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Abstract

The rapid proliferation of wearable devices for medical applications has necessitated the
need for automated algorithms to provide labelling of physiological time-series data to
identify abnormal morphology. However, such algorithms are less reliable than gold-
standard human expert labels (where the latter are typically difficult and expensive to
obtain), due to their large inter- and intra-subject variabilities. Actions taken in response to
these algorithms can therefore result in sub-optimal patient care. In a typical scenario where
only unevenly sampled continuous or numeric estimates are provided, without access to the
“ground truth”, it is challenging to choose which algorithms to trust and which to ignore,
or even how to merge the outputs from multiple algorithms to form a more precise final
estimate for individual patients. In this work, the novel application of two previously pro-
posed parametric fully-Bayesian graphical models is demonstrated for fusing labels from
(i) independent and (ii) potentially correlated algorithms, validated on two publicly avail-
able datasets for the task of respiratory rate (RR) estimation. These unsupervised models
aggregate RR labels and estimate jointly the assumed bias and precision of each algorithm.
Fusing estimates in this way may then be used to infer the underlying ground truth for
individual patients. It is shown that modelling the latent correlations between algorithms
improves the RR estimates, when compared to commonly employed strategies in the lit-
erature. Finally, it is demonstrated that the adoption of a strongly Bayesian approach to
inference using Gibbs sampling results in improved estimation over the current state-of-
the-art (e.g. hierarchical Gaussian processes) in physiological time-series modelling.

1 INTRODUCTION AND RELATED
WORK

With the rapid increase in the volume and variety of wearable
devices now routinely in use for healthcare applications, there
exists the possibility of personalising the care patients receive
based on their individual physiologies. This “personalised” and
patient-centric approach to healthcare is built on the assump-
tion that physiological data collected from patient-worn sensors
can be reliably utilised, for diagnostic and prognostic applica-
tions, in clinical practice. However, with very large quantities
of sensor data being accumulated over time, there is an urgent
need for algorithms capable of automatically labelling the col-
lected physiological time series data (e.g. abnormal respiratory
rate readings) without the need for human input.

Yet to date, automated algorithms remain less reliable in
practice than labelling from human experts. The latter is often
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the accepted gold-standard but is typically expensive, difficult or
even unfeasible to obtain for the majority of applications, such
as labeling of data arising from patients in real-time. In these
cases, and many other real-life clinical applications, automated
algorithms have to be relied on to process and label sensor data.
Additionally, when there is no knowledge of the “ground-truth”
in the form of expert labelling, it is a challenge to know which
algorithms to trust and which to ignore at any given point in
time. Particularly, as different algorithms may be optimal for
different patient subsets, or even optimal for the same patient
at different points in time. Often, naive methods are used to
combine the recommendations of various algorithms to form
a final estimate that is intended to have maximum precision for
an individual.

Modelling continuous-valued labels in addition to the biases
and expertise of each annotator producing those labels, remains
an active area of research, with key contributions outlined as
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follows. In the context of medical imaging [1], the use of an
expectation maximisation (EM) method was demonstrated to
fuse labels from different annotators estimating the diameter
of lesions from images. A method for validating medical image
segmentation, which estimated both the bias and variance of
annotators, was proposed in the work of [2]. Similar to this
approach, [3] more recently presented a model that estimated
the ground truth in the form of count and percentage estima-
tion, in a “crowd sensing” setting. A Bayesian EM framework
which fused binary, multi-valued and continuous-valued labels
was proposed in [4]. This method described explicitly modelling
the precision (but not bias) of individual annotators by taking
into account their different skill levels. By contrast, [5] used a
Gaussian prior on the bias parameter of annotators attempting
to produce cardiac landmark labels in 2D images. However, it is
worth noting that physiological features were not incorporated
into the models of [5] as a means of further improving estima-
tion of the ground truth label.

In all of the aforementioned studies, the proposed models did
not include a principled way to take into account the quality of
data or how to cater for missing labels. Moreover, in these stud-
ies it was assumed that all annotators are independent, which
may not always be the case when labels are produced by slightly
different implementations of the same underlying algorithm.
Previous work by the author tackled these issues by first propos-
ing a Bayesian framework to jointly model both annotator bias
and precision [6]. This work was then extended in [7], in which
the author proposed a fully Bayesian approach through Gibbs
sampling for fusing continuous valued labels, from both inde-
pendent and/or partially correlated annotators, as a means of
arriving at a consensus in an unsupervised manner.

In the case where we have imperfect algorithms that perform
well for only some individuals for only some of the time, both
parametric and non-parametric models can be used to form a
consensus. This guarantees an improvement of estimates over
each algorithm considered independently. Bayesian models pre-
viously proposed in [7] are parametric, where the number of
parameters is fixed and does not scale when the number of
samples increases. They also explicitly model each timestamp
in a time-series and assume the data points in different times-
tamps are independent of each other. By contrast, a hierarchical
Gaussian process [8], as a popular non-parametric model for
timeseries modelling, assumes the number of parameters scales
with the dimension of the data, and explicitly models the corre-
lation of datapoints among different timestamps in timeseries.
Currently, there is no direct comparison of the aforementioned
methods provided in the literature for physiological data, despite
their similarity in model formulation.

In this letter, we present a novel application of the method-
ologies proposed by the author in [7]. We propose to compare
the performance of both parametric and non-parametric mod-
els and determine experimentally which method is more suitable
for modelling physiological time-series data in the case when
combining multiple imperfect algorithms to form a consensus,
using the two public datasets as exemplars. The task considered
is estimation of the underlying respiratory rate (RR) from pho-
toplethysmogram (PPG) recordings contained within the Cap-

noBase and BIDMC datasets [9, 10]. Robust estimation of RR is
a practically well motivated task, as accurate monitoring of the
vital sign can facilitate improved diagnosis and patient care. We
demonstrate improved estimation of RR is possible using our
approach of fusing labels from different annotators, when com-
pared with existing methods presented in the literature; namely
two EM models by [1] and [2], as well as a hierarchical Gaussian
process approach [8].

The remainder of this letter is organised as follows. First,
we outline the methodology proposed by the authors in [7],
briefly describing the formulation of the two models consid-
ered. The experiments used to validate and compare the meth-
ods with selected baselines, along with the results obtained, are
then detailed before the concluding remarks are presented.

2 PROBLEM FORMULATION

Consider the case where we have N samples of physiologi-
cal time-series data, with N corresponding continuous-valued
labels (e.g. RR labels from PPG time-series samples). We can
assume that the underlying ground truth for the ith sample, zi ,
can be drawn from a Gaussian distribution with mean ai and
variance 1∕b. We can express ai as a linear regression func-
tion f (w, xi ) with an intercept w0. In this formulation, w are
the coefficients of the regression (which includes w0

1). While
xi is a column feature vector for the ith record containing d

features (i.e. we have an (N × d )-dimensional design matrix,
X = [x⊺1;… ; x

⊺

N
]). Note that, a scalar value of one was added

to the feature matrix (i.e. xi := [1, xi ])) to cater for the w0 inter-
cept. Finally, the precision of the ground truth (defined as the
inverse-variance b) is assumed to be modelled from a gamma
distribution where kb is the shape parameter and 𝜗b is the scale
parameter. It therefore follows that the conditional probability
density function (pdf) of z as a vector of labels can be written as∏N

i=1  (zi ∣ x
⊺
i w, 1∕b).

3 THE INDEPENDENT ANNOTATOR
MODEL (IAM)

Assuming once again the presence of N samples, we have
a dataset, D = [x⊺

i , y
j=1
i ,… , y

j=R

i ]N
i=1, where y

j

i corresponds
to the label estimate provided by the j th annotator for the
ith sample, with a total of R annotators. This model assumes
that y

j

i is a noisy version of zi , with a Gaussian distribution

 (y j

i ∣ zi , 1∕𝜆 j ), where 𝜆 j is the precision of the j th annotator,
defined as the estimated inverse-variance for annotator j .
Furthermore, the bias of each annotator, which measures the
average difference between the estimation and the ground truth,
can be modelled as an additional term, denoted as 𝜙 j . The pdf
of estimating y

j

i can thus be written as  (y j

i ∣ zi + 𝜙 j , 1∕𝜆 j ).
It is assumed that y1

i ,… , yR
i are conditionally independent given

the ground truth zi ; assuming samples are independent, it

1 w0 models the overall offset predicted in the regression, and is therefore different from
the bias 𝜙 specific to each annotator in the proposed models, which will be described later.
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follows that the conditional pdf of y can be expressed as:

p(y ∣ z,𝝓,𝝀) =
N∏

i=1

R∏
j=1


(

y
j

i ∣ zi + 𝜙 j , 1∕𝜆 j
)
. (1)

However, as noted earlier, conditional independence between
annotators may not always be the case as labels may be pro-
duced by variants of the same underlying algorithmic approach.
That is annotators that differ only in, for example, operational
parameter settings. Nevertheless, this assumption can be made
to simplify the model and subsequent derivation of the like-
lihood. Relaxation of this independence assumption will be
explored in the second proposed model, the correlated anno-
tator model (described in the proceeding section). The pdf of
the bias for annotator j , 𝜙 j , is assumed to once again be drawn
from a Gaussian, this time with mean 𝜇𝜙 and variance 1∕𝛼𝜙 [5]:

p
(
𝜙 j ∣ 𝜇𝜙,𝛼𝜙

)
= 

(
𝜙 j ∣ 𝜇𝜙, 1∕𝛼𝜙

)
. (2)

Although the biases of the annotators could very well be
assumed to follow other distributions, such choices are likely
to be dataset-dependent. In the absence of any knowledge of
the underlying distribution of biases, we choose to assume they
are drawn from a Gaussian distribution. The precision values
(defined as the inverse-variance values, constrained to be in the
range of (0,∞)), such as 𝜆 j and 𝛼𝜙, by contrast are assumed to
be drawn from a gamma distribution, with parameters k𝜆, 𝜗𝜆,
and k𝛼 , 𝜗𝛼 , respectively:

p(𝜆 j ∣ k𝜆,𝜗𝜆 ) = Gamma (𝜆 j ∣ k𝜆,𝜗𝜆 ), (3)

p(𝛼𝜙 ∣ k𝛼 ,𝜗𝛼 ) = Gamma (𝛼𝜙 ∣ k𝛼 ,𝜗𝛼 ). (4)

It follows that for a given dataset D, the likelihood of the
parameters 𝜽 = {w,𝝀,𝝓,𝛼𝜙, b, zi }, can be formulated as:

p(D ∣ 𝜽 ) =
N∏

i=1

p
(
y1
i ,… , yR

i , xi ∣ 𝜽
)
. (5)

Bayes’ theorem can then be used to determine the posterior
probability of the parameters 𝜽, for a given dataset D, as

p(𝜽 ∣ D) =
p(D ∣ 𝜽 )p(𝜽 )

∫
𝜽

p(D ∣ 𝜽 )p(𝜽 )d𝜽
, (6)

where

p(D ∣ 𝜽 )p(𝜽 )

= Gamma(𝛼𝜙 ∣ k𝛼 ,𝜗𝛼 )Gamma(b ∣ kb,𝜗b )

×

[
R∏

j=1


(
𝜙 j ∣ 𝜇𝜙, 1∕𝛼𝜙

)
Gamma(𝜆 j ∣ k𝜆,𝜗𝜆 )

]

×

[
N∏

i=1


(
zi ∣ x

⊺

i w, 1∕b
) R∏

j=1


(

y
j

i ∣ zi + 𝜙 j , 1∕𝜆 j
)]

.

Obtaining the posterior probability of the parameters 𝜽 effec-
tively allows us to estimate the latent ground truth for the ith

sample zi , and jointly predict the bias 𝜙 j and precision 𝜆 j of
the j th annotator simultaneously.

4 LEARNING FROM INCOMPLETE
DATA USING GIBBS SAMPLING

An important practical scenario to consider is the case that
arises when there are missing labels from different annotators
(i.e. not all R algorithms provide N estimates for all samples).
To account for this, the posterior distribution hyperparameters
of the IAM can be re-written using Gibbs sampling as follows
(see graphical model in Figure 1(a)):

zi ∼ 

(
zi

|||||a∗i ,
1
b∗i

)
,𝜙 j ∼ 

⎛⎜⎜⎝𝜙 j
|||||𝜇 j∗

𝜙
,

1

𝛼
j∗

𝜙

⎞⎟⎟⎠,

𝜆 j ∼ Gamma
(
𝜆 j |||k j∗

𝜆
,𝜗

j∗

𝜆

)
,

b ∼ Gamma
(

b
|||k∗b ,𝜗∗

b

)
,𝛼𝜙 ∼ Gamma

(
𝛼𝜙 ∣ k∗𝛼 ,𝜗∗𝛼

)
.

a∗i =

(
x
⊺
i w

)
b +

∑
j∈Vi

[(
y

j

i − 𝜙 j
)
𝜆 j
]

b +
∑

j∈Vi
𝜆 j

, b∗i = b +
∑
j∈Vi

𝜆 j ,

𝜇
j∗

𝜙
=
𝜇𝜙𝛼𝜙 + 𝜆 j

∑
i∈Uj

(
y

j

i − zi

)
𝛼𝜙 +

∑
i∈Uj

𝜆 j
,𝛼

j∗

𝜙
= 𝛼𝜙 +

∑
i∈Uj

𝜆 j ,

k
j∗

𝜆
= k𝜆 +

Nj

2
,

1

𝜗
j∗

𝜆

=

∑
i∈Uj

(
y

j

i − 𝜙 j − zi

)2

2
+

1
𝜗𝜆

,

k∗𝛼 = k𝛼 +
R

2
,

1
𝜗∗𝛼

=

∑R

j=1 (𝜙 j − �̄�)
2

2
+

1
𝜗𝛼

,

k∗
b
= kb +

N

2
,

1
𝜗∗

b

=

∑N

i=1 (zi − z̄ )2

2
+

1
𝜗b

.

Note that Uj is the set of samples with labels provided by the j th

annotator whilst Vi is the set of annotators that provided labels
for the ith sample, and Nj is the number of samples annotated
by the j th annotator. Finally, w can be learnt by finding the zero
gradient of the expectation of the complete data log-likelihood

as w = (
∑N

i=1 xix
⊺
i )−1 ∑N

i=1 xi zi . The above formulation allows
us to cope robustly with the commonly encountered difficulties
arising from incomplete (or even sparse) labelling, in a princi-
pled and probabilistic manner.
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FIGURE 1 (a) The independent annotator model. (b) The correlated annotator model. (c) Hierarchical Gaussian processes with an additional prior on the latent
ground truth

5 THE CORRELATED ANNOTATOR
MODEL (CAM)

As noted previously, annotator independence may not always
be an accurate assumption to make in reality. To account for
this, we can incorporate a correlation measure into the annota-
tor model described in the preceding section. This would facil-
itate an improved aggregation of the different annotator labels,
and thus a better inferred ground truth estimate. In this formu-
lation, annotators are considered to be anomalous when they are
highly correlated to other annotators but possess relatively large
variances and biases. These anomalous annotators are penalised
with lower weighting for their labels. Expert annotators, defined
as those that are highly correlated to other annotators but which
have relatively small variances and biases, on the other hand
have their labels weighted more heavily in the model.

A multivariate normal distribution (MVN) can be applied to
the annotator model, using the covariance matrix (denoted 𝚺) to
describe the correlation among annotators, as well as providing
a constraint on the biases 𝝓. The Inverse-Wishart (IW) distribu-
tion is used as a prior for the covariance matrix 𝚺, and the bias
values 𝝓 for all annotators are modelled using a MVN with mean
𝝁𝜙Σ and covariance 𝚺∕k0. The conditional pdf of the modified
annotator model with covariance becomes

p(y ∣ zi ,𝝓,𝚺) =
N∏

i=1

 (zi + 𝝓,𝚺), (7)

where 𝚺 is the covariance matrix of the R annotators and where
there are N samples.

Matrix 𝚺 can be further decomposed into a correlation matrix
and the precision values of the annotators. Using the separa-
tion strategy proposed by [11], 𝚺 is formulated as 𝚺 = Q𝝆Q,
where Q is an R-by-R diagonal matrix with entries being

1√
𝜆 j=1

,… ,
1√
𝜆 j=R

. Here, 𝜆 j is the precision value for the j th

annotator, and 𝝆 is the latent correlation matrix of the annota-
tion errors among R annotators. The biases of individual anno-
tators are now assumed to be drawn from a MVN constrained

by 𝚺, with conditional pdf:

p(𝝓 ∣ 𝝁𝜙Σ,𝚺) =  (𝝓 ∣ 𝝁𝜙Σ,𝚺∕k0), (8)

where 𝝁𝜙Σ is the prior mean for 𝝓, and k0 is a positive scalar
that expresses our belief on 𝝁𝜙Σ. The posterior of the parame-
ter 𝜽c = {𝝓,𝚺, b, zi } for a given dataset D can be written using
Bayes’ theorem as

p(𝜽c ∣ D) =
p(D ∣ 𝜽c )p(𝜽c )

∫
𝜽c

p(D ∣ 𝜽c )p(𝜃)d𝜽c

, (9)

where:

p(D ∣ 𝜽c )p(𝜽c )

=  (𝝓 ∣ 𝝁𝜙Σ,𝚺∕k0)IW(𝚺 ∣ v, S )

× Gamma (b ∣ kb,𝜗b )

[
N∏

i=1

 (zi ∣ ai , 1∕b) (yi ∣ zi + 𝝓,𝚺)

]
.

The new parameters are now updated using the Gibbs sam-
pler as follows (see graphical model in Figure 1(b)) :

𝝓 ∼ 
(
𝝓 ∣ 𝝁∗

𝜙Σ
,𝚺

∗
𝜙

)
,𝚺 ∼ IW(𝚺 ∣ v∗, S∗ ).

𝝁∗
𝜙Σ

=
k0𝝁𝜙Σ

k0 + N
+

Uȳb

k0 + U
,𝚺

∗
𝜙 =

𝚺

k0 + N
, v∗ = v + N,

S∗ = S +

N∑
i=1

(yi − zi − ȳb )T (yi − zi − ȳb )

+
k0N

k0 + N
(ȳb − 𝝁𝜙Σ )T (ȳb − 𝝁𝜙Σ ),

where U is a 1-by-R vector, and each of its elements indicates
the total number of labels provided by a respective annotator.

ȳb = [ȳ j=1
b

,… , ȳ
j=R

b
], where ȳ

j

b
=

1

Nj

∑N

i=1(y j

i − zi ).



ZHU ET AL. 29

6 EXPERIMENT DESCRIPTION

We evaluate the efficacy of our proposed models using two pub-
licly available biomedical datasets: (1) the CapnoBase dataset
by [9] and (2) the BIDMC dataset by [10]. The CapnoBase
dataset contains 42 PPG recordings of spontaneous or con-
trolled breathing from a total of 42 subjects (29 paediatric and
13 adults), where each recording is 8 min long. The BIDMC
dataset contains PPG recordings of the same duration, from
53 adult subjects. A subject’s RR manifests itself in the PPG
recordings by modulating the PPG waveform signal. For our
experiments, we extract three respiratory-induced modulation
time-series (Amplitude Modulation, Baseline Wander, and Fre-
quency Modulation) from each of the PPG recordings. Then
to estimate RR from these time-series, we used two well estab-
lished approaches: Fourier spectral analysis and autoregressive
(AR) modelling. The RR estimates were computed for 32-s win-
dows, with successive windows having 29 s overlap. For each
window and each method (AR and Fourier spectral analysis),
three RR estimates were calculated from the three modulation
time-series, producing six RR estimates for every window. The
underlying subject-specific latent RR was then estimated by fus-
ing these six estimation “algorithms”.

7 RESULTS AND DISCUSSION

We compared our proposed models with two parametric
maximum-likelihood EM models (EM-R by [1]; STAPLE by
[2]), as well as the non-parametric hierarchical Gaussian pro-
cesses (HGPs) ([8]) with an additional Bayesian regularisation
(i.e. a lognormal prior) on the noise variance of the latent
ground truth (see Figure 1(c)). By comparing the gold-stand RR
labels for a subject over 150 windows, the mean absolute error
(MAE) was computed for each model. The mean MAE and the
standard error of the mean (SEM) were also estimated across all

TABLE 1 Mean MAE ± SEM (bpm) of the inferred RR across subjects
using different models for CapnoBase and BIDMC datasets

Model CapnoBase BIDMC

EM-R 1.14 ± 0.22 3.15 ± 0.34

sSTAPLE 1.78 ± 0.34 3.51 ± 0.28

HGPs 1.46 ± 0.32 3.37 ± 0.40

IAM 1.18 ± 0.16 2.96 ± 0.43

CAM 1.00 ± 0.20 3.03 ± 0.33

subjects. The results are shown in Table 1. The CAM had the
least error for CapnoBase, but the IAM model was better for
BIDMC. Nevertheless, both proposed models outperformed
the state-of-the-art approaches recreated from the literature: a
MAE of 1 bpm versus 1.5 bpm [10] and 1.2 bpm [9] for the Cap-
noBase dataset, and a MAE of 2.96 bpm versus 4 bpm [10] and
5.8 bpm [9] for the BIDMC datase using all possible windows.

Furthermore, the proposed parametric models provide the
Bayesian interpretation of their estimates through 95% con-
fidence intervals (see dashed lines in Figure 2). In compari-
son, HGPs had a larger noise variance: as 5 out of 6 algo-
rithms (A2 to A6) were biased with smaller estimation of RR,
this resulted in a large uncertainty in the latent RR estimates
when fusing labels using HGPs. Although HGPs models the
time-dependent information of the RR time-series, it operates
under the assumption that estimates from the algorithms are
reliable and equally weighted. This is not the case when algo-
rithms are biased and affected by noise and artefacts, and hence
causing HGPs to have sub-optimal performance when com-
pared to IAM or CAM. In terms of model complexity, both
HGPs and the proposed parametric models are in the order of
O(n3), where n is the number of samples. Additional reduction
in computational complexity would be possible through further
optimising the inference steps, which can be explored in future
work.

FIGURE 2 Example of the RR estimates for a subject
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8 CONCLUSION

Automated labelling of large volumes of physiological time-
series data being collected from wearable sensors, often in
real-time, is a prerequisite to being able to provide patients with
personalised care. In this work, we have applied two parametric
unsupervised fully Bayesian graphical models for fusing labels
from (i) independent and (ii) potentially correlated algorithms,
to estimate the underlying RR from PPG signals obtained from
the publicly available CapnoBase and BIDMC datasets. Robust
estimation of RR is of clinical value and could be used to
improve patient care. By jointly estimating the assumed bias and
precision of each algorithm considered, we have demonstrated
that these models are able to infer the underlying ground
truth more robustly than existing state-of-the-art methods. In
addition to improved performance, we show that the proposed
models are robust when dealing with missing values (as often
occurs in real-life biomedical applications due to sensor fail-
ure), and that they are suitably efficient for use in real-time
applications.
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