
ARTICLE

Received 5 Dec 2014 | Accepted 30 Jan 2015 | Published 10 Mar 2015

Identification of FOXM1 as a therapeutic target in
B-cell lineage acute lymphoblastic leukaemia
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Hilde Schjerven1, Ari Melnick4, Elisabeth Paietta5, Dragana Kopanja6, Pradip Raychaudhuri6 &

Markus Müschen1,2

Despite recent advances in the cure rate of acute lymphoblastic leukaemia (ALL), the

prognosis for patients with relapsed ALL remains poor. Here we identify FOXM1 as a

candidate responsible for an aggressive clinical course. We show that FOXM1 levels peak at

the pre-B-cell receptor checkpoint but are dispensable for normal B-cell development.

Compared with normal B-cell populations, FOXM1 levels are 2- to 60-fold higher in ALL cells

and are predictive of poor outcome in ALL patients. FOXM1 is negatively regulated by

FOXO3A, supports cell survival, drug resistance, colony formation and proliferation in vitro,

and promotes leukemogenesis in vivo. Two complementary approaches of pharmacological

FOXM1 inhibition—(i) FOXM1 transcriptional inactivation using the thiazole antibiotic

thiostrepton and (ii) an FOXM1 inhibiting ARF-derived peptide—recapitulate the findings of

genetic FOXM1 deletion. Taken together, our data identify FOXM1 as a novel therapeutic

target, and demonstrate feasibility of FOXM1 inhibition in ALL.
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F
OXM1 belongs to the forkhead box transcription factor
family and is a key regulator of cell growth by promoting
cell cycle progression1. Expression of the FOXM1 protein is

low in quiescent cells. During re-entry into the cell cycle, FOXM1
is expressed at late G1/early S-phase, sustained throughout the
G2 phase and mitosis and its activity is regulated via
phosphorylation2–4. This phosphorylation relieves it from its
autoinhibitory conformation and allows it to drive the expression
of additional cell cycle promoting molecules, such as Cdc25A as
well as Skp2 and Cks1 (refs 5, 6) FOXM1 expression levels remain
elevated in the G2- and M-phase, inducing the transcription of
cyclin B1 (CCNB1), Aurora B kinase (AURKB) and Polo-like
kinase 1 (PLK1) that are responsible for mitotic progression,
spindle formation and chromosome segregation. Besides its role
in cell cycle progression, FOXM1 has also been described to
support cell survival through regulation of the antioxidant
defense machinery of the cell, for example, by upregulating
superoxide dismutase and Catalase (Cat) expression7.

Overexpression of FOXM1 has been implicated in the
progression and drug resistance in a wide range of solid tumours8

including liver9,10, colon11, lung12–14 and prostate carcinoma15.
Several studies highlight the function of FOXM1 in promoting
cell proliferation, migration, angiogenesis and drug resistance that
contributes to tumour initiation, growth and progression using
transgenic mice as well as FOXM1 inhibitors8–21. Inducible
deletion of Foxm1 in mouse models for lung adenomas,
colon adenocarcinomas and hepatocellular carcinoma resulted
in a significant reduction in tumorigenic potential and cancer
cell proliferation10–14. A functional role of FOXM1 in
haematopoietic malignancies has been suggested but further
experimental validation is required for understanding the
mechanism underlying its expression and contribution to
disease progression16.

Despite advances in the cure rate of childhood pre-B acute
lymphoblastic leukaemia (ALL), the prognosis in older patients
and for patients who experienced ALL relapse remains poor22.
Philadelphia chromosome-positive (Phþ ) ALL cells are driven by
the oncogenic kinase BCR-ABL1 that arises from the
t(9;22)(q34;q11) chromosomal translocation in pre-B cells. This
subset has been associated with adult ALL and has a particularly
poor clinical outcome23–25. The BCR-ABL1 kinase can be
specifically targeted by small-molecule tyrosine kinase inhibitors
(TKIs) such as imatinib26. However, in contrast to BCR-ABL1-
driven chronic myeloid leukaemia (CML), Phþ ALL patients will
invariably relapse after a short interval of remission, and develop
TKI-resistant disease27.

Pre-B ALL emerges in virtually all cases from B-cell precursors
that are arrested at the pre-B-cell receptor checkpoint. In a gene
expression survey of early B-cell development, we found specific
upregulation of FOXM1 at the pre-B-cell receptor checkpoint
(Fig. 1a). Therefore, we investigate here the function of FOXM1
in normal B-cell development and in pre-B-cell-derived ALL with
specific focus on its regulation and function in Phþ ALL. We
reveal a FOXO3a-mediated transcriptional control of FOXM1
expression, a crucial function of FOXM1 with respect to TKI
resistance and disease progression, using a conditional Foxm1fl/fl

knockout mouse model as well as pharmacological inhibition of
FOXM1 in patient-derived pre-B ALL cells.

Results
FOXM1 expression is dispensable in B-cell precursors. We
found FOXM1 mRNA specifically upregulated at the pre-B-cell
receptor checkpoint (Fig. 1a)28. This was verified by quantitative
real-time (qRT) PCR of sorted human B-cell precursors as well as
murine B-cell progenitor fractions (Fig. 1b,c; sorting strategies and

reanalysis of the sort are shown in Supplementary Fig. 1)28,29. To
determine a potential function of FOXM1 in normal B
lymphopoiesis, we harvested bone marrow (BM) of a Foxm1
conditional knockout mouse model (Foxm1fl/fl)20. B-cell
precursors of Foxm1fl/fl mice were cultured in interleukin 7
(IL-7)-containing media and transduced with a 4-hydroxy
tamoxifen (4-OHT)-inducible Cre-ERT2 (Cre) or empty vector
(EV; ERT2). 4-OHT-mediated deletion of Foxm1 did not
significantly alter the viability of normal B-cell precursors
(Fig. 1d,e, respectively) and is therefore not required for survival
of IL-7-dependent pro/pre-B cells. Next we sought to analyse a
potential role of Foxm1 in vivo during normal B-cell development.
To this end, we crossed Foxm1fl/fl mice with Mb1-Cretg/þ mice to
induce deletion of Foxm1 in early B-cell progenitors30. BM
from 6–8-week-old Mb1-Cretg/þ Foxm1fl/fl mice or Mb1þ /þ

wt (wild-type) Foxm1fl/fl littermates were analysed for Hardy
fractions A–F29. In addition, spleen, lymph nodes and peritoneal
cavity were analysed for number of B cells and their
immunoglobulin light-chain expression (k and l). Despite the
observed high expression of Foxm1 mRNA in the C0 and D
fractions, Foxm1 deletion did not alter B-cell development
(examples of flow cytometry plots are shown in Fig. 1f, further
analysis is shown in Supplementary Fig. 2a–d). Also the ability of
pre-B cells to differentiate into k-light-chain producing immature
B cells in vitro was not affected by B-cell-specific deletion of Foxm1
(Fig. 1g). The confirmation of Foxm1 deletion is shown by
immunoblot in Fig. 1h.

To further define whether Foxm1 expression is required for the
proliferation and survival of uncommitted cells, we isolated BM
cells from Foxm1fl/fl mice and cultured them in the presence of
IL-3/IL-6/SCF to induce proliferation of Lin� Sca-1þ c-Kitþ

(LSK)-like haematopoietic progenitor cells and transduced them
with EV or inducible Cre-green fluorescent protein (GFP)31. We
followed GFP expression and observed no change of growth
behaviour on Foxm1 deletion in LSK progenitor cells
(Supplementary Fig. 2e).

FOXM1 is highly expressed in ALL. To investigate a potential
role of FOXM1 in transformed B cells, we used a mouse model
for Phþ ALL: to this end, BM-derived B-cell precursors were
cultured in the presence of IL-7 and transformed with a retroviral
BCR-ABL1 expression vector (schematic shown in
Supplementary Fig. 3a). De novo expression of BCR-ABL1
increased levels of Foxm1 compared to normal IL-7-dependent
pre-B cells (Fig. 2a). We compared the expression levels in human
B-cell populations isolated from BM or peripheral blood of
healthy donors with patient-derived pre-B ALL samples. All
patient-derived samples used in this study are listed in
Supplementary Table 1 and enrichment efficiency of CD19þ and
CD19þCD10þ B-cell populations is shown in Supplementary
Fig. 3b,c. While FOXM1 protein expression levels were low in
both BM-derived B-cell precursors and mature B cells, patient-
derived pre-B ALL samples revealed 2- to 60-fold higher FOXM1
protein levels compared with B cells or B-cell precursor popula-
tions (P¼ 0.0014 and P¼ 0.0215, respectively; Student’s t-test;
Fig. 2b,c). To define whether high FOXM1 expression was specific
for defined ALL subsets, we compared the protein levels in Phþ

ALL samples and samples driven by other oncogenes, derived
from childhood or adult ALL without observing significant dif-
ferences (Supplementary Fig. 3d). To further define whether
FOXM1 expression was induced by BCR-ABL1 kinase activity, we
treated patient-derived Phþ ALL samples with TKI. Although we
did not observe short-term effects, after 96 h of TKI treatment,
FOXM1 levels were significantly downregulated (Fig. 2d).
To ensure that the observed FOXM1 downregulation is not
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secondary to apoptosis induction but occurs as a consequence of
BCR-ABL kinase inhibition, we overexpressed BCL2 in Phþ ALL
cells and thereby abrogated apoptosis induction by TKI32. Similar
to EV control cells, TKI treatment induced significant FOXM1
downregulation in the absence of apoptosis induction (Fig. 2e;
corresponding viability is shown in Supplementary Fig. 3e).
Interestingly, mitigating the effects of selection pressure (via
BCL2 expression; Supplementary Fig. 3e) revealed a more rapid
and even more profound downregulation of FOXM1 (Fig. 2e,f).

To further characterize the regulation of FOXM1, we analysed
whether the inactivation of FOXO factors downstream of the
PI3K/AKT pathway contributes to high FOXM1 expression in
Phþ ALL33–36. We overexpressed a constitutively active form of
Akt (Myr-Akt) to prevent activation of FOXO factors in the
presence of TKI. While this resulted in modest induction of
Foxm1 expression in untreated cells, Myr-Akt expression entirely
abrogated TKI-mediated downregulation of Foxm1 (Fig. 2g). To
define whether Foxo3a is required for Foxm1 downregulation in
ALL cells34, we generated Foxo3a-knockout BCR-ABL1-driven
ALL and performed TKI treatment. Strikingly, in the absence of
Foxo3a, FOXM1 levels remained high despite long-term TKI

treatment (Fig. 2h). To further confirm the regulation of FOXM1
by FOXO3a, we overexpressed a constitutively active form of
FOXO3a (FOXO3aAAA)37 and observed significant
downregulation of Foxm1 mRNA and protein levels compared
with empty vector control (Fig. 2i,j). Active FOXO1, however, did
not modulate FOXM1 levels on mRNA or protein levels
(Supplementary Fig. 3f,g).

FOXM1 is a predictor of poor clinical outcome in ALL. To
evaluate a potential predictive value of FOXM1 mRNA levels in
patient-derived ALL samples at the time of diagnosis, we con-
ducted a retrospective analysis of FOXM1 expression. First, we
measured FOXM1 mRNA levels at the time of diagnosis in a
clinical trial for patients with childhood ALL (BFM-REZ 2002).
FOXM1 mRNA levels clearly correlated with risk stratification of
childhood ALL and were significantly lower in BM biopsies from
patients with intermediate-risk pediatric ALL (n¼ 31; including
one patient with Phþ ALL) compared with high-risk pediatric
ALL (n¼ 21; including one patient with Phþ ALL; P¼ 7.3e� 5,
Wilcoxon rank-sum test). As a metric for ALL aggressiveness,
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Figure 1 | FOXM1 expression is dispensable for normal B-cell survival and development. (a) FOXM1 mRNA expression in sorted progenitor and B-cell
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4-OHT; representative results of three independent experiments are shown. (e) Immunoblot of Foxm1 deletion induced by 4-OHT in Foxm1fl/fl B-cell

precursors. (f) Representative examples of Hardy Fraction A–C0 for wt BM and Mb1-Cretg/þ Foxm1fl/fl are shown. (g) BM of Mb1-Cretg/þ Foxm1fl/fl (n¼4)
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FOXM1 mRNA expression levels also correlated with time to
relapse (Fig. 3a; n¼ 52; P¼ 0.00015; Kruskal–Wallis rank-sum
test). Consistent with data from the BFM-REZ 2002 trial, we
found that FOXM1 mRNA levels are upregulated at the time of
relapse in a pediatric high-risk ALL trial (COG P9906). Com-
parative analysis of FOXM1 mRNA levels from matched samples
from 49 ALL patients at diagnosis and subsequent relapse
revealed a significant upregulation of FOXM1 by the time of
relapse (P¼ 3.8e� 6; paired t-test; Fig. 3b). In addition, we found
a significant inverse correlation of FOXM1 with FOXO3A mRNA

levels in Phþ ALL patients (Fig. 3c; Pearson correlation test)
from the Medical Research Council UKALL XII/Eastern Coop-
erative Oncology Group (ECOG) E2993 trial. Overall survival
(OS) analysis of this patient cohort revealed that a high ratio of
FOXM1/FOXO3A was a predictor of poor OS in the high-risk
subgroup of Phþ ALL (Fig. 3d; n¼ 27; P¼ 0.03; Log-rank
Mantle–Cox test). Analyses for the individual genes are shown in
Supplementary Fig. 3h,i. Furthermore, a set of genes that is
directly regulated by FOXM1 and associated with poor prognosis
in breast cancer18 showed significant correlation with poor
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clinical outcome in B-cell lineage ALL patients but not in myeloid
lineage AML (Fig. 3e). In summary, these findings indicate that
FOXM1 mRNA expression levels are associated with poor clinical
outcome in ALL and inversely correlate with mRNA of FOXO3a.

Foxm1 mediates proliferation and survival of leukaemia cells.
To further analyse the function and regulation of FOXM1 in pre-

B ALL cells, we focused our analysis on BCR-ABL1-driven ALL as
a model for high-risk ALL and transformed B-cell precursors
from Foxm1fl/fl mice with BCR-ABL1 and then transduced these
with a 4-OHT-inducible Cre (Cre-ERT2) or an empty vector (EV;
ERT2). Immunoblot analysis revealed a rapid deletion of Foxm1
after 4-OHT treatment (Fig. 4a), which induced cell death in a
fraction of BCR-ABL1þ , ALL cells (Fig. 4b,c; flow cytometric
analysis is shown in Supplementary Fig. 4a). To rule out
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unspecific effects of Cre-mediated deletion in murine ALL, we
also transduced Foxm1þ /þ cells with EV and Cre and followed
survival without observing any effect (Supplementary Fig. 4b).
However, deletion of Foxm1 resulted in arrest in both G0/G1 and
G2/M phase with a significant reduction of the S-phase of the cell

cycle (Fig. 4d) and colony formation in vitro was nearly entirely
abolished by deletion of Foxm1 (Fig. 4e). To investigate whether
Cre-mediated deletion of Foxm1 affects the course of leukaemia
development in vivo, we injected 100,000 leukaemia cells carrying
4-OHT-inducible Cre or an empty vector control that were
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pretreated with 4-OHT in vitro for 24 h intrafemorally into
sublethally irradiated NOD/SCID mice. Inducible deletion of
Foxm1 significantly prolonged survival as shown in the Kaplan–
Meier survival curve (Fig. 4f; n¼ 7 per group; P¼ 0.0035; Log-
rank Mantle–Cox test), without alteration of the ALL phenotype
(representative phenotype shown in Supplementary Fig. 4c).
Although we observed complete deletion of Foxm1 in vitro
(Fig. 4a), ex vivo deletion and expansion of cell numbers in vivo
revealed high levels of Foxm1 by the time of BM harvest from
leukaemia-bearing mice, implying proliferative advantage of cells
that evaded deletion of Foxm1 (Fig. 4h). In addition, we deleted
Foxm1 in vivo by treating mice with tamoxifen after injection of
100,000 leukaemia cells carrying tamoxifen-inducible Cre or an
empty vector control. We observed that deletion of Foxm1 sig-
nificantly prolonged survival (Fig. 4g). However, similar to ex vivo
deletion, clones that escaped deletion outgrew and formed lethal
leukaemia (Fig. 4i). The presence of the floxed allele in these cells
is confirmed by PCR, shown in Supplementary Fig. 4d. Collec-
tively, these findings indicate that Foxm1 plays a critical role in
driving ALL cells proliferation, survival and leukaemia progres-
sion. The selective outgrowth of clones that escaped Cre-mediated
deletion of Foxm1 further underscores the relevance of Foxm1 in
the development of fatal ALL in vivo.

Foxm1 mediates TKI resistance by inducing Cat in ALL. As
Foxm1 is a critical regulator of oxidative responses6, we analysed
the intracellular reactive oxygen species (ROS) formation in the
presence and absence of Foxm1 in BCR-ABL1-transformed ALL
cells and observed consistently higher ROS levels after Foxm1
deletion (Fig. 5a) but not in Cre-transduced Foxm1þ /þ cells
(Supplementary Fig. 5a). To elucidate the underlying mechanism
of this effect, we analysed the mRNA expression of the several
ROS scavengers described as Foxm1 targets by qRT–PCR6 and
found significantly reduced mRNA (Fig. 5b) and protein levels
(Fig. 5c) of Cat after inducible Cre-mediated Foxm1 deletion. Cat
rapidly degrades H2O2 to O2 and H2O and therefore helps to
prevent oxidative damage38. To verify direct CAT regulation by
FOXM1 in patient-derived Phþ ALL, we performed single-locus
chromatin immunoprecipitation (ChIP) analysis of a known
binding site of FOXM1 in intron 1 of the CAT gene6. This
revealed specific binding of FOXM1, albeit low ChIP enrichment
compared with the positive control CCNB1 (Fig. 5d)1,6. The
ACTA gene served as a negative control as well as an unrelated
region in the CCNB1 gene promoter.

Interestingly, we found that Cat expression is increased in
ALL cells after TKI treatment at the mRNA and protein levels
(Fig. 5e,f). This suggests that low-dose TKI treatment may
initially induce ROS formation, comparable to ROS induction
following growth factor deprivation39, which usually is
compensated by a functional antioxidant response machinery,
for example, by Cat expression. To evaluate whether the
observed Cat upregulation by TKI is Foxm1 dependent, we
treated ALL cells with TKI and evaluated Cat expression in the
presence and absence of Foxm1. Only the Foxm1-expressing
ALL cells (Foxm1fl/fl þEV) were capable of upregulating Cat
after 4 h TKI treatment (Fig. 5f). On the basis of these findings
and the observed selective advantage of FOXM1-expressing cells
in the presence of TKI we had observed (Fig. 2e,f), we further
investigated the function of FOXM1 in mediating TKI resistance
and determined TKI responsiveness of BCR-ABL1-driven ALL
cells in the presence and absence of Foxm1. On deletion of
Foxm1, ALL cells revealed a strikingly higher sensitivity towards
TKI treatment, particularly in response to treatment with very
low TKI doses. For Foxm1fl/fl ALL cells, an IC50 of 325 nmol l� 1

was measured for imatinib compared with an IC50 of

75 nmol l� 1 for Foxm1� /� ALL cells (Fig. 5g, closed circles).
This was verified by Annexin V staining in the presence and
absence of imatinib, with and without Foxm1 deletion,
respectively (Supplementary Fig. 5b). To define whether
enforced expression of Cat can rescue the effect of Foxm1
deletion, we overexpressed Cat in wt and Foxm1� /� cells and
conducted TKI sensitivity analysis. While Cat overexpression
did not alter TKI sensitivity in the presence of Foxm1, Foxm1-
deficient cells were significantly less sensitive in the presence of
Cat as compared with EV control (Fig. 5g, open circles).
Although, similar to FOXM1, FOXO3a may drive Cat
transcription in the presence of TKI, we did not observe
alterations in Cat expression in Foxo3a deficient ALL treated
with TKI (Supplementary Fig. 5c)40.

FOXM1 inhibition induces apoptosis and TKI sensitivity. Our
genetic experiments indicate that FOXM1 is particularly relevant
for proliferation and survival of leukaemic B lymphoblasts but
not normal B-cell development and survival and may, therefore,
represent a tumour-specific therapeutic target. For this reason, we
tested two complementary approaches of pharmacological inhi-
bition of FOXM1 based on (i) an ARF-derived peptide that
inhibits FOXM1 by sequestering it to the nucleolus and mediating
its degradation and (ii) FOXM1 transcriptional inactivation using
the thiazole antibiotic, thiostrepton.

Strategy I FOXM1 inhibition using a p19ARF-derived peptide.
A previously described ARF peptide binds and inhibits FOXM1
function. The tumour suppressor p19ARF directly binds to
FOXM1 and has been described to mediate its translocation to
the nucleolus, which may result in its degradation10,36,41. The
p19ARF amino acids 26–44 are sufficient to mediate the
inhibitory function on FOXM1 and by addition of nine
lipophilic arginines, the ARF-derived peptide can permeate
across the plasma membrane (ARF26–44)9,10. To verify the
inhibitory effect on FOXM1, we treated patient-derived pre-B
ALL cells with ARF26–44 and control peptide and analysed
FOXM1 target gene transcription by qRT–PCR. As shown in
Fig. 6a, we found significant inhibition of FOXM1
transcriptional activity after ARF peptide treatment. To further
confirm the specificity, we treated Foxm1� /� cells with ARF
peptide concentrations up to 30 mM and found cells still
unresponsive (Fig. 6b). To verify the described mechanism of
FOXM1 translocation induced by the ARF peptide, we
performed immunostaining of nucleoli with Fibrillarin and co-
stained with FOXM1. Despite the observed downregulation of
FOXM1 target gene, we were not able to visualize the ARF-
mediated nucleolar localization of FOXM1 (Fig. 6c). However,
in agreement with previous reports of ARF-targeted proteins
that undergo nucleolar degradation, we observed the
downregulation of FOXM1 protein levels in the presence on
ARF peptide as a mechanism for FOXM1 inhibition
(Fig. 6d)42,43. To confirm the finding of apoptosis induction in
our genetic deletion studies of Foxm1, we treated patient-
derived ALL samples with various amounts of ARF peptide and
found significant growth inhibition after 72 h (Fig. 6e). B-cell
lymphoma and myeloid lineage CML cells were treated in
parallel experiments and were significantly less sensitive towards
the ARF26–44 peptide. In addition, we confirmed that inhibition
of FOXM1 by the ARF26–44 peptide sensitized patient-derived
Phþ ALL cells towards TKI treatment compared with TKI
treatment alone (Fig. 6f) and increased intracellular levels of
ROS (Fig. 6g). To evaluate the effects of the ARF peptide on
leukaemic cell growth in vivo, we injected 500,000 luciferase-
labelled, patient-derived pre-B ALL cells into NSG mice and
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treated the mice with 10 mg kg� 1 ARF peptide on 10
consecutive days intravenously (i.v.) and intraperitoneally
(i.p.), respectively, or vehicle control. This reduced the
leukaemia burden as measured by luciferase bioimaging
(Fig. 6h) and prolonged OS (Fig. 6i). Thus, the treatment
results of patient-derived pre- B ALL samples with the ARF26–44

peptide (Fig. 6) confirmed our findings from the genetic deletion
experiments in the ALL mouse model (Fig. 5) and demonstrate
that peptide-based inhibition/degradation of FOXM1 protein
induces selective toxicity in B-cell lineage ALL cells.

Strategy II transcriptional FOXM1 inhibition via thiostrepton.
In a complementary approach, we evaluated the naturally
occurring antibiotic thiostrepton (structure shown in Fig. 7a),
which prevents FOXM1 from binding and activating its own
promoter44. This autoregulatory positive feedback loop is critical
for sustained FOXM1 expression levels45–48. Therefore, we
tested whether thiostrepton was effective in suppressing FOXM1
protein levels in patient-derived ALL cells and reduction of
FOXM1 target gene expression. Importantly, thiostrepton
effectively disrupted the FOXM1’s autoregulatory positive
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feedback loop and drastically attenuated FOXM1 expression,
while the expression of other Forkhead box family members is
not affected (Fig. 7b). The FOXM1 target genes CCNB1, PLK1
and AURKB mRNA levels were significantly reduced after
Thiostrepton administration, confirming its reduced
transcriptional activity (Fig. 7c). In addition, we treated
Foxm1� /� cells with Thiostrepton and observed these mainly
unresponsive up to 0.5 mM treatment for 72 h, confirming its
specificity towards FOXM1 at this concentration (Fig. 7d). We
then tested whether the suppression of FOXM1 induced
leukaemia-specific cell death in patient-derived pre-B ALL
cells and observed significant cytotoxicity at concentrations of
0.5 mmol l� 1 thiostrepton. By contrast, B-cell lymphoma and
myeloid leukaemia cells were not responsive to thiostrepton
treatment at similar concentrations (Fig. 7e). In accordance with

similar levels of FOXM1 expression (Supplementary Fig. 3b), we
did not observe differences in Thiostrepton sensitivity between
pre-B ALL subsets in regards to childhood or adult ALL and
Phþ or other ALL, respectively (Supplementary Fig. 5d). In
addition, treatment with thiostrepton resulted in ROS
accumulation and Cat regulation similar to what we had
observed in the genetic deletion model of Foxm1: we treated
Foxm1-expressing cells with thiostrepton for 4 h and analysed
intracellular ROS levels in comparison with Foxm1 deletion
(24 h after 4-OHT). Similar increases of ROS were observed in
the thiostrepton-treated Foxm1-expressing cells as in the
Foxm1� /� ALL cells (Fig. 7f). To confirm the specific role
of Foxm1 in the increase of ROS formation, we included
Foxm1� /� ALL cells in the analysis. Thiostrepton treatment
increased the formation of ROS only in the presence of Foxm1,
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luciferase bioimaging. (i) A Kaplan–Meier analysis compared overall survival of transplant recipients in the two groups; n¼ 7 per group. Statistical analysis
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while the ROS levels in Foxm1� /� cells were not increased
further by thiostrepton (Fig. 7g, representative example shown
in Supplementary Fig. 5e). We subsequently verified
Thiostrepton-mediated ROS formation in patient-derived Phþ

ALL after 4 h of treatment (Fig. 7h). To evaluate the effects of
Thiostrepton in vivo, we injected 500,000 luciferase-labelled
patient-derived pre-B ALL into NSG mice and treated the mice
seven consecutive days i.v. with 50 mg kg� 1 Thiostrepton daily
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burden in mice after injection of 500,000 human luciferase-labelled pre-B ALL cells (LAX7R) and treated for seven consecutive days with 50 mg kg� 1

Thiostrepton i.v., measured by luciferase bioimaging. (j) A Kaplan–Meier analysis compared the OS of transplant recipients in the two groups. Statistical

analysis was performed by Log-rank Mantle–Cox test. (k) Immunoblot analysis of FOXM1, FOXO3a and FOXO1 in human xenografted ALL (LAX7R)

harvested from mice showing signs of leukaemia, and then treated with three doses of thiostrepton at 50 mg kg� 1 or vehicle control.
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or vehicle control. The daily treatment with Thiostrepton for 7
days reduced the leukaemia burden as measured by luciferase
bioimaging (Fig. 7i) and prolonged OS (Fig. 7j). At the time
point of harvest, the human origin of cells was confirmed by
flow cytometry (representative example shown in Supplemen-
tary Fig. 5f). Confirming its biological activity in vivo, three
doses of 50 mg kg� 1 Thiostrepton i.v. effectively downregulated
FOXM1 in xenografted ALL in vivo while it did not affect the
expression of forkhead box transcription family members
FOXO1 and FOXO3a (Fig. 7k).

Discussion
In this study, we have identified a critical function of the
transcription factor FOXM1 in mediating proliferation and drug
resistance in B-cell lineage ALL, but not in normal B-cell
progenitors. Using two complementary approaches based on
transcriptional inactivation and peptide-based inhibition of
FOXM1, we demonstrate the feasibility and efficacy of FOXM1
inhibition in ALL.

Our data indicate that besides Phþ ALL, other subtypes of
ALL with constitutive activation of FOXM1 downstream of AKT
(for example, owing to the oncogenic activation of the
Ras–MAPK pathway) are sensitive to FOXM1 inhibition as well
and validate FOXM1 as a therapeutic target in a large fraction of
drug-resistant B-cell lineage ALL. As a major factor in
FOXM1-mediated drug resistance, we have identified the
antioxidant molecule Cat. ROS are induced by oncogenic
stimulation such as BCR-ABL1 kinase activity and drive
signalling and proliferation (for example, by inhibiting phospha-
tase activity)49. However, high levels of ROS also sensitizes cells to
further oxidative stress that lead to mitochondrial DNA damage
and lipid peroxidation that result in cell death50,51. Similar to the
effects of growth factor withdrawal or STAT5 inactivation52,53,
increased ROS levels on TKI treatment may contribute to TKI-
mediated cell death and require immediate compensation by
antioxidant molecules54,55. We have unravelled a particular role
of FOXM1 in this antioxidant response as the overexpression of
Cat in Foxm1� /� cells partially re-establishes TKI sensitivity but
does not alter sensitivity in wt ALL cells (Fig. 5h). However, Cat
overexpression does not completely rescue the deleterious effects
of Foxm1 deletion, suggesting that additional FOXM1-mediated
mechanisms are important. Therefore, FOXM1 inhibition is
advantageous over substances that enhance intracellular ROS that
have been previously suggested to cooperate with BCR-ABL1
inhibition56,57. Although the function of FOXM1 as a driver of
antioxidant response has been described, this link to TKI
resistance is novel and further studies are required to define
whether this mechanism is specific to ALL or relevant in solid
tumours treated with TKI as well. Despite the difficulties of
targeting transcription factors by specific small molecules, recent
efforts have identified a novel FOXM1 inhibitor in a library
screen of 50,000 molecules58.

By mediating FOXM1 translocation to the nucleolus and
thereafter inducing its degradation, the tumour suppressor ARF
has been described as a negative regulator of FOXM1 (ref. 9).
Interestingly, the gene that encodes ARF, CDKN2A, is frequently
deleted in lymphoid, but not myeloid, BCR-ABL1-driven
leukaemia. TKI treatment of BCR-ABL1-driven CML patients is
remarkably successful in inducing durable remissions, while
monotherapy in Phþ ALL result in relapse with TKI refractory
disease within a few months. Although CDKN2A deletions
support enhanced cell survival in multiple ways (such as
reduced p53 activation via Mdm2 overexpression)59, the lack of
negative regulation of FOXM1 may also contribute to the rapid
TKI resistance development in ALL but not CML. In line with

this, we have observed that CML cells are less sensitive to FOXM1
inhibition.

Taken together, our study highlights the importance of
FOXM1 expression in pre-B ALL. Our findings of FOXM1
expression, itself and in combination with FOXO3a, as a potential
marker for risk stratification of both childhood and adult, Phþ

ALL provide a robust basis for further, prospective analyses of
FOXM1 in clinical trials. In addition, our data highlights the role
of FOXM1 in driving the antioxidant response after TKI
treatment as a crucial mechanism of TKI resistance. By genetic
deletion and pharmacological inhibition, we provide a rationale
for FOXM1 inhibition as a potential therapeutic intervention,
alone or in synergistic combinations with TKIs for pre-B ALL and
putatively other kinase-driven tumor cells that rely on a
functional antioxidant response machinery.

Methods
Statistical analysis of clinical parameters. Gene expression microarray and
patient outcome data were obtained from the GEO database accession number
GSE5314 of the Eastern Cooperative Oncology Group (ECOG) Clinical Trial E2993
for adult B-ALL (n¼ 54)54, from GSE28460 of the Children’s Oncology Group
Clinical Trial P9906 for children B-ALL (n¼ 49 pairs)55, from GSE4698 of the
ALL-REZ BFM 2002 trial for children B-ALL (n¼ 52)60, from GSE1456 of the
Karolinska Hospital Stockholm–Gotland breast cancer registry for breast cancer
(n¼ 159)61 and from TCGA (https://tcga-data.nci.nih.gov/tcga/
dataAccessMatrix.htm) for AML (n¼ 184). The end points of the clinical data
include OS, relapse-free survival, risk, time to relapse and expression levels in
samples at the time of relapse versus expression levels at diagnosis (for 49 matched
sample pairs from the Children’s Oncology Group).

Pre-B and leukaemia cell culture. Patient samples (listed in Supplementary
Table 1) were provided from the Departments of Hematology and Oncology,
University Hospital Benjamin Franklin, Berlin, Germany and the USC Norris
Comprehensive Cancer Center in compliance with Institutional Review Board
regulations (approval from the Ethik-Kommission of the Charité, Campus Ben-
jamin Franklin and the IRB of the University of Southern California Health Sci-
ences Campus). Informed consent was obtained from all suspects. Leukaemia cells
derived from BM aspirates of patients with pre-B ALL were xenografted into
sublethally irradiated NOD/SCID mice via tail vein injection. After passaging,
leukaemia cells were harvested and cultured on OP9 stroma cells in a minimum
essential medium without ribonucleotides and deoxyribonucleotides (Invitrogen,
Carlsbad, CA), supplemented with 20% fetal bovine serum (FBS), 2 mM L-gluta-
mine, 1 mM sodium pyruvate, 100 IU ml� 1 penicillin and 100 mg ml� 1 strepto-
mycin. Cell lines used in this study are listed in Supplementary Table 2. Mouse
BCR-ABL1-transformed pre-B cells were cultured in IMDM (Invitrogen) with
GlutaMAX containing 20% FBS, 100 IU ml� 1 penicillin, 100 mg ml� 1 streptomy-
cin and 50mM b-mercaptoethanol. Normal mouse pre-B cells were cultured in the
presence of 10 ng ml� 1 IL-7. Murine LSK-like cells were cultured in the presence
of 10 ng ml� 1 recombinant mouse IL-3, 25 ng ml� 1 recombinant mouse IL-6 and
50 ng ml� 1 recombinant mouse SCF (PeproTech).

Retroviral constructs and transduction. Transfection of MSCV-based retroviral
constructs encoding BCR-ABL1(p210)-IRES-Neo, Cre-ERT2-Puro, ERT2-Puro,
Cre-GFP, Luciferase-GFP, CD90-FOXO3a(AAA; D.A. Fruman, University of
California Irvine, Irvine, CA) and empty vector controls were performed using
Lipofectamine 2000 (Invitrogen) with Opti-MEM media (Invitrogen). Retroviral
supernatant was produced by co-transfecting HEK 293FT cells with the plasmids
pHIT123 (ecotropic env) and pHIT60 (gag-pol). 293FT cells were cultured in high
glucose Dulbecco’s modified Eagle’s medium (Invitrogen) with GlutaMAX con-
taining 10% FBS, 100 IU ml� 1 penicillin, 100mg ml� 1 streptomycin, 25 mM
HEPES, 1 mM sodium pyruvate and 0.1 mM non-essential amino acids. Regular
media were replaced after 16 h with growth media containing 10 mM sodium
butyrate. After 8 h of incubation, the medium was changed back to regular growth
medium. Twenty-four hours later, the virus-containing supernatants were har-
vested, filtered through a 0.45-mm filter and loaded by centrifugation (2,000g,
90 min at 32 �C) on 50mg ml� 1 RetroNectin (Takara, Madison, WI) coated non-
tissue culture six-well plates (Costar). Approximately 2� 106 cells were added to
each well and centrifuged for 20 min at 600g, and subsequently maintained at 37 �C
at 5% CO2 for 48 h before harvest. For nuclear translocation of oestrogen receptor
fusion proteins, 4-OHT was added at a concentration of 500 nM.

Cell sorting. For magnetic bead sorting, peripheral blood or BM mononuclear
cells were purchased from AllCells LLC and CD19-enrichment was performed by
magnetic bead cell sorting according to the manufacturer’s instructions (Miltenyi
Biotech). Cell sorting by flow cytometry was performed using a BD FACSAriaII
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(BD Biosciences, San Jose, CA). Gating strategies and analysis of the population
purity is shown in Supplementary Fig. 1.

Western blotting. After harvesting, the cells were washed twice with PBS and
lysed in CelLytic MT buffer (Sigma-Aldrich) supplemented with Mini Complete
protease inhibitor (Roche), 1% phosphatase inhibitor cocktail (Calbiochem) and
1 mM phenylmethylsulphonyl fluoride. After 10 min incubation on ice and cen-
trifugation at 11,000 g for 10 min at 4 �C, the protein concentration was determined
by Coomassie Blue Assay (Thermo Scientific). Protein samples were loaded on 4%
to 20% Bis–Tris gradient gels and transferred on Nitrocellulose membranes
(BioRad). The primary antibodies used are listed in Supplementary Table 3. For
protein detection, the WesternBreeze immunodetection system (Invitrogen) was
used and light emission was either detected by film exposure or by the BioSpectum
imaging system (UPV). Original western blots are shown in Supplementary Fig. 6.

Flow cytometry. For analysis of normal B-cell development, BM was stained with
the antibodies listed in Supplementary Table 3 and analysed using a BD LSRII
Fortessa (BD Biosciences, San Jose, CA). For viability determination by flow
cytometry, cells were washed with PBS and resuspended in PBS with 40 ,6-diami-
dino-2-phenylindole (Biolegend) or propidium iodide (Sigma-Aldrich) as a marker
for dead cells. For detection of apoptotic cells, cells were washed twice in PBS
containing 5% bovine serum albumin (BSA) and stained with Alexa-Fluor 647-
labelled Annexin V, according to the manufacturer’s protocol (Biolegend). For cell
cycle analysis, the BrdU Cell Proliferation Assay Kit was purchased from BD
Biosciences and performed according to the manufacturer’s protocol. In brief,
1� 106 cells ml� 1 were cultured for 1 h in the presence of 1 mM BrdU, washed
with PBS, fixed and stained according to protocol and analysed by flow cytometry.
For the analysis of intracellular ROS formation, ALL cells were incubated for 7 min
with 500 nM 5-(and 6-)chloromethyl-20 ,70dichlorodihydrofluorescein diacetate
(CM-H2DCFDA, Invitrogen) at 37 �C for oxidation of the dye by ROS. After
washing with PBS, the cells were incubated for an additional 15 min at 37 �C in PBS
to allow complete deacetylation of the oxidized form of CM-H2DCFDA by
intracellular esterases. The levels of fluorescence were then directly analysed by
flow cytometry, gating on viable cells.

Colony-forming assay. The methylcellulose colony-forming assays were per-
formed with 10,000 BCR-ABL1-transformed mouse pre-B ALL cells. Cells were
resuspended in mouse MethoCult medium (StemCell Technologies) and cultured
on 3-cm diameter dishes, with an extra water supply dish to prevent evaporation.
After 21 days, colony numbers were counted by a GelCount analyzer (Oxford
Optronix).

Quantitative RT–PCR. Total RNA from cells was extracted using the RNA iso-
lation kit from Macherey Nagel. Complementary DNA was generated with the Vilo
SuperScript cDNA synthesis kit (Invitrogen). Quantitative real-time PCR was
performed with Fast SYBR Green Master Mix (Invitrogen) and the Viaa7 real-time
PCR system (Life Technologies) according to standard PCR conditions. Primer
sequences are listed in Supplementary Table 4. For human samples, COX6B was
used as a reference gene, for mouse samples Hprt.

Cell viability assay. Imatinib (Novatis Pharmaceuticals, Basel, Switzerland) was
reconstituted in distilled water at 10 mM and aliquots were stored at � 20 �C.
Thiostrepton was purchased from Sigma, reconstituted in dimethylsulphoxide
(DMSO) to 10 mM and stored at � 20 �C. The ARF- and its control peptide were
dissolved in DMSO to a final concentration of 10 mM and stored at � 80 �C.
5� 104 ALL cells were seeded on 96-well plate and drugs were added at indicated
concentrations. After 3 days, 15 ml of Resazurin (AbD Serotech) were added and
cells were incubated for 4 h before the emission was read at 535 nm using a
Spectramax plate reader (Molecular devices). The fold changes were calculated by
using baseline values of untreated cells as a reference.

Single-locus ChIP. Single-locus ChIP was performed as described62. In brief,
1� 108 cells were crosslinked with 1% formaldehyde for the indicated conditions,
and then lysed in 1 ml lysis buffer, and sonicated with six rounds of 300 0 on/off,
5 min each on a bioruptor (Diagenode). The sonication efficacy was determined by
resolution on an agarose gel after de-crosslinking. After preclearing with Protein A
Agarose (Invitrogen), 5 mg per sample FOXM1 antibody (C20-X; Santa Cruz) or
normal rabbit IgG (Santa Cruz) was added for overnight (ON) incubation. Then
50ml of 50% Protein A Agarose slurry was added for 1 h, followed by washing with
low salt, high-salt wash buffer and lithium chloride buffer. The DNA was
decrosslinked in the presence of 0.2 M NaCl at 65 �C ON. RNA was digested and
DNA was purified with the Macherey Nagel PCR purification kit. PCR was
performed as described in the section for quantitative real-time PCR. A list of
primers is provided in Supplementary Table 4.

Immunofluorescence analysis. Cells were seeded onto retronectin-coated
chamber slides and treated with 5 and 10 mM ARF peptide for 18 h. Cells were fixed

with 4% paraformaldehyde for 10 min at room temperature (RT), permeabilized in
PBS/0.15% Triton-X-100 for 2 min at RT and blocked in 1% BSA/PBS for
1 h at RT. Slides were then incubated with antibodies against fibrillarin (clone 38F3,
ab4566, 1/250) and FOXM1 (clone D12D5, CST#5436, 1/50) in 1% BSA/PBS
ON at 4 �C. Slides were washed three times for 5 min in PBS and incubated for 1 h
at RT in 1% BSA/PBS with Alexa Fluor 488-conjugated goat anti-mouse (Mole-
cular Probes, A-11029) and Alexa Fluor 594-conjugated goat anti-rabbit (Mole-
cular Probes, A-11037) secondary antibodies. Slides were then washed three times
for 5 min in PBS and mounted using Vectashield (Vector Laboratories) containing
1 mg ml� 1 40 ,6-diamidino-2-phenylindole. Images were acquired on a Leica SP5
upright confocal microscope and processed using Volocity software (Perkin
Elmer).

In vivo leukaemia cell transplantation. All mouse experiments were subject to
institutional approval by the University of California San Francisco Institutional
Animal Care and Use Committee. BCR-ABL1-transformed murine Foxm1fl/fl pre-B
ALL cells transduced with either empty vector (EV, ERT2 without Cre) or Cre (Cre-
ERT2) containing a puromycin resistance cassette. After selection for 2 days with
2mg ml� 1 puromycin, successful selection was verified by fluorescence-activated cell
sorting analysis (no living cell in untransduced control cells) and subsequently grown
in vitro for expansion of cell numbers. Experiments were performed within 4 weeks
after BM harvest to avoid secondary mutations. Ex vivo deletion of Foxm1 was
induced in the Cre-ERT2 group by adding 4-OHT 24 h before transplantation. To
rule out the possible homing defects after Foxm1 deletion as a potential confounding
variable, cells were injected intrafemorally into sublethally irradiated (2.5 Gy) NOD/
SCID mice. Seven mice per group were injected. For in vivo deletion of Foxm1,
100,000 BCR-ABL1-transformed murine Foxm1fl/fl pre-B ALL cells with either EV
or Cre were injected i.v. and deletion induced by tamoxifen injection daily at 0.4 mg
per mouse for 10 days. Terminally ill mice were killed and spleen and/or BM
harvested for further analysis. For treatment of human xenografts, LAX7R cells were
transduced with a luc-GFP vector and sorted for GFP expression. Cells (5� 105)
were injected i.v. into NSG mice (NOD/SCID-IL2 receptor gamma chain knockout),
seven mice per group and treatment was initiated. ARF peptide was administered i.v.
and i.p. at 10 mg kg� 1 daily (total dose 20 mg kg� 1) for 10 consecutive days and
Thiostrepton i.v. at 50 mg kg� 1 daily for seven consecutive days. ARF peptide was
resolved fresh every day to avoid freeze-thawing steps. C-terminal amidation and
N-terminal acetylation was used to increase peptide half-life in vivo. Thiostrepton
was resolved at 25 mg ml� 1 in DMSO and diluted in PBS before injection. To
increase solubility, 2 min of sonication was performed daily before injection. Bioi-
maging of leukaemia burden in the mice was performed at day 14 using an in vivo
IVIS 100 bioluminescence/optical imaging system (Xenogen). D-Luciferin (Promega)
was injected intraperitoneally at a dose of 2.5 mg per mouse in PBS 12 min before
measuring the luminescence signal. General anaesthesia was induced with 5% iso-
flurane and continued during the procedure with 2% isoflurane introduced through
a nose cone. When a mouse became terminally sick, it was killed, and BM and/or
spleen were collected for further analysis.
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