carcinoma cells in vitro and in vivo. Br J Cancer 99:

1493–1501.

83. Jones MD, Foster L, Sheedy T, Griffin BE (1984) The EB virus genome in

Daudi Burkitt’s lymphoma cells has a deletion similar to that observed in a non-

transforming strain (P3HR-1) of the virus. EMBO J 3: 813–821.

84. Picard D, Salser SJ, Yamamoto KR (1988) A movable and regulable

inactivation function within the steroid binding domain of the glucocorticoid
receptor. Cell 54: 1073–1080.

85. Jeang KT, Hayward SD (1983) Organization of the Epstein-Barr virus DNA
molecule. III. Location of the P3HR-1 deletion junction and characterization

of the NotI repeat units that form part of the template for an abundant 12-O-
tetradecanoylphorbol-13-acetate-induced mRNA transcript. J Virol 48:

135–148.

86. Kempkes B, Spitkovsky D, Jansen-Durr P, Ellwart JW, Kremmer E, et al.

(1995) B-cell proliferation and induction of early G1-regulating proteins by

Epstein-Barr virus mutants conditional for EBNA2. EMBO J 14: 88–96.

87. Ring CJ, Jones MD, Griffin BE (1992) Alternative splicing determines the

carboxy terminus of the Epstein-Barr virus nuclear antigen 5 species expressed
in the Burkitt’s lymphoma cell line Daudi. J Gen Virol 73(Pt 10): 2715–2719.

88. Garibal J, Hollville E, Bell AI, Kelly GL, Renouf B, et al. (2007) Truncated
form of the Epstein-Barr virus protein EBNA-LP protects against caspase-

dependent apoptosis by inhibiting protein phosphatase 2A. J Virol 81:
7598–7607.

89. Shaku F, Matsuda G, Furuya R, Kamagata C, Igarashi M, et al. (2005)
Development of a monoclonal antibody against Epstein-Barr virus nuclear

antigen leader protein (EBNA-LP) that can detect EBNA-LP expressed in

P3HR1 cells. Microbiol Immunol 49: 477–483.

90. Wang F, Petti L, Braun D, Seung S, Kieff E (1987) A bicistronic Epstein-Barr

virus mRNA encodes two nuclear proteins in latently infected, growth-
transformed lymphocytes. J Virol 61: 945–954.

91. Rowe DT, Farrell PJ, Miller G (1987) Novel nuclear antigens recognized by
human sera in lymphocytes latently infected by Epstein-Barr virus. Virology

156: 153–162.

92. Finke J, Rowe M, Kallin B, Ernberg I, Rosen A, et al. (1987) Monoclonal and

polyclonal antibodies against Epstein-Barr virus nuclear antigen 5 (EBNA-5)
detect multiple protein species in Burkitt’s lymphoma and lymphoblastoid cell

lines. J Virol 61: 3870–3878.

93. Rooney C, Howe JG, Speck SH, Miller G (1989) Influence of Burkitt’s

lymphoma and primary B cells on latent gene expression by the nonimmorta-

lizing P3J-HR-1 strain of Epstein-Barr virus. J Virol 63: 1531–1539.

94. Allan GJ, Rowe DT (1989) Size and stability of the Epstein-Barr virus major

internal repeat (IR-1) in Burkitt’s lymphoma and lymphoblastoid cell lines.
Virology 173: 489–498.

95. Piovan E, Tosello V, Indraccolo S, Cabrelle A, Baesso I, et al. (2005)
Chemokine receptor expression in EBV-associated lymphoproliferation in hu/

SCID mice: implications for CXCL12/CXCR4 axis in lymphoma generation.
Blood 105: 931–939.

96. Nakayama T, Fujisawa R, Izawa D, Hieshima K, Takada K, et al. (2002)
Human B cells immortalized with Epstein-Barr virus upregulate CCR6 and

CCR10 and downregulate CXCR4 and CXCR5. J Virol 76: 3072–3077.

97. Ehlin-Henriksson B, Mowafi F, Klein G, Nilsson A (2006) Epstein-Barr virus

infection negatively impacts the CXCR4-dependent migration of tonsillar B
cells. Immunology 117: 379–385.

98. Aiuti A, Tavian M, Cipponi A, Ficara F, Zappone E, et al. (1999) Expression of

CXCR4, the receptor for stromal cell-derived factor-1 on fetal and adult
human lympho-hematopoietic progenitors. Eur J Immunol 29: 1823–1831.

99. Petti L, Sample C, Kieff E (1990) Subnuclear localization and phosphorylation
of Epstein-Barr virus latent infection nuclear proteins. Virology 176: 563–574.

100. Rabson M, Gradoville L, Heston L, Miller G (1982) Non-immortalizing P3J-

HR-1 Epstein-Barr virus: a deletion mutant of its transforming parent, Jijoye.
J Virol 44: 834–844.

101. Moses AV, Jarvis MA, Raggo C, Bell YC, Ruhl R, et al. (2002) Kaposi’s
sarcoma-associated herpesvirus-induced upregulation of the c-kit proto-

oncogene, as identified by gene expression profiling, is essential for the
transformation of endothelial cells. J Virol 76: 8383–8399.

102. Poole LJ, Yu Y, Kim PS, Zheng QZ, Pevsner J, et al. (2002) Altered patterns of

cellular gene expression in dermal microvascular endothelial cells infected with
Kaposi’s sarcoma-associated herpesvirus. J Virol 76: 3395–3420.

103. Matta H, Surabhi RM, Zhao J, Punj V, Sun Q, et al. (2007) Induction of
spindle cell morphology in human vascular endothelial cells by human

herpesvirus 8-encoded viral FLICE inhibitory protein K13. Oncogene 26:

1656–1660.
104. Sierro F, Biben C, Martinez-Munoz L, Mellado M, Ransohoff RM, et al.

(2007) Disrupted cardiac development but normal hematopoiesis in mice
deficient in the second CXCL12/SDF-1 receptor, CXCR7. Proc Natl Acad

Sci U S A 104: 14759–14764.
105. Naumann U, Cameroni E, Pruenster M, Mahabaleshwar H, Raz E, et al.

(2010) CXCR7 functions as a scavenger for CXCL12 and CXCL11. PLoS

One 5: e9175.
106. Hertle ML, Popp C, Petermann S, Maier S, Kremmer E, et al. (2009)

Differential gene expression patterns of EBV infected EBNA-3A positive and
negative human B lymphocytes. PLoS Pathog 5: e1000506.

107. Chen A, Zhao B, Kieff E, Aster JC, Wang F (2006) EBNA-3B- and EBNA-3C-

regulated cellular genes in Epstein-Barr virus-immortalized lymphoblastoid cell
lines. J Virol 80: 10139–10150.

108. White RE, Groves IJ, Turro E, Yee J, Kremmer E, et al. (2010) Extensive co-
operation between the Epstein-Barr virus EBNA3 proteins in the manipulation

of host gene expression and epigenetic chromatin modification. PLoS One 5:
e13979.

109. Zhao B, Mar JC, Maruo S, Lee S, Gewurz BE, et al. (2011) Epstein-Barr virus

nuclear antigen 3C regulated genes in lymphoblastoid cell lines. Proc Natl Acad
Sci U S A 108: 337–342.

110. Portal D, Rosendorff A, Kieff E (2006) Epstein-Barr nuclear antigen leader
protein coactivates transcription through interaction with histone deacetylase 4.

Proc Natl Acad Sci U S A 103: 19278–19283.

111. Hinuma Y, Konn M, Yamaguchi J, Wudarski DJ, Blakeslee JR, Jr., et al. (1967)
Immunofluorescence and herpes-type virus particles in the P3HR-1 Burkitt

lymphoma cell line. J Virol 1: 1045–1051.
112. Epstein MA, Achong BG, Barr YM, Zajac B, Henle G, et al. (1966)

Morphological and virological investigations on cultured Burkitt tumor
lymphoblasts (strain Raji). J Natl Cancer Inst 37: 547–559.

113. Klein E, Klein G, Nadkarni JS, Nadkarni JJ, Wigzell H, et al. (1968) Surface

IgM-kappa specificity on a Burkitt lymphoma cell in vivo and in derived culture
lines. Cancer Res 28: 1300–1310.

114. Sugden B, Warren N (1989) A promoter of Epstein-Barr virus that can function
during latent infection can be transactivated by EBNA-1, a viral protein

required for viral DNA replication during latent infection. J Virol 63:

2644–2649.
115. Kempkes B, Zimber-Strobl U, Eissner G, Pawlita M, Falk M, et al. (1996)

Epstein-Barr virus nuclear antigen 2 (EBNA2)-oestrogen receptor fusion
proteins complement the EBNA2-deficient Epstein-Barr virus strain P3HR1

in transformation of primary B cells but suppress growth of human B cell

lymphoma lines. J Gen Virol 77(Pt 2): 227–237.
116. Allan GJ, Inman GJ, Parker BD, Rowe DT, Farrell PJ (1992) Cell growth

effects of Epstein-Barr virus leader protein. J Gen Virol 73(Pt 6): 1547–1551.
117. Delecluse HJ, Hilsendegen T, Pich D, Zeidler R, Hammerschmidt W (1998)

Propagation and recovery of intact, infectious Epstein-Barr virus from
prokaryotic to human cells. Proc Natl Acad Sci U S A 95: 8245–8250.

118. White RE, Calderwood MA, Whitehouse A (2003) Generation and precise

modification of a herpesvirus saimiri bacterial artificial chromosome demon-
strates that the terminal repeats are required for both virus production and

episomal persistence. J Gen Virol 84: 3393–3403.
119. Dolan A, Addison C, Gatherer D, Davison AJ, McGeoch DJ (2006) The

genome of Epstein-Barr virus type 2 strain AG876. Virology 350: 164–170.

120. Gregorovic G, Bosshard R, Karstegl CE, White RE, Pattle S, et al. (2011) Cell
gene expression correlating with EBER expression in Epstein-Barr virus

infected lymphoblastoid cell lines. J Virol 85: 3535–45.
121. Dirmeier U, Neuhierl B, Kilger E, Reisbach G, Sandberg ML, et al. (2003)

Latent membrane protein 1 is critical for efficient growth transformation of
human B cells by epstein-barr virus. Cancer Res 63: 2982–2989.

122. Neuhierl B, Feederle R, Hammerschmidt W, Delecluse HJ (2002) Glycoprotein

gp110 of Epstein-Barr virus determines viral tropism and efficiency of infection.
Proc Natl Acad Sci U S A 99: 15036–15041.

EBNA-2 Type Specific Regulation of LMP-1 and CXCR7

PLoS Pathogens | www.plospathogens.org 21 July 2011 | Volume 7 | Issue 7 | e1002164


