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Abstract: Simultaneous aflatoxin (AFB1) and zearalenone (ZEN) contamination in agro-products
have become widespread globally and have a toxic superposition effect. In the present study, we
describe a highly sensitive and specific dual lateral flow immunochromatographic assay (dual test
strip) for rapid and simultaneous detection of AFB1 and ZEN in food and feed samples based on
respective monoclonal antibodies (mAbs). Two immunogens AFB1-BSA (an AFB1 and bovine serum
albumin (BSA) conjugate) and ZEN-BSA (a ZEN and BSA conjugate) were synthesized in oximation
active ester (OAE) and amino glutaraldehyde (AGA). The molecular binding ratio of AFB1:BSA was
8.64:1, and that of ZEN:BSA was 17.2:1, identified by high-resolution mass spectrometry (HRMS)
and an ultraviolet spectrometer (UV). The hybridoma cell lines 2A11, 2F6, and 3G2 for AFB1 and
2B6, 4D9 for ZEN were filtered by an indirect non-competitive enzyme-linked immunosorbent assay
(inELISA) and an indirect competitive enzyme-linked immunosorbent assay (icELISA), respectively.
As AFB1 mAb 2A11 and ZEN mAb 2B6 had the lowest 50% inhibitive concentration (IC50) and cross-
reactivity (CR), they were selected for subsequent experiments. By systematically optimizing the
preparation condition of gold nanoparticles (AuNPs), AuNPs-labeled mAbs, and detection condition,
the visual limit of detection (LOD) of the dual test strip was 1.0 µg/L for AFB1 and 5.0 µg/L for
ZEN, whereas that of the test strip reader was 0.23 µg/L for AFB1 and 1.53 µg/L for ZEN. The high
reproducibility and stability of the dual test were verified using mycotoxin-spiked samples. The dual
test strips were highly specific and sensitive for AFB1 and ZEN, which were validated using liquid
chromatography-tandem mass spectrometry (LC-MS/MS). Thus, the proposed AFB1 and ZEN dual
test strip is suitable for rapid and simultaneous detection of AFB1 and ZEN contamination in food
and feed samples.

Keywords: mycotoxins; highly sensitive and specific monoclonal antibodies; dual lateral flow
immunochromatographic assay; immunoassay; agro-products

Key Contribution: The key contribution of this study was to prepare monoclonal antibodies with
high sensitivity and specificity against AFB1 and ZEN; respectively. Furthermore; a AFB1 and ZEN
dual lateral flow immunochromatographic assay was established; which provided technical support
for rapid and simultaneous detection of AFB1 and ZEN co-contamination in food and feed samples.

1. Introduction

Mycotoxins are low-molecular-weight, toxic secondary metabolites produced under
particular environmental conditions by various fungi such as Fusarium, Aspergillus, and
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Penicillium, and contaminate a large variety of agro-products and feed worldwide, which
can cause the reduction in agriculture production and livestock production, pose a great
threat to human and animal health through the food and feed, and result in the tremendous
economic losses [1,2]. Particularly in recent years, the co-occurrence of multiple mycotoxins
in agricultural products has been increasingly frequent, and their co-existence displays
synergistic and additive toxicological effects in humans or animals [3,4]. Thus, a single-
target mycotoxin detection method cannot meet the actual needs of the food industry and
feed industry, and a method to determine multiple mycotoxins needs to be established
urgently to monitor their co-contamination.

So far, about 400 mycotoxins have been reported, which aflatoxin B1 (AFB1) and
zearalenone (ZEN) are frequently and widely present in agricultural products, and are also
the targets to monitor in this study. Aflatoxins (AFs) produced under natural conditions
mainly include AFB1, AFB2, AFG1, and AFG2, and possess carcinogenicity, mutagenicity,
malformation, neurotoxicity, and immunotoxicity properties in humans and animals [5],
among which AFB1 is the most common and toxic aflatoxin, grouped as a class I carcinogen
by the International Organization for Research on Cancer (IARC) [6]. Many countries
have proposed specific maximum permitted levels (MPLs) for AFB1 in food [7]. For
instance, the MPLs of AFB1 in cereals are capped at 20 µg/kg in China and America and
2 µg/kg in the European Union (EU) [8]. Zearalenone (ZEN) and its metabolites (ZENs),
including α-zearalenol (α-ZOL), β-zearalenol (β-ZOL), α-zearalanol (α-ZAL), β-zearalanol
(β-ZAL) and zearalanone (ZON)), are non-steroidal estrogenic compounds that mainly
disrupt estrogen secretion, disturb the reproductive system, and display estrogenic effects
in humans and animals. Furthermore, ZENs are genotoxic, immunotoxic, and carcinogenic
compounds with endocrine toxicity properties [9]. As ZEN is the most common, abundant,
and toxic mycotoxin, it has become the main target for food quality and safety monitoring
globally. The MPLs of ZEN is set 75 µg/kg in cereals and 100 µg/kg in feeds in the UK [10],
100 µg/kg in cereals in Italy [11], and 50 µg/kg in cereals in Australia [12]. Owing to their
extreme toxicity and universal co-existence, the establishment of rapid and simultaneous
detection methods for AFB1 and ZEN is vital in agro-food and feed safety control.

Currently, various methods for multiple mycotoxins determination have been well-
developed, including instrumental analysis and immunoassays. Instrumental multi-
analysis methods mainly comprise high-performance liquid chromatography (HPLC) [13]
and liquid chromatography-tandem mass spectrometry (LC-MS/MS) [14]. Despite their
excellent sensitivity and accuracy, these methods are complex, require sophisticated equip-
ment and a highly trained workforce, and are expensive. Thus, these methods are only
suitable for testing a few samples and not appropriate for the on-site monitoring of many
samples [15]. As the food industry and feed industry require more rapid and cost-effective
methods for multiple mycotoxins detection, several immunoassays such as enzyme linked
immunosorbent assay (ELISA) [16] and immunofluorescence assay (IFA) [17] have been
developed for commercial application in recent years, but these methods also require some
complicated operations and need to be in the detection process for a long time. Fortunately,
the lateral flow immunoassay (LFIA, also called immunochromatographic assay (ICA)),
and especially the gold immunochromatography assay (GICA, also known as test strip),
are examples of the most widely used rapid detection technology globally [18]. With the
advantages of being rapid, simple, portable, inexpensive, on-site testing, and high through-
put property, GICA is the most widely used technique for field food safety analysis [19].
Shim et al. [20] established a dual test strip based on the self-made ochratoxin A (OTA)
monoclonal antibody (mAb) and ZEN mAb. The visual limit of detection (LOD) of this
technique for OTA and ZEN were 2.5 µg/kg and 5.0 µg/kg, respectively. However, the
specificity of the method for both OTA and ZEN was low, showing cross-reactivity (CR)
with their respective homologues. Chen et al. [21] developed a triple test strip for simulta-
neous detection of AFB1, ZEN, and OTA using self-made AFB1 mAb, ZEN mAb, and OTA
mb, respectively. The visual LOD of the technique for AFB1, ZEN, and OTA were 10 µg/kg,
50 µg/kg, and 15 µg/kg, respectively, which is generally low for their respective sensitivity.
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Notably, high-quality monoclonal antibodies (mAbs) are essential to immunoassays,
since their efficacy depends on the specificity and sensitivity of the mAbs. In recent
years, some scholars have achieved good progress in developing AFB1 mAb and ZEN
mAb with high specificity and high sensitivity. Our research on the synthesis of AFB1
immunogens and the characteristics of corresponding antibodies showed that among the
six immunogen synthesis methods, including oximation active ester (OAE), methylation
of ammonia (MOA), mixed anhydride (MA), semi acetal (SA), epoxide (EP), and enol
ether derivative (EED), OAE was the best method for preparing highly specific AFB1
antibodies [22], consistent with Li et al. findings [23]. We conducted similar research on
ZEN and found that amino glutaraldehyde (AGA) was better than oxime active ester (OAE),
formaldehyde (FA), 1,4-butanediol diglycidyl ether (BDE) in preparing highly specific ZEN
antibodies [24], consistent with Teshima et al. findings [25]. To the best of our knowledge,
there is no report on preparing highly specific AFB1 and ZEN mAbs and a corresponding
dual test strip.

Herein, we developed a rapid and sensitive dual test strip method for the simulta-
neous detection of AFB1 and ZEN based on their specific and sensitive mAbs and gold
nanoparticles (AuNPs). By systematically optimizing, the method for simultaneous detec-
tion of AFB1 and ZEN was rapid, simple, portable, and cheap, and can be used for AFB1
and ZEN determination in real agro-foods, feed samples. Its feasibility was validated using
LC-MS/MS.

2. Results and Discussion
2.1. Characterization of Mycotoxins and Carrier-Protein Conjugates

AFB1 and ZEN are small molecules that have only reactivity without immunogenicity.
Haptens can only combine with macromolecular protein to form an immunogenic molecule
that induces the production of specific antibodies. The specificity of a hapten antibody
mainly depends on the recognition of the characteristic structure of the hapten on the
immunogen by B cells. Owing to the selection of different active sites and the introduction
of different spacer arms in the synthesis of immunogens, the spatial conformation of the
immunogen molecule, the exposure degree, and the degree of recognition and memory by
B cells differ. Thus, the specificity of the antibodies secreted by these memory B cells after
maturation into plasma cells is also different [26]. Therefore, the method of immunogen
synthesis is crucial for the preparation of highly specific antibodies. Our previous study
analyzing six types of AFB1 and five types of ZEN immunogen synthesis methods revealed
that OAE and AGA were the best methods for preparing AFB1 and ZEN-specific antibodies,
respectively [22,24]. In the current study, AFB1 was haptenized by introducing an active
carboxyl group to the C1 position carbonyl group on the AFB1 molecule through the
oximation reaction. AFB1-BSA immunogen (AFB1 and bovine serum albumin (BSA))
conjugate were synthesized using the OAE method. Similarly, a reactive amino group
was conjugated onto benzene ring-containing C5 position of ZEN through nitration and
reduction in the ZEN molecule. The ZEN-BSA immunogen was synthesized using the
AGA method.

High-resolution mass spectrometer (HRMS) data demonstrated that AFB1 and ZEN
were successfully haptenized. Quantitative analysis of AFB1-BSA and ZEN-BSA conjugates
was performed using an ultraviolet spectrometer (UV) (Figure 1a) and ZEN-BSA (Figure 1b).
For AFB1-BSA, in the range of 220 to 440 nm, the characteristic absorption peak of BSA is
278 nm, and the characteristic peak of AFB1 is 363 nm, while AFB1-BSA synthesized by
the OAE method contains the characteristic peaks of BSA and AFB1, indicating successful
AFB1-BSA synthesis. For ZEN-BSA, in the range of 220 to 440 nm, BSA has a characteristic
peak at 278 nm, whereas ZEN has characteristic peaks at 236, 274, and 316 nm. ZEN-BSA
prepared using the AGA method displayed the characteristic absorption peaks of both BSA
and ZEN, indicating successful ZEN-BSA. The calculated molar ratio of AFB1 to BSA and
ZEN to BSA based on the Lambert–Beer law were 8.64:1 and 17.2:1, respectively.
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2.2. Preparation and Assessment of AFB1 mAbs and ZEN mAbs

The specificity of antibodies depends on not only the physicochemical properties of the
immunogen but also the immunization method, route of administration, dose, challenge
interval, presence or absence of adjuvant, immunization times, and individual differences
with the immunization dose and time interval being the most critical. Li et al. [23] hy-
pothesized that small doses of immunogen could induce the generation of antibodies
with a narrow recognition spectrum, suitable for preparing highly specific antibodies. In
contrast, large immunogen doses could induce the generation of antibodies with a broad
recognition spectrum, suitable for preparing broad-spectrum class-specific antibodies. Neu-
berger et al. [27] and Gilfillan et al. [28] reported that a specific immunization interval could
improve the affinity and specificity of antibodies, and the immunization interval should
generally not be less than two weeks. Therefore, we adopted a small dose (30 µg/mL),
a longer immunization interval (four weeks), multiple immunization sites (four to six) on
the back, and multiple times (five times) immunization methods.

The polyclonal antibodies (pAbs) titers against AFB1 and ZEN in mice on day 25 after
vaccination were detected using a homologous indirect non-competitive enzyme-linked
immunosorbent assay (inELISA). The 50% inhibitive concentration (IC50) and the CR%
levels of the pAbs were detected using a homologous indirect competitive enzyme-linked
immunosorbent assay (icELISA). For the AFB1-BSA (OAE) group, the highest titer of
1:(3.2 × 103) (Figure 2a), the lowest IC50 value of 21.12 µg/L (Figure 2b), and the smallest
CR% with the AFB1 analogs (Figure 2c) were observed in mouse 2. For the ZEN-BSA (AGA)
group, the highest titer of 1:(6.4 × 103) (Figure 3a), the IC50 of 18.77 µg/L (Figure 3b),
and the smallest CR% with the ZEN analogs (Figure 3c) were observed in mouse 5. Thus,
mouse 2 in the AFB1-BSA (OAE) group and mouse 5 in the ZEN-BSA (AGA) group were
used in subsequent cell fusion experiments.

B lymphocytes recognize, remember, and produce antibodies against a protein, spacer
arm, and hapten for hapten-protein conjugates. Although a single B lymphocyte can only
produce one specific type of antibody, different types and subclasses of antibodies show
varied sensitivities and specificities to the same determinants [29]. Therefore, screening for
positive hybridoma cell lines is also a key step that determines the sensitivity and specificity
of mAbs. In this study, a gradient two-step screening method was adopted. In the initial
screening of hybridoma cells twelve to fourteen days after cell fusion, high concentrations
of coating antigens (5 µg/mL AFB1-OVA or ZEN-OVA) and inhibitors (1000 µg/L AFB1 or
ZEN) were used in inELISA and icELISA to avoid missing cells that secrete high-affinity
antibodies but are not dominant in the culture plate. In the second screening of single
hybridoma cells after thrice subclone, low concentrations of coated antigens (0.5 µg/mL
AFB1-OVA or ZEN-OVA) and low concentrations of inhibitors (10 µg/L AFB1 or ZEN)
were used in the inELISA and icELISA assays to generate the desired high-affinity mAbs.
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After cell fusion culture and filtration, the positive hybridoma cell lines 2A11, 2F6,
and 3G2 derived from AFB1-BSA (OAE) and 2B6 and 4D9 derived from ZEN-BSA (AGA)
were screened out. Under the optimal icELISA conditions (type of coating antigen, optimal
antigen, antibody, GaMIgG-HRP, and organic solvent concentrations, the ionic strength,
and the pH value), the sensitivities (IC50) and CRs of AFB1 mAbs (Table 1) and ZEN mAbs
(Table 2) were determined using icELISA. As shown in Table 1, the IC50 of AFB1 mAb 2A11
(6.28 µg/L) was lower than that of 2F6 (7.85 µg/L) and 3G2 (14.36 µg/L) by 25% (p < 0.05)
and 128.66% (p < 0.05), respectively, and the CRs against AFB1 analogs of 2A11 (0.91–4.35%,
mean 2.52%) was lower than that of 2F6 (0.98–4.65%, mean 2.72%) and 3G2 (0.96–14.36%,
mean 3.15%) by 7.94% (p < 0.05) and 25% (p < 0.05), respectively. The lowest IC50 and CR
were observed for mAb 2A11. Accordingly, mAb 2A11 was selected for the subsequent
studies analyses. Likewise, the IC50 of ZEN mAb 2B6 (10.38 µg/L) was lower than that of
4D9 (17.23 µg/L) by 65.99% (p < 0.05), and the CRs against ZEN analogs of 2B6 (1.28–4.27%,
mean 2.308%) was lower than that of 4D9 (1.35–4.88%, mean 2.546%) by 10.31% (p < 0.05).
Therefore, mAb 2B6 was selected for further experiments (Table 2).

Table 1. The IC50 and CRs of the three AFB1 mAbs against AFB1 analogs.

Compounds
2A11 2F6 3G2

IC50 (µg/L) a CR (%) b IC50 (µg/L) a CR (%) b IC50 (µg/L) a CR (%) b

AFB1 6.28 ± 0.41 100 7.85 ± 0.57 100 14.36 ± 1.15 100
AFB2 144.32 ± 11.82 4.35 168.82 ± 13.17 4.65 263.97 ± 17.92 5.44
AFG1 272.81 ± 18.22 2.30 310.28 ± 21.42 2.53 469.28 ± 31.08 3.06
AFG2 690.11 ± 44.86 0.91 801.02 ±54.44 0.98 1495.83 ± 95.72 0.96
AFM1 >5000 <0.1 >5000 <0.1 >5000 <0.1
AFM2 >5000 <0.1 >5000 <0.1 >5000 <0.1

Zearalenone >10,000 <0.1 >10,000 <0.1 >10,000 <0.1
Deoxynivalenol >10,000 <0.1 >10,000 <0.1 >10,000 <0.1

T-2 toxin >10,000 <0.1 >10,000 <0.1 >10,000 <0.1
Ochratoxin A >10,000 <0.1 >10,000 <0.1 >10,000 <0.1

Note: (a) The standard solution was prepared using 70% methanol-PBS (7:3, v/v). (b) The data were calculated
using the CR of AFB1 mAbs against AFB1 as 100%.

Table 2. The IC50 and CRs of two ZEN mAbs against ZEN analogs.

Compounds
2B6 4D9

IC50 (µg/L) a CR (%) b IC50 (µg/L) a CR (%) b

ZEN 10.38 ± 0.68 100 17.23 ± 1.18 100
α-ZAL 682.89 ± 45.22 1.52 1057.06 ± 65.54 1.63
β-ZAL 810.94 ± 52.72 1.28 1276.30 ± 76.58 1.35
α-ZOL 393.18 ± 23.58 2.64 602.45 ± 3 6.75 2.86
β-ZOL 567.21 ± 39.72 1.83 857.21 ± 57.44 2.01
ZON 243.09 ± 15.81 4.27 353.07 ± 21.88 4.88

Aflatoxin B1 >10,000 <0.1 >10,000 <0.1
Deoxynivalenol >10,000 <0.1 >10,000 <0.1

T-2 toxin >10,000 <0.1 >10,000 <0.1
Ochratoxin A >10,000 <0.1 >10,000 <0.1

Note: (a) The standard solution was prepared using 70% methanol-PBS (7:3, v/v); (b) The data were calculated
using the CR of ZEN mAbs against ZEN as 100%.

Additionally, the AFB1 mAb 2A11 obtained in this study was compared with previ-
ously reported AFB1-specific mAbs (Table 3). The mAb 2A11 was highly sensitive, with
an IC50 (AFB1) of 6.28 µg/L. Its specificity was very high, with the CR reaching (AFB2) of
4.35%, in line with the expected research goal. Regarding specificity, the highest CR of mAb
2A11 was similar to those of mAb 1B5 and mAb 2F12 reported by Li et al. [23] but superior
to other AFB1 mAbs. For sensitivity, the IC50 of mAb 2A11 was higher than those of mAb
1B5 and mAb 2F12 reported by Li et al. [23], mAb 1F7 reported by Jiang et al. [30], mAb
34 reported by Kolosova et al. [31], and mAb 3A12 reported by Zhang et al. [32]. Therefore,
the sensitivity of mAb 2A11 needs further improvement.
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Table 3. The IC50 and CR of AFB1-specific mAbs reported in previous literature.

References AFB1 mAb Coupling
Method Mode

IC50 of
AFB1 (µg/L)

CR (%) a

AFB2 AFG1 AFG2 AFM1 AFM2

This study (2022) mAb 2A11 OAE icELISA b 6.28 4.35 2.30 <1.0 <0.1 <0.1
Jiang et al. (2021) [30] mAb 1F7 OAE icELISA 0.15 35.07 8.75 1.15 - c -

Li et al. (2017) [23] mAb 1B5 OAE icELISA 0.012 4.0 3.0 <0.1 <0.1 <0.1
mAb 2F12 OAE icELISA 0.01 5.0 2.0 0.2 <0.1 0.2

Zhang et al. (2011) [32] mAb 3G1 SA icELISA 1.6 6.4 <0.02 <0.02 - -
Kolosova et al. (2006) [31] mAb 34 OAE dcELISA d 0.62 5.0 31.0 2.4 - -

Note: (a) The data were calculated using the CR of AFB1 as 100%; (b) icELISA: indirect competitive enzyme-linked
immunosorbent assay; (c) -: no detection; (d) dcELISA: direct competitive enzyme-linked immunosorbent assay;
SA: semi-acetal.

Similarly, the sensitivity of ZEN mAb 2B6 was compared with other previously re-
ported ZEN-specific mAbs (Table 4). The IC50 of mAb 2B6 was 10.38 µg/L, whereas its CR
was 1.35–4.88 µg/L (ZEN analogs). Therefore, mAb 2B6 is highly sensitive and specific for
ZEN, in line with the study aim. Regarding sensitivity, the IC50 of mAb 2B6 was lower than
that of mAb 7-1-14 secreted using the same AGA method as reported by Teshima et al. [25]
and Gao et al. [33] but was higher than that of mAb 4A3 [34], and mAb 2D8 [35]. For its
specificity, the CR value of ZEN mAb 2B6 was higher than that of mAb # and mAb 7-1-144.
Therefore, the specificity of mAb 2B6 needed to be further improved.

Table 4. The IC50 and CR of ZEN-specific antibodies reported in previous literature.

References ZEN mAb Coupling
Method Mode IC50 of ZEN

(µg/L)
CR (%) a

α-ZAL β-ZAL α-ZOL β-ZOL ZON

This study mAb 2B6 AGA icELISA b 10.38 1.52 1.28 2.64 1.83 4.27
Sun et al. (2014) [34] mAb 4A3 BDE icELISA 1.115 3.854 1.709 2.499 2.800 53.121

Burmistrova et al. (2009) [35] mAb 2D8 OAE dcELISA c 0.8 69 <1 42 <1 22
Gao et al. (2012) [33] mAb # d FA icELISA 55.72 0.63 0.92 0.65 0.94 1.48

Teshima et al. (1990) [25] mAb 7-1-144 AGA icELISA 11.2 <0.1 <0.1 0.9 <0.1 4.0

Note: (a) The data were calculated using the CR values of ZEN as 100%; (b) icELISA: indirect competitive
enzyme-linked immunosorbent assay; (c) dcELISA: direct competitive enzyme-linked immunosorbent assay;
(d) #: unnamed.

2.3. Identification of AuNPs

The UV and transmission electron microscope (TEM) results for AuNPs are shown
in Figure 4. The maximum absorption peak (λmax) of AuNPs was at 523.8 nm, and the
maximum absorption value (Amax) was 0.941. The absorption peak of AuNPs was only
one and small. According to Cvak et al. [36] findings, AuNPs have uniform size and
distribution. The particles are 25 nm wide (Figure 4a). TEM revealed that the AuNPs were
uniformly distributed and with a regular shape. The average size of 100 randomly selected
sample particles was 25 ± 1.0 nm (Figure 4b), consistent with the UV scanning results.
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2.4. The Optimal pH and the of AuNPs for Labeling mAb

The pH directly affected the binding of AuNPs-labeled mAb. Under optimal pH,
AuNPs adsorbs onto mAb to saturation, and the absorbance value of AuNPs-labeled mAb
was the highest. At low pH, AuNPs precipitated due to self-aggregation. At high pH,
only a small amount of mAbs was adsorbed by AuNPs, the test strip color was faint, and
the sensitivity of the test strip was reduced. UV analysis for the optimal pH level for the
absorption of AuNPs on mAb is shown in Figure 5. The adsorption was highest at pH 6.5,
almost reaching the saturation point. Therefore, the optimal binding pH between AuNPs
and AFB1 mAbs was 6.5 (Figure 5a). Similarly, the optimal pH for binding between AuNPs
and ZEN mAb was 7.0 (Figure 5b). UV analysis for the optimal amount of AuNPs and
mAb is shown in Figure 6. The results showed that the absorbance was highest when the
concentration of AFB1 mAb was 6.25 µg/mL. The optimal concentration of AFB1 mAb
was 7.0 µg/mL (6.25 × 110% ≈ 7.0) (Figure 6a). The sensitivity of AFB1 mAbs could
reduce at very high concentrations. Figure 6b shows the optimal canceration of ZEN mAbs
(3.5 µg/mL).
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The optimal working combination concentration between AuNPs-labeled AFB1/ZEN
mAb and coating antigen AFB1-BSA/ZEN-BSA determined using the chessboard method is
shown in Table 5. In particular, the optimal working concentrations for AuNPs-labeled AFB1
mAb and AFB1-BSA were 1:4 and 1.0 mg/mL, respectively, and those of AuNPs-labeled
ZEN mAb and ZEN-BSA were 1:4 and 2.0 mg/mL, respectively. The optimal combination
for AuNPs-labeled AFB1/ZEN mAb and the coating antigen AFB1-BSA/ZEN-BSA are
shown in Table 6. The optimal combination type for AuNPs-labeled AFB1 mAb and the
coating antigen was AFB1-BSA (OAE) and ZEN-BSA (AGA) for AuNPs-labeled ZEN mAbs.
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Table 5. The optimal combination concentration for AuNPs-labeled AFB1/ZEN mAb and the coat
antigen AFB1-BSA/ZEN-BSA.

AuNPs-Labeled
AFB1/ZEN mAb

AFB1-BSA (mg/mL) ZEN-BSA (mg/mL)

2.0 1.0 0.5 0.25 0.125 0.0625 2.0 1.0 0.5 0.25 0.125 0.0625

1:1 ++ ++ + - - - ++ + - - - -
1:2 ++ ++ + - - - ++ + - - - -
1:4 ++ ++ + - - - ++ + - - - -
1:8 ++ + - - - - + + - - - -
1:16 + - - - - - + - - - - -
1:32 - - - - - - - - - - - -

Note: “++”: clear red line. “+”: light red line. “-” no red line.

Table 6. The optimal type combination for AuNPs-labeled AFB1/ZEN mAb and coating antigen
AFB1-BSA/ZEN-BSA.

AuNPs-Labeled
AFB1/ZEN mAb

AFB1-BSA (1.0 mg/mL) ZEN-BSA (2.0 mg/mL)

OAE MOA MA SA EP EED AGA OAE CMA FA BDE

1:4 ++ + + + - - ++ + + + +

Note: “++”: clear red line. “+”: light red line. “-”: no red line.

The test results of six nitrocellulose (NC) membranes and four conjugate pads are
shown in Figure 7. As shown in Figure 7a, red bands were observed for all the NC
membranes. In contrast, the color of Millipore 135 membrane was clearer at 10 min.
Therefore, Millipore 135 membrane was selected as NC. Meanwhile, as shown in Figure 7b,
the conjugate pads can completely release the AuNPs-labeled mAb within 10 min without
background color, but in contrast, 8964 is much more obvious and clear. Thus, 8964 was
selected as the conjugate and sample pad in this study. The following buffers were used in
our experiment: PBS (0.01 M, pH7.4, comprising NaCl 137 mM, Na2HPO4
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12H2O 10 mM,
KCl 2.68 mM, and KH2PO4 1.47 mM) was the coating antigen dilution buffer; BBS (0.05 M
pH 7.4) supplemented with 2.0% of BSA, 4.0% of sucrose, and 0.05% of NaN3 was the
dilution buffer for AuNPs-labeled mAbs; PBS (0.01 M, pH7.4) supplemented with 2.0% of
BSA, 0.5% of Tween-20, and 0.05% of NaN3 was the NC membrane blocking buffer. BBS
(0.05 M pH 7.4) supplemented with 2.0% of BSA, 4.0% of sucrose, 0.5% Tween-20, and
0.05% NaN3 was the conjugate and sample pad processing buffer.
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2.6. Validity of the Dual Test Strip Test

Sensitivity is one of the key indicators for an accurate immunoassay, represented by
LOD. The LOD of the dual test strip method is shown in Figure 8. The T1 line represents
AFB1 ≥ 1.0 µg/L, whereas the T2 line represents ZEN ≥ 5.0 µg/L. T1 and T2 lines disap-
peared completely, and the sample was positive. Therefore, the visual LOD of AFB1 and
ZEN of the dual test strip test was 1.0 µg/L and 5.0 µg/L, respectively. The test results
using a test strip reader are shown in Table 7. The respective standards are shown in
Figure 9. The linear regression equation of AFB1 was y = −52.526x + 46.762, the IC50 was
1.15 µg/L, and the LOD was 0.23 µg/L. Meanwhile, the linear regression equation of ZEN
was y = −34.215x + 73.644, the IC50 was 4.91 µg/L, and the LOD was 1.53 µg/L.

The repeatability analysis using AFB1/ZEN spiked samples revealed that the test was
reproducible (Table 8).
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3. AFB1/ZEN, 0.5/2.5. 4. AFB1/ZEN, 1.0/5.0. 5. AFB1/ZEN, 2.0/10.0. 6.AFB1/ZEN, 4.0/20.0.
7. AFB1/ZEN, 8.0/40.0. 8. AFB1/ZEN, 16.0/80.0. 9. AFB1/ZEN, 32.0/160.0. 10. AFB1/ZEN,
64.0/320.0. (µg/L).

Table 7. Scan data of the AFB1 and ZEN T line of the dual test strip. The analysis was performed
using Bio Dot-TSR3000.

Toxin Concentration
(µg/L) Lg[Toxin Concentration] G/D×A − ROD(pixel) G/D×A − ROD(pixel)%

AFB1 ZEN AFB1 ZEN AFB1 ZEN AFB1 ZEN

0 0 - - 16.65 15.52 100 100
0.25 1.25 −0.602 0.099 13.24 14.22 82.60 91.61
0.5 2.5 −0.301 0.398 10.12 13.25 65.78 85.36
1.0 5.0 0 0.699 7.25 11.85 43.54 76.33
2.0 10.0 0.301 1.0 4.31 10.14 25.89 65.36
4.0 20.0 0.602 1.301 2.06 8.02 12.37 51.67
8.0 40.0 0.903 1.602 1.26 6.50 7.57 41.88
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Figure 9. The standard curve of the AFB1 and ZEN dual test strip was detected using BioDot-TSR3000:
(a) The standard curve of AFB1; (b) The standard curve of ZEN.

Table 8. The reproducibility of the dual test strips in different batches.

Batches

The Concentration of Spiked AFB1/ZEN in
Corn Samples (µg/L) a

The Concentration of Spiked AFB1/ZEN in Pig
Compound Feed Samples (µg/L) a

0.5/2.5 1.0/5.0 2.0/10.0 4.0/20.0 0.5/2.5 1.0/5.0 2.0/10.0 4.0/20.0

220210 −b + c + + − + + +
220225 − + + + − + + +
220308 − + + + − + + +
220316 − + + + − + + +
220330 − + + + − + + +
220412 − + + + − + + +

Note: (a) The readings represent the mean of six replicas. (b) −: negative result. (c) +: positive result.

The validity period of the results is shown in Table 9. The appearance and sensitivity
of the dual test strip had not changed in six months at 4 ◦C and 25 ◦C. The T1 and T2
lines are clearly visible. No false positives and false negatives were detected. The results
remained unchanged when the strip was stored at 37 ◦C for four months, 4 ◦C, and 25 ◦C
for six months. However, the color of the T1 line T2 lines faded when the strip was stored
for over four months (150 days), giving false-negative results. On day 180, the color of lines
T1 and T2 faded, giving false negatives. Therefore, the dual test strip can be stored in the
refrigerator (4 ◦C), and room temperature (25 ◦C) for six months, and at high temperature
(37 ◦C) for four months.

Table 9. The validity period of the dual test strip results.

Time
(d)

25 ◦C 4 ◦C 37 ◦C

False
Negative

(%)

False
Positive

(%)

T1
Color

T2
Color

False
Negative

(%)

False
Positive

(%)

T1
Color

T2
Color

False
Negative

(%)

False
Positive

(%)

T1
Color

T1
Color

30 0 0 **** **** 0 0 **** **** 0 0 **** ****
60 0 0 **** **** 0 0 **** **** 0 0 **** ****
90 0 0 **** **** 0 0 **** **** 0 0 **** ****
120 0 0 **** **** 0 0 **** **** 0 0 **** ****
150 0 0 **** **** 0 0 **** **** 2 0 *** ***
180 0 0 **** **** 0 0 **** **** 5 0 ** **

Note: "*" indicates the intensity of the color, the more *, the deeper the color, and the color range is one to four.
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The test results for positive corn samples using the dual test strip are shown in Table 10.
AFB1 was detected in 12 of the 20 positive samples by dual test strip; the positive value
was ≥1.0 µg/L, the positive value detected by LC-MS/MS was 1.0–11.9 µg/L, and their
positive coincidence rate was 100%. Similarly, ZEN was detected in eight of the 20 positive
samples; the positive value was ≥5.0 µg/L, the positive value detected by LC-MS/MS was
5.0–367.6 µg/L, and their positive coincidence rate was 100%. The test results of natural
samples are shown in Table 11. A total of 60 samples were analyzed. Of these, 39 positive
samples were correctly detected, and the positive rate was 65%. All the positive samples
were correctly detected, and the detection rate was comparable to that of LC-MS/MS. Of
the 39 positive samples, 22 samples were positive for AFB1. The positive value of the dual
test strip was ≥1.0 µg/L, whereas that of LC-MS/MS was 1.0–14.3 µg/L. Furthermore,
17 samples were positive for ZEN, the positive value of the dual test strip was ≥5.0 µg/L,
whereas that of LC-MS/MS was 5.0–510.6 µg/L, and the positive agreement rate of the two
tests was 100%.

Table 10. The comparison between the dual test strip and LC-MS/MS in detecting AFB1 and ZEN. A
total of 20 samples were analyzed.

Sample
Number

Dual Test Strip LC-MS/MS

AFB1 ZEN AFB1 ZEN

Result PN PV
(µg/L) Result PN PV

(µg/L) Result PN PV
(µg/L) Result PN PV

(µg/L)

20 + 12 ≥1.0 + 8 ≥5.0 + 12 1.0–11.9 + 8 5.0–367.6

Note: PN: positive number; PV: means positive value.

Table 11. Comparison between the dual test strip and HPLC-MS/MS tests in detecting AFB1 and
ZEN in different samples.

Sample
Type

Sample
Number

The Dual Test Strip LC-MS/MS

AFB1 ZEN AFB1 ZEN

Results PN PV
(µg/L) Results PN PV

(µg/L) Results PN PV
(µg/L) Results PN PV

(µg/L)

Maize 15 + 9 ≥1.0 + 7 ≥5.0 + 9 1.0–12.5 + 7 5.0–410.7
Rice 15 + 3 ≥1.0 + 2 ≥5.0 + 3 1.0–9.4 + 2 5.0–235.4

Peanut 15 + 2 ≥1.0 + 2 ≥5.0 + 2 1.0–6.6 + 2 5.0–176.3
Feed 15 + 8 ≥1.0 + 6 ≥5.0 + 8 1.0–14.3 + 6 5.0–510.6
Total 60 22 17 22 17

Note: “PN” means positive number. “PV” means positive value.

Additionally, although the developed dual test strip method has obvious advantages,
it still has the following three limitations. First, its accurate quantification cannot be
achieved. Since its detection results are qualitatively and semi-quantitatively evaluated
by observing the color changes produced by the accumulation of AuNPs using naked
eyes, its results cannot be accurately quantified [37]. Second, its sensitivity needs to be
improved. The amplification effect of GICA on the antigen-antibody reaction signal is not
as good as that of ELISA and IFA, and there is a certain missed detection rate for weakly
positive samples in the naked eye observation test results [38]. Third, it is difficult to
choose a sample processing method. Different targets have different solubility, different
sample processing methods are required, and the obtained sample processing solutions
have different compatibility with the dual test strip buffer system, which may easily lead
to poor stability of the detection results [39]. AFB1 is the most toxic toxin in AFs, and its
median lethal dose (LD50) is 6.5–16.5 mg/kg [40]. The toxicity of ZEN is relatively low, with
an LD50 of 2000–20,000 mg/kg in mice [41]. The most stringent MPLs for AFB1 and ZEN
in food and feed are 2 µg/kg [8] and 50 µg/kg [12], respectively, while the visual LODs of
AFB1 and ZEN by the proposed method are 1.0 µg/L and 5.0 µg/L, respectively. Therefore,
the proposed method can meet the actual detection needs. Moreover, there have been
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previous reports on the use of GICA for the detection of AFB1 and ZEN. Chen et al. [21]
developed a triple test strip for the detection of AFB1, ZEN and ochratoxin A (OTA);
their LODs were 10 µg/L, 50 µg/L and 15 µg/L, respectively, due to the large CR of the
mAbs used, and the method was mainly used for the total detection of the target and its
homologues. Song et al. [42] established the same method for detection of AFB1, ZEN and
deoxynivalenol (DON), but also for total detection of the target and its homologues. In
view of this, drawing on the methods of Li et al. [23] and Teshima et al. [25]., this study
prepared highly specific and sensitive mAbs for AFB1 and ZEN, established a double test
strip method, and achieved simultaneous, specific, sensitive and rapid determination of
AFB1 and ZEN.

3. Materials and Methods
3.1. Chemicals and Materials

The mycotoxins, including AFB1, AFB2, AFG1, AFG2, ZEN, α-ZOL, β-ZOL, α-ZAL,
β-ZAL, ZON, deoxynivalenol (DON), fumonisin B1 (FB1), ochratoxin A (OTA), and chemi-
cal reagents, including carboxymethoxylamine hemihydrochloride (CMO), N-hydroxysucc-
inimide (NHS), N-(3-dimethylaminopropyl)-N’-ethyl-carbodiimide (EDC), and Tween-20
were purchased from Sigma Chemical Co. (St. Louis, MO, USA). BSA, ovalbumin (OVA),
Freund’s complete adjuvant (FCA), Freund’s incomplete adjuvant (FIA), RPMI-1640 with
L-glutamine, horseradish peroxidase (GaMIgG-HRP)-conjugated goat anti-mouse IgG,
polyethylene glycol 1500 (PEG 1500, 50%), hypoxanthine aminopterin thymidine (HAT),
and hypoxanthine thymidine (HT) were purchased from Pierce Biotechnology, Inc. (Rock-
ford, IL, USA). Formaldehyde (FA), glutaraldehyde (GA), ethylenediamine (EDA), and
dimethyl sulphoxide (DMSO) were purchased from J&K Chemicals Ltd. (Shanghai, China).
Chloroauric acid, trisodium citrate, sodium azide, and boric acid were purchased from
China National Pharmaceutical Group Corporation (Beijing, China). The chemicals and
organic solvents used in the experiments were of analytical grade and, therefore, did
not require further purification. The NC membrane, sample and conjugate pads (glass
fiber), absorbent pad, and adhesive backing card were purchased from Millipore Corpora-
tion (Millipore, Bedford, MA, USA). Seven-week-old female Balb/c mice (license number
of SCXK (YU) 2015-0004) with an average weight of 18.2 ± 0.5 g were purchased from
the Laboratory Animal Center of Zhengzhou University (Zhengzhou, China) and were
reared under controlled conditions in our laboratory. Murine myeloma NS0 cells were
purchased from the Key Laboratory of Animal Immunology of the Ministry of Agriculture
(Zhengzhou, China) and were cultured in RPMI-1640 medium supplemented with 20%
(v/v) fetal bovine serum in our laboratory.

3.2. Instrumentations

The microplates were analyzed using a Multiskan MK3 microplate spectrophotometric
reader (Thermo, Waltham, MA, USA). UV spectra of the mycotoxins were acquired using a
DU-800 UV-visible spectrophotometer (Beckman Coulter Inc., Fullerton, CA, USA). Hapt-
enization of AFB1 and ZEN was verified using a hybrid quadrupole-time of flight mass
spectrometer (Q/TOF, HRMS; SYNAPT HDMS, Waters, UK). An XYZ-3210 3D spray point
platform (BioDot Inc., Irvine, CA, USA) and a CM 4000 guillotine-cutting module (Kinbio
Tech Co., Ltd., Shanghai, China) were used to analyze the test strip assembly. The size,
distribution, and morphology of the AuNPs were analyzed using an H-7650 transmission
electron microscope (Hitachi Limited, Tokyo, Japan). The coloration signals were detected
using a BioDot TSR 3000 test strip reader (Gene Company Limited, Shanghai Branch, Shang-
hai, China), whereas an LC-MS/MS-8030 reader equipped with an electrospray ionization
interface (Shimadzu, Kyoto, Japan) was used to validate the test results.
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3.3. Synthesis and Verification of Mycotoxin-Protein Conjugates

AFB1-BSA synthesis was performed using the OAE method as previously described by
Kolosova et al. [31], but with slight modifications. Briefly, AFB1 was haptenized. Then, 5 mg
(0.02 mM) of AFB1 and 12 mg (0.06 mM) of CMO were dissolved in 5 mL of pyridine and
incubated at 37 ◦C in the dark for 24 h with continuous string. CMO (12 mg, 0.06 mM) was
added to the mixture before further incubation for 24 h under the described conditions. The
mixture was freeze-dried for 24 h to obtain a white powdery compound, the target product
of AFB1 oxime (AFB1O), which was verified using HRMS. HRMS (ESI) m/z calculated
for C19H15NO8 [AFB1O + H+] 385.3243, found 385.3237. To synthesize AFB1-BSA, 5.8 mg
(0.015 mM) of AFB1O was dissolved in 1.0 mL of dimethylformamide (DMF) before adding
3.1 mg (0.016 mM) of EDC. The mixture was incubated at room temperature in the dark
for 2 h with contiguous stirring to obtain the hapten activation solution. Thereafter, 20 mg
(0.0003 mM) of BSA was dissolved in 1.0 mL PBS (0.01 M, pH 7.4). The hapten activation
solution was then added dropwise to the BSA solution with continued stirring for 2 h at
room temperature. The reaction mixture was dialyzed with PBS for three days at 4 ◦C. The
resulting AFB1O-BSA conjugate was stored at 4 ◦C until further use. The schematic flow
for AFB1-BSA (OAE) synthesis is shown in Figure 10.
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ZEN-BSA was synthesized using the AGA method as previously described by
Teshima et al. [25], but with minor modifications. Briefly, ZEN was first haptenized.
31.84 mg (0.1 mM) of ZEN, 23.33 mg (0.1 mM) of ZrO (NO3)2, and 5 mL of acetonitrile were
added to a reaction tube under a nitrogen atmosphere. The mixture was stirred under a
refluxed condition for 16 h. The mixture was then filtrated and distilled under low pressure.
The crude product was purified using column chromatography. A yellow solid, an interme-
diate product of 5-NO2-ZEN, was obtained. Iron powder was added to 109 mg (0.3 mM)
of 5-NO2-ZEN dissolved in 5 mL of hydrochloric acid. The experiment was performed
at room temperature for 2 h. The solution was filtered, concentrated in a vacuum, and
dissolved in 5 mL of double-distilled water. The pH was adjusted to 7.0 using K2CO3. The
above solution was extracted with dichloromethane (DCM, 3 × 10 mL). The organic layer
was washed off using salt water, dried with anhydrous Na2SO4, and then concentrated in a
vacuum to obtain the light yellow solid (5-NH2-ZEN), verified using HRMS. HRMS (ESI)
m/z calculated for C18H24NO5 [ZEN-NH2 + H+] 334.1649, found 334.1643. Subsequently,
5 mg (0.015 mM) of 5-NH2-ZEN was dissolved in 500 µL of methanol before adding 60 µL
of 2% GA to obtain the hapten activation solution. The process was performed at room
temperature for 4 h with continuous stirring. Hapten activation solution was added drop-
wise to 20 mg (0.0003 mM) of BSA dissolved in 1.0 mL of 0.1 M, pH 6.7 phosphate buffer
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12H2O), and then the
hapten activation solution was added dropwise to above BSA solution at room temperature
for 4 h. The reaction mixture was dialyzed with PBS at 4 ◦C for three days, and the resulting
ZEN-BSA conjugate was stored at 4 ◦C until further use. The schematic flow for ZEN-BSA
(AGA) synthesis is shown in Figure 11.
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The synthetic mycotoxin-protein conjugates were confirmed using a DU-800 UV-
visible spectrophotometer, and the molecular binding ratios of AFB1 to BSA or OVA, or
ZEN to BSA or OVA were calculated based on Lambert–Beer law [43]. Notably, AFB1-
BSA (OAE) and ZEN-BSA (AGA) were used for inducing mAbs production, AFB1-OVA
(OAE) and ZEN-OVA (AGA) were the coating antigens in an inELISA and an icELISA, and
AFB1-BSA (using six different methods, including OAE, MOA, MA, SA, EP, and EED) and
ZEN-BSA (using four different methods, including OAE, FA, BDE, and AGA) were the
candidate capture antigens on the dual test strip.

3.4. Preparation and Assessment of Mycotoxin mAbs

Ten Balb/c mice were randomly divided into two groups, with five mice in each
group. The mice were injected subcutaneously on the back at multiple sites (four to
six) with 30 µg/head of either AFB1-BSA (OAE) or ZEN-BSA (AGA). The mice received
immunogen jabs at an interval of four weeks. For the primary immunization, the emulsion
injected was a preparation of immunogen and FCA (1:1, v/v). For the four subsequent
booster immunizations, the FCA in the emulsion was substituted with FIA instead. Blood
was collected from the tail of each mouse to extract pAb against AFB1 and ZEN. The
titers (representing the immunoreactivity), IC50 (representing the sensitivity), and CR
(representing the specificity) of the pAbs were assessed using an inELISA and an icELISA.
The mouse with the highest pAb titer, the lowest IC50, and the lowest CR in each group
was sacrificed for cell fusion.

The cell fusion of myeloma cells with spleen cells harvested from the mycotoxin-
challenged animals was performed as described previously [44]. Ten to fourteen days
after cell fusion, the positive clones of interest were screened using inELISA and icELISA.
Positive hybridomas were selected for cloning. The mAbs, purified using the saturated
ammonium sulfate precipitation method [45], were generated using in vivo-induced ascites
method [46].

The IC50 values of the mAbs were determined using icELISA [47]. Briefly, AFB1 (or
ZEN) standard stock solution was diluted with 30% methanol-PBS (30:70, v/v) to varied
concentrations (0.33, 1.0, 3.0, 9.0, 27.0, 81.0, and 243.0 µg/L). A corresponding icELISA
standard curve was generated by plotting the gradient concentrations (Log C) versus the
inhibition percentages, calculated using the following equation: Inhibition percentage (%)
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= (1 − B/B0) × 100. (Where B is the absorbance of the different concentration standards,
B0 is the absorbance of the zero standards). The CR (representing specificities) of the
mAbs against mycotoxin was determined using an icELISA as previously described [47].
CR (%) = [IC50 (AFB1 or ZEN)/IC50 (competitors)] × 100%. The mAb at a high titer, highly
sensitive (low IC50), and highly specific (low CR) was filtrated for the development of the
dual test strip.

3.5. Preparation and Identification of AuNPs

AuNPs were prepared using the sodium citrate reduction method as described by
Qin et al. [48] but with some modifications. Briefly, 2.0 mL of 1.0% (w/v) HAuCl4 solution
was added to 198 mL of boiling ultrapure water in a 250 mL Erlenmeyer flask under
constant stirring and configured a total volume of 200 mL and a final concentration of 0.01%
(w/v) HAuCl4 solution. After boiling for 5 min, 6.5 mL of 1.0% (w/v) Na3C6H5O7 • 2H2O
solution was added dropwise to the solution with constant stirring for 15 min. The solution
was left to cool before adding ultrapure water to the initial volume. NaN3 (0.05% (w/v))
was then added to the mixture and stored at 4 ◦C. The AuNPs were characterized using
UV and TEM.

3.6. Preparation of AuNPs-Labeled mAb

AuNPs-labeled mAbs were prepared using the chessboard method as previously
described by Ji et al. [49] but with slight modification. Firstly, the optimal pH for binding
of AFB1 (or ZEN mAb) on AuNPs was determined. Here, 1.0 mL of the prepared AuNPs
solution was added into eight Eppendorf (EP) tubes (1.5 mL). The pH of the solution was
adjusted to 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5 and 9.0 using 0.25 M K2CO3 solution. Thereafter,
20 µg of AFB1 mAb (or ZEN mAb) was added to each tube, followed by a 4 ◦C incubation
for 30 min. NaCl (100 µL, 10%) was then added to each tube and incubated at 4 ◦C for 1 h.
The mixtures were centrifuged at 1600× g for 30 min at 4 ◦C and evaluated using UV. The
pH at which the highest absorbance occurred was the optimal pH. The optimal amount
of AuNPs for labeling mAb was also determined. Briefly, 0.5 mL of AuNPs solution at
the optimal pH was added to eight Eppendorf (EP) tubes (1.5 mL). AFB1 mAb (or ZEN
mAb) (0.1 mL, 1.0 mg/mL) was added to the first tube and then double-diluted to the
eighth tube. The mAb contents were 50, 25, 12.5, 6.25, 3.125, 1.5625, 0.7825, and 0.391 µg,
respectively. After thoroughly mixing, the tubes were left to stand for 30 min. NaCl
solution (0.1 mL, 10%) was then added, thoroughly mixed, and let to stand for 1 h. The
mixtures were centrifuged at 1600× g for 30 min at 4 ◦C and analyzed using UV. The
minimum amount of mAb required for 1.0 mL of AuNPs to reach the equilibrium point
of the scanning curve and an increase of 10% on this basis was the optimal amount for
labeling mAb. Finally, AuNPs-labelled mAb was prepared and purified. Briefly, 20 mL
of AuNPs solution at the optimal pH and optimal amount of AFB1 mAb (or ZEN mAb)
were mixed in a centrifuge tube and incubated at room temperature for 30 min, and then
2.0 mL of 10% BSA (w/v) solution was added. After following incubation for another
30 min, the mixture was centrifuged at 8000× g at 4 ◦C for 30 min. The supernatant was
discarded, and the precipitate was resuspended with AuNPs resuspension (0.05 M, pH 7.4
borate buffer solution (BBS) comprising Na2B4O7
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The test results of six nitrocellulose (NC) membranes and four conjugate pads are 

shown in Figure 7. As shown in Figure 7a, red bands were observed for all the NC 

membranes. In contrast, the color of Millipore 135 membrane was clearer at 10 min. 

Therefore, Millipore 135 membrane was selected as NC. Meanwhile, as shown in Figure 

7b, the conjugate pads can completely release the AuNPs-labeled mAb within 10 min 

without background color, but in contrast, 8964 is much more obvious and clear. Thus, 

8964 was selected as the conjugate and sample pad in this study. The following buffers 

were used in our experiment: PBS (0.01 M, pH7.4, comprising NaCl 137 mM, Na2HPO4 

▪12H2O 10 mM, KCl 2.68 mM, and KH2PO4 1.47 mM) was the coating antigen dilution 

buffer; BBS (0.05 M pH 7.4) supplemented with 2.0% of BSA, 4.0% of sucrose, and 0.05% 

of NaN3 was the dilution buffer for AuNPs-labeled mAbs; PBS (0.01 M, pH7.4) supple-

10H2O 50 mM) containing BSA 0.15 mM,
sucrose 87.72 mM, NaN3 0.05 mM). Centrifugation was repeated once. The resuspended
solution was filtered using a 0.45 µm membrane and stored at 4◦C until further use.

3.7. Optimization of the Technical Parameters of a Dual Test Strip

The analytical performance of the dual test strip is affected by numerous parameters,
including types and working concentrations of the immunoreagents, as well as types
of materials and buffers. Optimization regarded the best working concentration of the
coated antigen and AuNPs-labeled mAb. GaMIgG at a concentration of 1.0 mg/mL
was prepared using the coating antigen buffer and immobilized on the C line of the NC
membrane. Homologous coating antigen AFB1-BSA (OAE) of AFB1 mAb was diluted
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to a concentration of 2.0, 1.0, 0.5, 0.25, 0.125, 0.0625 mg/mL, and coated on the T1 line
of the NC membrane. ZEN-BSA (AGA) was coated on the T2 line of the NC membrane
in the same way. The AFB1 mAb for AuNP-labeled was diluted at a ratio of 1:1, 1:2,
1:4, 1:8, 1:16, and 1:32 with AuNPs-labeled mAb dilution buffer and immobilized on the
conjugate pad. A similar dilution of AuNP-labeled ZEN mAb was immobilized on the
conjugate pad. The optimal working concentration combination of coated antigen and
AuNPs-labeled mAb was based on the visual LOD using the chessboard method. Similarly,
the five heterologous coating antigens of AFB1 mAb were determined using the working
concentration of the screened homologous coating antigen AFB1-BSA (OAE) (or ZEN-BSA
(AGA)) as a reference, and based on the visual LOD. The five heterologous coating antigens
of AFB1 mAb were determined. The optimal working concentration combination was
screened with three heterologous coating antigens of ZEN mAb. Six commonly used NC
membranes (Millipore 135, Millipore 180, Prima 40, Prima 85, HF 135, and HF 180) were
tested, and the most suitable type of NC membrane was selected by comparing the flow
rate, color intensity, and clarity. Four commonly used conjugate pads (SB06, SB08, 8964,
and 6613) were tested, and the most suitable conjugate and sample pads were selected
based on the stability of different conjugate pads after drying, the release efficiency of
AuNPs-labeled antibodies, and the residue of AuNPs. The buffer systems used in this
study were selected based on the reports of Zhang et al. [50] and Shim et al. [20].

3.8. Assembly of the Dual Test Strip

Figure 12a shows the C line, T1 line, and T2 line on the NC membrane were sequentially
coated with GaMIgG, AFB1-BSA, and ZEN-BSA, respectively. The conjugate pad was cured
with AuNPs-labeled AFB1 mAb and AuNPs-labeled ZEN mAb mixed in equal volumes.
The treated sample pad, conjugate pad, NC membrane, and absorbent pad were coated
on the backing plate and cut into thin 0.5 cm test strips. AFB1/ZEN standard solution or
sample treatment solution (200 µL) were added to the microwell. A dual test strip was
immersed in the microwell solution, and the results were observed in 10 min (Figure 12b).
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3.9. Validation of the Dual Test Strip

Several main performance indicators of AFB1 and ZEN dual test strip, including
sensitivity, specificity (same as its mAb), repeatability, validity period, and reliability, were
verified. The LOD, representing sensitivity, was determined using visual examination
and the test strip reader method. For the visual method, AFB1/ZEN solutions at a final
concentration of 0/0, 0.25/1.25, 0.5/2.5, 1.0/5.0, 2.0/10.0, 4.0/20.0, 8.0/40.0, 16.0/80.0,
32.0/160.0, 64.0/320.0 µg/L were prepared using the sample treatment solution (70%
methanol-PBS (7:3, v/v)). Thereafter, 200 µL of the mixture was added to each microwell,
and the two toxins were detected simultaneously using the dual test strip. Each concen-
tration was repeated six times to determine the LOD of the dual test strips. For the test
strip reader method, after coloration for 10 min, the T1 and T2 lines were screened using
BioDot-TSR 3000 test strip reader. The relative optical density values of the scanning area
(G/D × A − ROD (pixel)) were recorded (where G is the graph, D is the density, A is the
scanning area, D×A is the optical density of the scanning area, and ROD is the relative
optical density). The percentage of relative optical density (G/D × A − ROD (pixel)%) of
different concentration standards was the ordinate, and the common logarithmic value of
the concentration of different standards was the abscissa. In general, the standard curve
of the dual test strip was obtained. According to the Song et al. [51] report and based on
the standard curve and regression equation, the LOD of the dual test strip for AFB1 or
ZEN was 80% (G/D × A − ROD (pixel)%). The repeatability of the test was evaluated
using intra-assay and inter-assay. Six different batches of the dual test strip were used to
detect different AFB1/ZEN concentrations (0.5/2.5, 1.0/5.0, 2.0/10.0, 4.0/20.0 µg/L) in
maize and pig feeds. Intra-assay variations were measured using six replicates of each
spiked sample with a specific concentration of the mycotoxins. Inter-assay variations were
based on the test results on the six different days [52]. The validity period of the results
was determined by storing the test strips at 4 ◦C, 25 ◦C, and 37 ◦C for different periods.
The color changes on days 30, 60, 90, 120, 150, and 180 were then observed [32]. The
reliability of the dual test strip was determined by comparing results generated by the
test and those of LC-MS/MS. Twenty positive maize meal samples contaminated with
AFB1 and ZEN confirmed by LC-MS/MS were obtained from the Agricultural Quality
Standards and Testing Technology Research Center of Henan Academy of Agricultural
Sciences, and sixty filed samples (15 corn, rice, peanut, and pig feed samples) were obtained
from the local market. AFB1 and ZEN detection was performed using dual test strips and
LC-MS/MS methods. The reliability of the dual test strip was then evaluated as previously
described [53].

3.10. Preparation of the Test Sample

Briefly, 5.0 g of dried and ground maize, rice, peanut, and pig feed samples were
mixed with 15 mL of 70% methanol-PBS (7:3, v/v) in a 50 mL centrifuge tube, vortexed for
5 min, and then centrifuged at 1600 g for 5 min. The supernatant was diluted to 50 mL with
0.5% Tween 20-PBS solution (0.5%, v/v) and used for the dual test strip analysis. All of the
analyses were performed in triplicate.

4. Conclusions

We developed and optimized a dual lateral flow immunochromatographic assay (dual
test strip) for accurate AFB1 and ZEN detection. Two immunogens, AFB1-BSA (OAE) and
ZEN-BSA (AGA), were successfully synthesized and linked at molecular binding ratios
of 8.64:1 (AFB1:BSA) and 17.2:1 (ZEN:BSA), respectively. The hybridoma cell lines 2A11,
2F6, and 3G2 for AFB1 and hybridoma cell lines 2B6, and 4D9 for ZEN were selected
using inELISA and icELISA. The lowest IC50 and CR were observed for AFB1 mAb
2A11 and ZEN mAb 2B6. AuNPs with a particle size of 25 nm were prepared using the
sodium citrate reduction method. The optimal pH (6.5) and mAb amount (7.0 µg/mL) for
AuNPs-labeled AFB1 mAb and the optimal pH (7.0) and mAb amount (3.5 µg/mL) for
AuNPs-labeled ZEN mAb were determined using the chessboard method, respectively. The
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technical parameters of the dual test strip, such as the types and working concentrations of
immunoreagents, types of materials and buffers, were systematically optimized. Under
the optimal conditions, the visual LOD of the dual test strip for AFB1 was 1.0 µg/L and
5.0 µg/L for ZEN, but decreased to 0.23 µg/L for AFB1 and 1.53 µg/L for ZEN when
using a test strip reader. Further analyses revealed that the dual test strip was highly
reproducible. The sensitivity and the specificity of the dual test strip for AFB1 and ZEN
detection were comparable to that of LC-MS/MS. The proposed AFB1 and ZEN dual test
strip is suitable for rapid and simultaneous detection of AFB1 and ZEN contamination in
food and feed samples.
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