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Abstract

Population receptive field (pRF) models fit to fMRI data are used to non-invasively measure 

retinotopic maps in human visual cortex, and these maps are a fundamental component of visual 

neuroscience experiments. Here, we examined the reproducibility of retinotopic maps across two 

datasets: a newly acquired retinotopy dataset from New York University (NYU) (n = 44) and a 

public dataset from the Human Connectome Project (HCP) (n = 181). Our goal was to assess 

the degree to which pRF properties are similar across datasets, despite substantial differences in 

their experimental protocols. The two datasets simultaneously differ in their stimulus apertures, 

participant pool, fMRI protocol, MRI field strength, and preprocessing pipeline. We assessed the 

cross-dataset reproducibility of the two datasets in terms of the similarity of vertex-wise pRF 

estimates and in terms of large-scale polar angle asymmetries in cortical magnification. Within 

V1, V2, V3, and hV4, the group-median NYU and HCP vertex-wise polar angle estimates were 

nearly identical. Both eccentricity and pRF size estimates were also strongly correlated between 

the two datasets, but with a slope different from 1; the eccentricity and pRF size estimates 

were systematically greater in the NYU data. Next, to compare large-scale map properties, we 

quantified two polar angle asymmetries in V1 cortical magnification previously identified in the 

HCP data. The NYU dataset confirms earlier reports that more cortical surface area represents 

horizontal than vertical visual field meridian, and lower than upper vertical visual field meridian. 
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Together, our findings show that the retinotopic properties of V1, V2, V3, and hV4 can be reliably 

measured across two datasets, despite numerous differences in their experimental design. fMRI­

derived retinotopic maps are reproducible because they rely on an explicit computational model of 

the fMRI response. In the case of pRF mapping, the model is grounded in physiological evidence 

of how visual receptive fields are organized, allowing one to quantitatively characterize the BOLD 

signal in terms of stimulus properties (i.e., location and size). The new NYU Retinotopy Dataset 

will serve as a useful benchmark for testing hypotheses about the organization of visual areas and 

for comparison to the HCP 7T Retinotopy Dataset.
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1. Introduction

The human visual system preserves image structure in cortical maps of the visual field. 

These retinotopic maps are the basis by which measurements across labs, populations, and 

tasks are compared. Functional magnetic resonance imaging (fMRI) has made it possible 

to non-invasively measure retinotopic maps from visually evoked activity in human cortex 

(DeYoe et al., 1994; Engel et al., 1994; Sereno et al., 1995). Methodological advances have 

led to sophisticated computational models such as population receptive field (pRF) modeling 

(Dumoulin and Wandell, 2008), which has become a core component of experiments 

investigating human visual cortex (reviewed by Wandell and Winawer, 2015).

Recently, the Human Connectome Project (HCP) 7 Tesla Retinotopy Dataset has been 

made available for public use (Benson et al., 2018; Van Essen et al., 2012). This dataset 

contains high-quality retinotopy data from 181 participants, collected with 7T magnetic 

resonance imaging (MRI), with 30 min of data per participant. The high quality and 

large size of the dataset make it an attractive resource for researchers to address a wide 

variety of questions. It has been used to investigate retinotopic organization in visual cortex, 

including the organization of core pRF parameters (Benson et al., 2018), the organization 

of white matter connections between thalamus and foveal and peripheral representations of 

extrastriate cortex (Kurzawski et al., 2020), the identification new retinotopic maps in the 

cerebellum (van Es et al., 2019), hippocampus (Silson et al., 2021), the visual organization 

in the default network (Szinte and Knapen, 2020), and polar angle meridian asymmetries 

in cortical magnification in primary visual cortex (V1) (Benson et al., 2021). One benefit 

of the HCP dataset is that its large size permits researchers to conduct checks of internal 

reliability. For example, if a finding is observed in one half of the participant sample, is it 

also observed in the other half? However, these internal checks rely on data that have been 

collected using the same MRI scanner, preprocessed via the same pipeline, and analyzed 

using the same pRF software. Therefore, systematic biases affecting a full dataset could 

make the data internally reliable, but not generalizable.

Visual neuroscientists assume that retinotopic organization is broadly consistent across the 

healthy human population. For example, there is no uncertainty about V1’s localization in 
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the calcarine sulcus or that receptive field sizes increase with eccentricity. Previous studies 

have quantified the reliability of retinotopic properties within their own datasets (Benson 

et al., 2018; Binda et al., 2013; Senden et al., 2014; van Dijk et al., 2016; Zeidman et 

al., 2018; Zuiderbaan et al., 2012). However, it is important to validate scientific findings 

relating to retinotopic organization by testing the extent to which they can be reproduced in 

independent datasets, especially in an age of open science and data-sharing, where visual 

neuroscientists are granted access to an increasing number of large, public datasets that 

differ in many ways. One robust assessment of the validity of such findings is via their 

reproduction in a retinotopy dataset that uses a different MRI scanner, fMRI protocol, 

stimulus aperture, and preprocessing pipeline. Such differences are typical in neuroimaging 

studies across labs. An explicit test of the reproducibility of retinotopic maps between large 

datasets that simultaneously differ in many aspects has not been conducted. To measure 

the reliability of retinotopic maps across independent datasets, we have acquired, and made 

publicly available, a large new set of retinotopic data — the New York University (NYU) 

Retinotopy Dataset — that differs from the HCP 7T Retinotopy Dataset in many ways.

This paper has three goals. The first is to describe and provide a public release of a high­

quality retinotopy dataset that can be used by other researchers to address open questions 

about the organization of retinotopic maps in the human brain. The second is to quantify 

the cross-dataset reproducibility of pRF estimates at the vertex scale, after cross-subject 

alignment of cortical surfaces. The third is to quantify the cross-dataset reproducibility of 

polar angle asymmetries in V1 surface area.

First, we present visualizations and a description of the new NYU Retinotopy Dataset at 

the individual and group level. Retinotopic maps are differentiated based on polar angle and 

eccentricity representations of the visual field (Dumoulin and Wandell, 2008; Wandell et 

al., 2007). Thus, we second consider the cross-dataset reproducibility of vertex-wise pRF 

estimates (polar angle, eccentricity, and pRF size) between the NYU and HCP data. We do 

so in four visual areas: V1, V2, V3, and hV4. To make vertex-wise comparisons between the 

two datasets, all individual cortical surfaces are aligned to a standardized, common template 

surface so that the datasets can be compared at the mm scale, and the native geometry of the 

individuals is discarded. We then compare pRF parameters at each vertex between the two 

datasets. Third, we examine large scale properties of the maps in terms of cortical surface 

area. Findings from a subset of data from the full HCP dataset (n = 163 of 181) show 

large-scale polar angle asymmetries in V1 cortical magnification: substantially more cortical 

surface area is dedicated to processing the horizontal than the vertical visual field meridian 

(the horizontal-vertical anisotropy; HVA), and more cortical surface area is dedicated to the 

lower than the upper vertical visual field meridian (the vertical meridian asymmetry; VMA) 

(Benson et al., 2021). These cortical magnification asymmetries are derived from both 

pRF estimates and surface area measurements. Here, we assess the HVA and VMA in V1 

cortical surface area in our new (NYU) dataset. The cortical magnification measures reflect 

the relation between retinotopic coordinates and cortical geometry (local surface area) and 

therefore, unlike the vertex-wise comparisons, require analysis on each participant’s native 

cortical surface.
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2. Methods

2.1. Participants

Forty-four participants (25 females, 19 males, mean age=28.8 years) were recruited from 

New York University (NYU). All participants had normal or corrected-to-normal vision 

and completed a 1 – 1.5-hour scanning session. All participants provided written informed 

consent and approved the public release of anonymized data. The experiment was conducted 

in accordance with the Declaration of Helsinki and was approved by the NYU ethics 

committee on activities involving human participants.

2.2. fMRI stimulus display

Participants viewed the pRF stimulus in the MRI scanner using a ProPixx DLP 

LED projector (VPixx Technologies Inc., Saint-Bruno-de-Montarville, QC, Canada). The 

stimulus image was projected onto an acrylic back-projection screen (60 cm x 36.2 cm) in 

the scanner bore. The projected image had a resolution of 1920 × 1080 and a refresh rate of 

60 Hz. The display was calibrated using a linearized lookup table and the display luminance 

was 500 cd/m2. Participants viewed the screen at a distance of 83.5 cm (from eyes to the 

screen) using an angled mirror that was mounted on the head coil.

2.3. PRF stimulus

The pRF stimulus was generated in MATLAB 2017a and was presented using the 

Psychophysics Toolbox v3 (Kleiner et al., 2007) and custom vistadisp software (https://

github.com/WinawerLab/vistadisp) on an iMac computer. Stimulus image patterns were 

shown within a bar aperture that swept across the screen throughout each scan. There were 

100 stimulus image patterns. The stimulus image patterns were identical to those used in 

the HCP 7T Retinotopy Dataset, except for rescaling to the size of our display. Each image 

pattern was composed of colorful objects, faces, and scenes at multiple scales (Kriegeskorte, 

2008) that were superimposed on an achromatic pink-noise (1/f) background (see Fig. 1A 

for example of the pRF stimulus). The stimulus image pattern was windowed within a 

circular aperture (12.4° radius) and was revealed through the bar aperture that swept across 

the screen in 24 equal steps, once per second, synchronized to the MR image acquisition 

(TR 1 second). The bar aperture was superimposed on a polar fixation grid placed upon a 

uniform gray background, with a red or green dot at the center (3 pixels, or 0.07°). The polar 

grid and small fixation point were used to encourage good fixation behavior, as previously 

described (Schira et al., 2009). The bar aperture was 3.1° in width, which was ⅛-th of 

the full stimulus extent (24.8° diameter). The bar aperture swept across the screen in 8 

directions (see Fig. 1B for sweep direction order and timings). Each sweep began at the edge 

of the circular aperture. Horizontal and vertical sweeps traversed the entire diameter of the 

aperture. Diagonal sweeps only traversed half of the aperture (the second half of the sweep 

was replaced with a blank gray screen, other than the fixation dot and grid). The blank 

periods help discriminate between nonvisual responses and responses from populations of 

neurons with exceptionally large receptive field sizes (Dumoulin and Wandell, 2008).

Each directional sweep lasted 24 s, with the full stimulus run lasting 192 s. The stimulus 

image updated 3 times per second without intermediate blanks, thus the three images 
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were shown for 0.333 s at each aperture position. Participants completed a fixation task 

to ensure that they were maintaining central fixation and remained alert throughout the 

scan. Participants were required to respond, via button press, when the central fixation 

dot changed from green to red, or vice versa. The full stimulus sequence was completed 

once per scan, and 4 to 12 scans were collected per participant, with the identical aperture 

sequence in each of the repeated scans.

2.4. Structural and functional data acquisition

Structural and functional data were acquired on a 3T Siemens MAG-NETOM Prisma MRI 

scanner (Siemens Medical Solutions, Erlangen, Germany) at the Center for Brain Imaging at 

NYU. Both the structural and functional images were acquired using a Siemens 64-channel 

head coil. Between 1 and 2 full brain T1-weighted (T1w) MPRAGE anatomical images were 

acquired for each participant (TR, 2400 ms; TE, 2.4 ms; voxel size, 0.8mm3 isotropic; flip 

angle, 8°), and were auto-aligned to a template to ensure a similar slice prescription for 

all participants. For a subset of participants (n = 11) for whom there was sufficient time 

in the scanning session, a full brain T2-weighted (T2w) anatomical image was obtained to 

aid in automatic segmentation (TR, 3200 ms; TE, 564 ms; voxel size, 0.9mm3 isotropic; 

flip angle, 120°). Between 4 and 12 functional echo-planar images (EPIs) were acquired 

for each participant using a T2*-weighted multiband EPI sequence (TR, 1000 ms; TE, 37 

ms; voxel size, 2mm3; flip angle, 68°; multiband acceleration factor, 6; phase-encoding, 

posterior-anterior) (Feinberg et al., 2010; Xu et al., 2013). Additionally, two distortion maps 

were acquired to correct susceptibility distortions in the functional images: one spin-echo 

image with anterior-posterior (AP) and one with posterior-anterior (PA) phase encoding.

2.5. Preprocessing of structural and functional data using fMRIPrep

Anatomical and functional preprocessing was performed using fMRIPrep v.20.0.1 (Esteban 

et al., 2019; Gorgolewski et al., 2011). Each T1w anatomical image was corrected 

for intensity inhomogeneity and was skull-stripped. Automatic brain segmentation of 

cerebrospinal fluid, white-matter, and gray-matter was performed on the skull-stripped T1w 

image using fast (Zhang et al., 2001). If acquired, the T2w image was included as an 

additional input for brain segmentation. Cortical surfaces were then reconstructed using 

Freesurfer’s recon-all (Dale et al., 1999) and an estimated brain mask was refined using a 

custom variation of the method.

For each participant’s functional images, the following preprocessing was performed. A 

reference volume and its skull-stripped version were created using the custom methodology 

from fMRIPrep. A B0-nonuniformity map was estimated based on the two spin-echo 

images with opposing phase-encoding directions (i.e., the AP and PA distortion maps). 

Using the estimated distortion, a corrected functional reference image was calculated to 

ensure accurate co-registration with the anatomical reference. The functional reference was 

co-registered to the T1w anatomical reference. Co-registration was configured with six 

degrees of freedom.

Head-motion parameters with respect to the functional reference (transformation matrices) 

were estimated first. The functional images were then slice-time corrected in which all slices 
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were realigned in time to the middle of each TR. The resampling of the slice-time corrected 

functional data to the T1w anatomical space was performed in a one-shot interpolation 

by composing all the pertinent transformations (i.e., head-motion transform matrices, 

susceptibility distortion correction, and coregistration to the T1w anatomical space). The 

single interpolation step reduces the effect of blurring the signal multiple times across 

multiple transformations.

Finally, these pre-processed time-series data were resampled onto the fsnative surface using 

Freesurfer’s mri_surf2vol by averaging across the cortical ribbon.

2.6. Population receptive field model

PRF analysis was conducted using vistasoft (https://vistalab.stanford.edu/software/, Vista 

Lab, Stanford University). Here, a pRF is modelled as a circular 2D-Gaussian, as described 

in Dumoulin and Wandell (2008). The Gaussian is parameterized by values at each vertex 

for x, y, and σ. The x and y parameters specify the center position of the 2D-Gaussian in the 

visual field. The σ parameter, the standard deviation of the 2D-Gaussian, specifies the size 

(or spread) of the receptive field. The 2D-Gaussian is multiplied pointwise by the stimulus 

contrast aperture, and then convolved with a hemodynamic response function (HRF) to 

predict the BOLD percent signal change (or ‘BOLD signal’). The HRF is parameterized by 

5 values, describing a difference of two gamma functions, as used previously (Dumoulin and 

Wandell, 2008; Friston et al., 1998; Harvey and Dumoulin, 2011; Worsley et al., 2002). The 

HRF was assumed to be the same across vertices within a participant but differed among 

participants.

The vistasoft pRF model was implemented using the prf-analyze-vista docker container 

(https://github.com/vistalab/prfmodel; Lerma-Usabiaga et al., 2020). The software finds the 

optimal pRF parameters for each vertex, and the optimal HRF parameters averaged across 

vertices, by minimizing the residual sum of squares between the predicted time-series and 

the BOLD signal. This is completed using a multi-stage coarse-to-fine approach. The basic 

two-stage coarse-to-fine component is described in detail by Dumoulin and Wandell (2008), 

and the addition of the HRF fit is described in detail by Harvey and Dumoulin (2011). In 

brief, in the first stage, the data were temporally decimated by a factor of two to remove 

high frequency noise and the pRF parameters (x, y, and σ) were fit using a brute force grid 

search. The results of this fit were taken as the starting point of a second-stage search fit for 

these parameters using the full time-series. The pRF parameters were then held fixed and 

the HRF parameters were fit by a search, choosing the parameters that minimize the squared 

error between data and prediction averaged across vertices. Finally, the HRF parameters 

were held fixed and the pRF parameters were refit to the data.

We implemented the pRF model on three formats of data. First, we solved the pRF model 

for each vertex on individual participant data to produce pRF maps on fsnative surfaces. 

Second, for each participant, we interpolated the pRF maps by nearest neighbor from the 

fsnative space to the fsaverage space. This interpolation puts the pRF model solutions 

for all participants in the same brain space, enabling us to derive the vertex-wise median 

parameters across all participants. Third, we interpolated each participant’s average time­

series from the fsnative to the fsaverage surface, and then solved pRF models for each vertex 
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on the time-series averaged across all participants to compute group-average pRF maps 

on the fsaverage surface. The second and third methods differ in the order of operations: 

the second computes median parameters from all individual participants’ time series, and 

the third computes a single set of parameters on the averaged time series. These three 

implementations are described in detail below.

2.6.1. Implementing the pRF model: individual participants and the 
parameter-median data—First, we solved the pRF model for individual participants on 

their fsnative surface. For each participant, the time-series data across multiple preprocessed 

scans with the same stimulus were averaged to create a participant-averaged time-series. The 

participant-averaged time-series was then transformed to BOLD percent signal change (i.e., 

percent change at each TR from the mean signal across all TRs). We fit the pRF model 

to this BOLD signal in fsnative space. An example of the pRF model fit to an individual 

participant’s BOLD signal from a V1 and a V2 vertex is shown in Fig. 2A and B.

Next, we computed parameter-median pRF maps. We computed the median (rather than the 

mean) as pRF estimates vary substantially across individuals (Harvey and Dumoulin, 2011; 

Song et al., 2015) and are not normally distributed (size and eccentricity are truncated at 

0, and polar angle may be truncated near the vertical meridians). These parameter-median 

maps were used to complete vertex-wise comparisons between the NYU and HCP data. 

We used the FreeSurfer function mri_surf2surf to interpolate the pRF parameters by nearest 

neighbor from each participant’s fsnative surface onto the fsaverage surface. To generate the 

parameter-median polar angle and eccentricity maps, we calculated the median x, y, and σ 
values for each fsaverage vertex across all participants and converted these values to polar 

angle, eccentricity, and pRF size parameters.

2.6.2. Implementing the pRF model: the group-average time-series data—We 

implemented the pRF model on group-averaged time-series data for map visualization and 

for visual comparison with the HCP data, which also include group-average time series and 

pRF model solutions (Benson et al., 2018).

We generated the group-average time-series as the vertex-wise average of each participants’ 

average time-series on the fsaverage surface. To do so, we averaged each participants’ 

time-series across runs (number of runs varied between 4 and 12) on the fsnative surface. 

The participant average time-series was then resampled onto the fsaverage surface using 

nearest neighbor interpolation. Each of the participant-average time-series (n = 44) were 

then averaged together to create a group-average time-series. The group-average time-series 

at each vertex was transformed into a group-average BOLD signal. The pRF model was then 

fit to the group-average BOLD signal to compute group-average pRF maps on the fsaverage 
surface. An example of the pRF model fit to the group-average BOLD signal from a V1 and 

a V2 vertex is shown in Fig. 2C and D.

2.7. HCP 7T retinotopy dataset

The HCP 7T Retinotopy Dataset, as described by Benson et al. (2018), contains pRF 

model solutions for 181 participants. The methods for acquisition and analysis of these 

data are described in detail in the prior paper. We summarize a few key features here, 
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particularly those that differ from the NYU data. The HCP data were collected at the Center 

for Magnetic Resonance Research at the University of Minnesota, using a Siemens 7T 

Magnetom scanner (1.6 mm isotropic voxel size) and a 32-channel head coil. The data were 

processed using specific HCP pipelines, including multimodal surface matching (‘MSMall’) 
for surface registration, as described by (Glasser et al., 2016). Notably, the publicly available 

HCP pRF estimates (https://osf.io/bw9ec/) were computed using the analyzePRF algorithm 

(Kay et al., 2013). Here, we recomputed the pRF estimates using vistasoft to remove any 

differences that might arise from differences in pRF software (see (Lage-Castellanos et al., 

2020; Lerma-Usabiaga et al., 2020). We make these vistasoft HCP pRF estimates publicly 

available via our OSF (Open Science Framework) repository (https://osf.io/e6vqk/). These 

and other differences are summarized in Table 1.

We implemented the vistasoft pRF model on two formats of HCP data. First, we 

implemented the pRF model on individual participants on the fsaverage surface. Using these 

data, we then computed HCP parameter-median pRF maps. Second, we implemented the 

pRF model on the group-average time-series on the fsaverage surface.

To implement the pRF model on individual HCP participants, we included six scans (2x bar 

runs, 2x wedge runs, and 2x expanding/contracting ring runs, at 5 mins each; see Benson 

et al. (2018) for examples of these stimuli). The time-series from these scans were then 

transformed to BOLD percent signal change and then concatenated together. The vistasoft 
pRF model was fit to this BOLD signal. We then computed HCP parmeter-median pRF 

maps to complete vertex-wise pRF comparisons with the NYU data; we calculated the 

median x, y, and σ values across all HCP participants and converted these values to polar 

angle, eccentricity, and pRF size parameters, for each fsaverage vertex.

To estimate the HCP group-average pRF maps, all 181 of the participants’ time-series on 

the fsaverage surface were averaged together at each vertex independently for each stimulus 

type (bar, wedge, and ring) to create group-average time-series. These were transformed to 

BOLD percent signal change at each vertex. We implemented the vistasoft pRF model on 

these HCP group-averaged BOLD signals to produce group-average pRF maps.

2.8. Defining visual area regions of interest

Regions of interest (ROIs) were defined using the Wang Maximum Probability Atlas 

(Wang et al., 2015). We identified V1, V2, V3, and hV4. The atlas defined ROIs were 

used for vertex-wise comparisons between the NYU and HCP Datasets. Additionally, we 

defined these ROIs by hand on the fsnative flatmaps for individual NYU participants using 

Neuropythy v0.11.9 (https://github.com/noahbenson/neuropythy; Benson and Winawer, 

2018), following the nomenclature of Wandell et al. (2007), and of Winawer and Witthoft 

(2015, 2017) for hV4. The ROI label files, and the code used to draw the ROIs, are 

made publicly available via the NYU Retinotopy Dataset OSF (https://osf.io/e6vqk/). The 

hand-labeled V1 ROI was used to compute cortical magnification within the retinotopic 

maps.
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2.9. Defining wedge-ROIs to measure polar-angle meridian asymmetries in cortical 
magnification

Recently, polar angle meridian asymmetries in V1 cortical magnification have been 

identified as retinotopic features in the HCP data (Benson et al., 2021). We tested whether 

these cortical magnification asymmetries are also found in the NYU Retinotopy Dataset. We 

defined a number of ROIs in V1 corresponding to wedges in the visual field. The wedges 

were defined using a combination of Neuropythy and custom MATLAB code.

The wedges varied in their polar angle center. They were centered on either the left or right 

horizontal meridian, the upper vertical meridian, or the lower vertical meridian. The polar 

angle extent of the wedge-width also varied. We tested a range of wedge widths: ±15°, 

±25°, ±35°, ±45°, and ±55°. The surface area of the vertices within these wedge-ROIs was 

summed to find the amount of cortical surface dedicated to processing visual space within 

these wedges.

PRF polar angle estimates contain measurement noise. Thus, a wedge in the visual field 

does not typically project to a single enclosed region on the cortex, but rather to a patchy 

and dispersed set of regions (see Fig. 8B in Benson and Winawer, 2018). This complicates 

the computation of surface area. It is likely that absent measurement noise, the ground truth 

retinotopic projection of a wedge in the visual field is a single, enclosed region on the 

cortical surface. Our goal in defining wedge-ROIs was to make reasonable estimates of the 

surface area of these cortical regions. To do so, we used a procedure similar to that described 

by (Benson et al., 2021). In brief, we define a cortical ROI corresponding to a wedge in 

visual space. We do so by generating several sub-ROIs, each of which is constrained to a 

narrow eccentricity band, and each of which has a width in the polar angle direction derived 

from the average location of a pool of vertices whose pRF coordinates lie near the wedge 

boundary in visual space. The eccentricity defined sub-ROIs are then concatenated to yield 

one full wedge. We describe the specific implementation in more detail below and provide a 

visualization of the process to define the isoangle boundary of a 15° wedge extending from 

the upper vertical meridian in Fig. 3.

2.9.1. Cortical distances—First, we computed the shortest distance on the cortical 

surface between each pair of vertices (using Dijkstra’s algorithm - the same algorithm 

that powers point-to-point navigation on google maps; Dijkstra, 1959); and the appropriate 

cardinal meridian. For each participant and each hemisphere, we manually defined three 

line-ROIs in V1, for the horizontal, upper, and lower vertical meridians. The cortical 

representation of the horizontal meridian runs through the approximate middle of V1, the 

upper vertical meridian representation follows the V1/2 ventral boundary, and the lower 

vertical meridian representation follows the V1/2 dorsal boundary. The line-ROIs were 

drawn on the flattened cortical surface using Neuropythy. The manual definitions were 

informed by anatomy (curvature map) and pRF maps (polar angle and eccentricity). These 

line-ROIs were used to generate three cortical distance maps for each hemisphere. These 

cortical distance maps specify the distance of each vertex from each meridian.
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2.9.2. Eccentricity boundaries for sub-ROIs—Next, we divided the V1 map into 

10 eccentricity bands, log spaced between 1° and 8° of eccentricity. These eccentricity 

bands were used as sub-ROIs. To ensure that each eccentricity band was a contiguous 

region, the bands were defined using the retinotopic maps generated by Bayesian inference 

(Benson and Winawer, 2018), which combines the participant’s vertex-wise pRF estimates 

with a previously defined retinotopic template to produce a denoised estimate of the visual 

field. The eccentricity bands were log-spaced in the visual field so that they would be 

approximately equally spaced in the cortex, as in Benson et al. (2021). The question we 

addressed here concerns asymmetries in surface area with respect to polar angle, thus, we 

did not rely on the Bayesian estimates of polar angle. The Bayesian optimization does not 

explicitly model cortical magnification and thus can induce noise in calculations of an ROI’s 

surface area. Instead, we used Neuropythy to implement an optimization that ‘cleaned’ polar 

angle pRF fits in V1 for each participant. This minimization seeks to adjust the pRF centers 

of the vertices as little as possible in order to simultaneously enforce a smooth cortical 

magnification map, as measured at the individual surface vertices, and correct the field-sign 

values across V1. Note that these Bayesian eccentricity estimates were used only for this 

ROI method, not for any comparisons of the pRF properties between datasets.

2.9.3. Polar angle boundaries for sub-ROIs—Next, within each eccentricity band, 

we used the cortical distance maps to compute the average distance of an isoangle line, 

representing the outer boundary of the wedge in the visual field, from the center of the 

wedge (and thus one of the visual field meridians). The isoangle line was identified by 

calculating the average distance of the vertices, that had an R2 above 15%, in the region of 

cortex ‘around’ the isoangle boundary at the defining polar angle value for the wedge-width 

(i.e., for a 15° wide wedge, this outer isoangle boundary occurs at 15° in visual space). 

The vertices ‘around’ the isoangle boundary were identified using the cleaned polar angle 

maps, and were defined as the vertices that fell ±8° polar angle from the isoangle boundary. 

We identified the average cortical distance of these vertices to calculate the average cortical 

distance for the isoangle line. This was repeated for each eccentricity band.

2.9.4. Closing the sub-ROI—For each eccentricity band, we identified the vertices 

with a cortical distance between 0 mm (i.e., those that fall along a meridian) and the average 

cortical distance of the isoangle line. This process is repeated to create a mask for each 

eccentricity band, for each side of the wedge, and each meridian.

2.9.5. Wedge-ROI—In the final step, we overlay the wedge mask on cortical surface 
area maps. These cortical surface area maps were generated for each participant using 

Neuropythy and specify the cortical surface area (in mm2) of each vertex on the fsnative 
surface. The cortical surface area is calculated by summing the surface area of the vertices 

within the wedge mask. The output value is the total surface area of the wedge. For each 

wedge, the surface areas from the left and right hemisphere are summed together to calculate 

the surface area for the full horizontal meridian, upper vertical meridian, and lower vertical 

meridian. The upper and lower vertical meridian surface areas are summed to find the 

surface area of the full vertical meridian.
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2.10. Data visualization

To visualize individual participant retinotopic maps, we mapped each participant’s pRF 

data onto their inflated fsnative surface. The fsnative surface was then transformed into 

a sphere, and orthographically projected to a flatmap with pRF data rotated so that the 

occipital pole aligned to the center of the map (see Fig. 4 for these transformations). To 

visualize group-average time-series and parameter-average retinotopic maps, this process 

was repeated however the pRF data was mapped onto the fsaverage surface, rather than an 

fsnative surface.

3. Results

We present our results across three sections. First, because the NYU Retinotopy Dataset 

is new and publicly available (access via: link to be made available with publication), 

we provide a description, including visualizations of pRF maps computed from individual 

participants and the group-average time-series. This communicates the quality and 

consistency of the data, similarities and differences among individual maps and group­

average maps, the effect of how the average is computed, and the agreement of our data to a 

previously published atlas. In addition, we provide publicly available Jupyter Notebook code 

to visualize individual retinotopic maps, via cortical flatmap or inflated mesh, for all of the 

NYU and HCP data. Second, we quantify the similarity of NYU and HCP vertex-wise pRF 

estimates (polar angle, eccentricity, and pRF size) in V1, V2, V3, and hV4. Third, we report 

whether the polar angle asymmetries in V1 cortical magnification previously reported in the 

HCP data (Benson et al., 2021) can be generalized to the NYU data.

3.1. NYU retinotopy dataset: individual participants

PRF model solutions were computed for each of the 44 individual participants on the 

fsnative surface. Examples of polar angle, eccentricity, and pRF size maps for three example 

participants (subj004, subj014, and subj042) are illustrated in Fig. 5. The data are plotted 

similar to Fig. 7 in Benson et al. (2018) for ease of comparison to the HCP retinotopy 

single-participant data. V1, V2, V3, and hV4 ROIs are drawn in black along the polar 

angle boundaries. The same pRF maps on inflated meshes are available in Supplementary 

Materials Figure S1. The retinotopic maps are visualized out to 20° eccentricity to show 

the full data available; it is possible to find pRFs centered outside the maximum stimulus 

extent (12.4°), as some portion of the neural receptive fields will overlap the pRF stimulus, 

thereby allowing one to estimate their pRF parameters. We do not include the pRFs beyond 

the stimulus extent in our analyses as they may be biased towards lower eccentricities as the 

same response might be explained by either a small pRF close to the stimulus edge or a large 

pRF far from it.

The individual participant maps show clear polar angle, eccentricity, and pRF size 

representations, and for each participant the maps follow the same broad retinotopic 

organization, though they differ in detail. For example, the location and size of dorsal 

V3 are quite different between subj004 and subj014. In addition, the representation of the 

lower visual field in hV4 differs, with subj004 but not the other two subjects showing 

representation all the way to the lower vertical meridian (red) (Fig. 5).
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3.2. NYU retinotopy dataset: group-average time-series data

We averaged across 44 participant-averaged time-series on the fsaverage surface to create 

a group-average time-series. The group-average time-series will blur out some features of 

the fMRI response, particularly in higher-level visual areas where the topography of the 

maps might not be closely linked to the sulcal patterning. In V1, V2, and V3, many features 

of the retinotopic maps are preserved after averaging, and the time-averaged data offer a 

succinct summary of the dataset with a high signal-to-noise ratio. The HCP Retinotopy 

Dataset also includes the group-averaged time-series data, and hence doing so makes for a 

useful comparison.

The group-average time-series was transformed to BOLD signal and pRF model solutions 

were calculated. In Fig. 6, we present retinotopic maps of the group-averaged data projected 

onto the inflated fsaverage surface for the left and right hemispheres. The visual field 

representations are located across the occipital cortex and extend along dorsal and ventral 

regions, as well as frontoparietal cortex (Mackey et al., 2017). These visualizations highlight 

large-scale structure across cortex, such as the continuous parafoveal representation 

(magenta) from the parietal lobe to the occipital lobe to the ventral surface. However, 

the inflated surfaces self-occlude, so we next show flattened views of the two hemispheres 

separately.

In Fig. 7 we present the group-average polar angle, eccentricity, and pRF size maps for the 

left and right hemispheres on an fsaverage flatmaps, with the occipital pole aligned at the 

center of the flatmap. The Wang Maximum Probability Atlas (Wang et al., 2015) is overlaid 

on the retinotopic maps. The ROI borders from the Wang Atlas are well-aligned to the polar 

angle reversals. However, the V1/V2 dorsal boundary appears to be slightly misaligned, 

falling slightly superior to the red polar angle data. This is common in both the left and right 

hemisphere. Thus, we suspect that the vertices falling within the Wang V1d ROI contain a 

small number of vertices from the V2d ROI.

The maps show the expected retinotopic organization, particularly in the early visual areas; 

there is a clear polar angle representation with reversals occurring at the ROI boundaries, 

eccentricity estimates increase with distance from the foveal representation, and pRF sizes 

increase with eccentricity while scaling to be larger in higher-order areas.

There is an artifact in polar angle estimates around the occipital pole, representing the most 

foveal region of the visual field. These regions show anomalous polar angle representations 

of the ipsilateral visual field. For example, in Fig. 7, there is a patch of purple and blue 

polar angle data around the fovea of the left hemisphere, and there is a patch of yellow and 

green polar angle data for the right hemisphere. A similar effect was found for individual 

participants (see Fig. 5); however, it was not found in the HCP group-average time-series 

data, perhaps due to the inclusion of rotating wedge stimuli in the HCP experiments. (See 

Supplementary Materials S2 for HCP group-average time-series pRF maps from vistasoft).
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3.3. Vertex-wise reproducibility of pRF parameters between the NYU and HCP retinotopy 
data: eccentricity, polar angle, and pRF size

We tested the similarity of polar angle, eccentricity, and pRF size estimates between the 

NYU and the HCP Retinotopy Datasets. To compare the two datasets, we identified the 

median pRF parameters at each vertex on the fsaverage surface separately for the two 

datasets. This puts both datasets on a standardized and common surface, making it possible 

to complete vertex-wise comparisons. For comparison, we group the vertices using V1, V2, 

V3, and hV4 ROIs from the Wang Atlas. The Wang Atlas contains ROIs that are originally 

defined on neither the HCP or the NYU data. This provides an automated, reproducible 

way to bin data in the same manner for the two datasets, even though the atlas-based 

ROIs only approximately match the visual field maps defined at the level of individual 

participants. Visualizations of the NYU and HCP parameter-median pRF maps, including 

variance explained maps, are presented Fig. 8.

We compared pRF estimates for vertices that passed inclusion criteria within each ROI (V1, 

V2, V3, and hV4). Data close to the fovea are challenging to measure, especially for the 

NYU data which show ipsilateral polar angle representations around the fovea. Conversely, 

potential edge effects occur at higher eccentricities in the HCP data, where pRF size begins 

to decrease with increasing eccentricity beyond 6°. Thus, we retained vertices that fell 

between 0.2° and 6° of eccentricity and survived a 40% variance explained threshold. A 

vertex was required to meet these criteria for both the NYU and HCP parameter-median 

data to be included in the analysis. The variance explained threshold removed 14.4% of 

the vertices within this eccentricity range in the V1 to hV4 maps. In Fig. 9, we present 

scatterplots comparing vertex-wise NYU and HCP pRF estimates for vertices within V1, 

V2, V3, and hV4.

The polar angle estimates fall close to the identity line and are highly correlated in V1 

(circular correlations (Fisher and Lee, 1983); rcirc = 0.98), V2 (rcirc = 0.97), V3 (rcirc = 0.96), 

and hV4 (rcirc = 0.95), indicating a close match between NYU and HCP polar angle data 

(Fig. 9A). Notably, there are gaps in the data along the polar angle reversals for each visual 

field map (0° and ±180° for V1 and hV4, and 0°, ±90, and ±180° for V2 and V3). This is 

likely due to averaging effects, both at the level of individual participants, because voxels 

pool signals from many neurons, and at the group level, because the borders between visual 

areas are not in perfect register across participants.

The eccentricity estimates are also highly correlated in V1 (linear correlations; r = 0.96), 

V2 (r = 0.93), V3 (r = 0.94), and hV4 (r = 0.90) (Fig. 9B). However, unlike polar angle 

estimates, there are systematic biases in eccentricity. The NYU eccentricity estimates are 

generally greater than those from the HCP data in all ROIs. The slopes of the data were 

similar in V1 (m = 0.75), V2 (m = 0.73), V3 (m = 0.70), and lower in hV4 (m = 0.38). 

Thus, in V1 to V3, for every 1° change in NYU eccentricity, the HCP eccentricity estimate 

changes by ~0.70°. The larger disagreement between the two datasets in hV4 is addressed in 

the Discussion. Comparisons of NYU and HCP cortical magnification plotted as a function 

of eccentricity (V1-V3) are available in Figure S3.
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The pRF size estimates are well correlated in V1 (linear correlations; r = 0.76), V2 (r = 

0.87), V3 (r = 0.86), and hV4 (r = 0.78) (Fig. 9C). Similar to the eccentricity estimates, 

there are systematic biases in pRF size: the NYU pRF size estimates are typically larger than 

those derived from the HCP data. The slopes of the data are similar in V1 (m = 0.78), V2 (m 
= 0.91), V3 (m = 0.79), and as with eccentricity, lower in hV4 (m = 0.37).

Typically, fMRI studies use far fewer participants than either of these two datasets. An 

important question is how reproducible the data would be for smaller datasets. To answer 

this, we repeated the correlation analyses for small subsamples (20 participants from each 

dataset, with replacement), repeated 500 times (Figure S4). The correlations remain high, 

even with a reduction in sample size.

3.4. PRF size vs eccentricity

The previous analysis showed differences between the two datasets in pRF size and 

eccentricity for the vertex-wise comparisons. Rather than comparing parameters matched by 

cortical location, we compared parameters matched by eccentricity. Here, we plot the NYU 

and HCP pRF sizes as a function of eccentricity for V1, V2, V3, and hV4, and fit a linear 

function through the data. The NYU data (solid lines) and HCP data (dotted lines) show an 

increase in pRF size as a function of eccentricity and the pRF sizes scale to be larger in 

sequentially higher order visual areas for each dataset (Fig. 10). When plotting the pRF sizes 

relative to eccentricity, the pRF sizes appear more similar between the two datasets than they 

do when comparing the datasets aligned by location (Fig. 9C). This is particularly so for 

V1 to V3. Nonetheless, even when plotted as a function of eccentricity, some differences 

between the two datasets remain. Specifically, the HCP data converge closer to the origin 

than the NYU data, and the HCP hV4 data are generally smaller than NYU hV4 data. See 

Supplementary Materials Figures S6 and S9 for analysis comparing parameter-median pRF 

estimates for the HCP all stimuli data against the HCP bar only data, and Supplementary 

Materials Figures S7 and S8 for analysis comparing parameter-median pRF estimates for the 

NYU data against HCP bar only data.

3.5. How accurately do the NYU pRF parameters predict the HCP bold signal?

One advantage of the pRF model is that it is generative. Once the pRF parameters for 

a vertex are estimated, one can predict the complete time-series to other stimuli and 

experiments. The stimulus sequence of the NYU experiment differed from the stimulus 

sequence used in the HCP experiment in many ways. The HCP experiments included 

wedges and rings, which the NYU experiments did not. There were numerous differences 

just for the bar stimuli alone used in both experiments, including the maximal stimulus 

extent, discrete steps vs continuous motion, the speed of the stimulus sweeps across the 

visual field, whether diagonal sweeps were included, etc. A good and reliable computational 

model should be able to predict fMRI responses to other stimuli in other circumstances. 

One test of the quality of the NYU Retinotopy data, and of the pRF model itself, is how 

well the NYU pRF models can explain the BOLD time-series from a separate dataset that 

uses different stimulus types and has been collected under different circumstances, such 

as the HCP Retinotopy data. Further, there is a non-linear relation between predicted pRF 

parameters and the BOLD signal. A small change in a pRF parameter can cause a large 
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change in the predicted time-series, and vice versa. Thus, one cannot directly infer how well 

the time-series (or predicted time-series) will match based on comparing the pRF parameters 

alone.

Thus, we tested how accurately the NYU pRF estimates, together with the HPC stimulus, 

can predict the HCP BOLD time-series. Specifically, we multiplied the NYU pRFs by the 

HCP stimulus aperture sequence at each time point (after convolving the stimulus with an 

HRF derived from the HCP data). For each vertex, given that the gain differs due to field 

strength and other factors, we then applied a multiplicative and additive term to best fit the 

HCP BOLD signal. From this we calculated the variance explained value, which provides 

a quantification of how well a predicted time-series derived from the NYU pRF parameters 

can explain the HCP BOLD signal. This measure has the merit of reducing a multiple 

parameter comparison (polar angle, eccentricity, and pRF size) to a single summary value 

per vertex.

In Fig. 11A we present variance explained maps on the left and right hemispheres across 

the full surface of the brain. These maps show how well the predicted time-series generated 

from NYU pRF parameters can be fit to the HCP BOLD signal, thus the pRF parameters 

are fit to different data than they are evaluated on (except for the different scale factors of 

the time-series). The variance explained of the fits is high (above 70%) within V1-hV4 and 

remains high in extended ventral and dorsal regions of visual cortex.

The median variance explained of NYU-derived predicted time-series fit to the HCP BOLD 

signal was: 80% for V1 vertices, 82% for V2 vertices, 84% for V3 vertices, and 72% 

for hV4 vertices (Fig. 11B–E). The NYU-derived predicted time-series can be used to 

explain the HCP BOLD signal, even though the parameters used to build the recreated 

NYU predicted time-series come from a different experiment that includes only bar stimuli 

(whereas the HCP BOLD signal is elicited from bars, wedges, and rings).

3.6. Polar-angle meridian asymmetries in V1 cortical magnification

Recent work has identified polar angle asymmetries in V1 cortical magnification using 

the HCP 7T Retinotopy Dataset. More cortical surface area is dedicated to processing the 

horizontal than vertical visual field meridian (a cortical HVA), and to the lower vertical 

than the upper vertical meridian (a cortical VMA) (Benson et al., 2021; Silva et al., 2018). 

The surface area as a function of polar angle aligns with performance on psychophysical 

tasks (Benson et al., 2021). Here, we tested whether these cortical surface area asymmetries 

generalize to the NYU Retinotopy Dataset.

For each participant, we calculated the cortical surface area of wedges that were centered 

on the horizontal, upper vertical, and lower vertical visual field meridians (see Fig. 12A for 

an example). The wedges increased in width, from ±15° to ±55°, and spanned 1° to 8° of 

eccentricity.

We were able to confirm the cortical HVA and VMA in our data. In Fig. 12B and 12C, 

we present the mean V1 surface area measurements for the wedges. In agreement with a 

recent study (Benson et al., 2021), there is more cortical surface dedicated to processing the 
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horizontal than the vertical meridian (Fig. 12B). Similarly, there is more cortical surface area 

dedicated to processing the lower vertical than the upper vertical meridian (Fig. 12C).

Next, we calculated HVA and VMA asymmetry indices for each participant and each wedge. 

The HVA asymmetry index was calculated as the difference in surface area between the 

vertical meridian and the horizontal meridian, divided by the mean of the two, multiplied by 

100. The VMA asymmetry index was calculated as the difference in surface area between 

the upper vertical meridian and the lower vertical meridian, divided by the mean of the two, 

multiplied by 100. Thus, a positive HVA or VMA asymmetry indicates an effect in line with 

the behavioral HVA or VMA and a larger index represents a stronger asymmetry.

The HVA asymmetry (Fig. 13A) was around 65% for a ±15° wedge and the asymmetry 

decreased with increasing wedge-width. Thus, near the meridians, there is almost twice as 

much surface area dedicated to processing the horizontal compared to the vertical visual 

field meridian. The VMA (Fig. 13B) was smaller, though still substantial, with around a 

30% asymmetry for a ±15° wedge, and again, the asymmetry decreased with increasing 

wedge-width. For both the HVA and VMA, as the wedge width increases and the asymmetry 

decreases, the confidence interval increases. Hence, the most robust asymmetries for wedge­

ROIs are close to the meridians. HVA and VMA asymmetries for incremental ±5° wedges 

are reported in Supplementary Materials Figure S5.

4. Discussion

Here, we have described a new, publicly available dataset; the NYU Retinotopy Dataset. 

We then tested the cross-dataset reproducibility between the NYU and HCP Retinotopy 

Datasets. Although these two datasets differ in many aspects, our goal was to examine 

how similar they are in terms of the retinotopic properties of human V1 through to hV4. 

First, we tested the reproducibility of vertex-wise pRF estimates in V1, V2, V3, and hV4. 

We found them to be strongly correlated between the two datasets, but with systematically 

larger eccentricities and pRF sizes in the NYU data. Second, we tested how well a predicted 

time-series derived from the NYU pRF parameters fits the HCP data and found that these 

NYU predictions explained above 70% of variance in the HCP BOLD signal. Third, we 

compared the two datasets in terms of polar angle meridian asymmetries in V1 cortical 

magnification. The NYU data showed the same pattern previously reported for the HCP data 

(Benson et al., 2021): more cortical surface area was dedicated to the horizontal than the 

vertical visual field meridian, and to the lower than the upper vertical visual field meridian.

4.1. Benefits of the NYU retinotopy dataset and data availability

The NYU Retinotopy Dataset described and visualized here consists of a large set of 

publicly available retinotopy data and can serve as a complement to the HCP 7T Retinotopy 

Dataset. All of the HCP data were acquired and processed in the same manner, thus any 

potential limits or biases in one participant’s data may apply to all of them. The same is true 

for the NYU data. For this reason, no matter how large one dataset is, it is important to have 

multiple, independent datasets to validate findings.
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The NYU Retinotopy Dataset is publicly available for download (https://osf.io.e6vqk/) and 

contains comprehensive data for all 44 participants. The dataset includes anatomical images, 

raw and preprocessed functional images on the fsnative and fsaverage surfaces, vistasoft 
pRF model outputs on fsnative and fsaverage surfaces, and hand drawn V1, V2, V3, and 

hV4 ROIs for individual participants. Further, the organization and structure of the dataset 

adheres to BIDS (Brain Imaging Data Structure (Gorgolewski et al., 2016). This means 

that the dataset is accessible, follows a clear and intuitive structure, and can be readily 

reanalyzed by others using scripts in which the inputs adhere to BIDS conventions. For 

example, it should be relatively simple to reanalyze the NYU Retinotopy Dataset with a 

different version of fMRIPrep or implement a different pRF model.

Next, we provide hand-drawn ROI labels for V1, V2, V3, and hV4 for each participant, 

facilitating further analyses of these areas by other researchers. We do not provide explicit 

ROIs for other regions, instead we provide Jupyter Notebook code and instructions for users 

to hand-define additional ROIs in this or other datasets using Neuropythy. The data were 

acquired for the whole brain, enabling investigation of maps in a variety of findings outside 

occipital cortex, such as the recent studies of retinotopy in hippocampus (Silson et al., 2021), 

thalamus (Arcaro et al., 2015), cerebellum (van Es et al., 2019), and parietal and frontal 

cortices (Mackey et al., 2017). Individual participant maps in the NYU Retinotopy Dataset 

extend well beyond hV4 into higher-order field maps. There are a number of competing 

hypotheses regarding the organization of higher-order visual areas that remain unresolved. 

The NYU Retinotopy dataset can be used as an additional dataset to help address competing 

hypotheses. For example these data may enable neuroscientists to resolve disagreements in 

regards to the retinotopic organization of maps in lateral occipital cortex (Amano et al., 

2009; Kolster et al., 2010; Larsson and Heeger, 2006), and anterior ventral maps (Arcaro et 

al., 2009; Hansen et al., 2007; McKeefry and Zeki, 1997; Sereno et al., 1995; Wade et al., 

2002; Winawer and Witthoft, 2015). Currently, two widely used atlases, Wang et al. (2015) 

and Glasser et al. (2016), have quite different parcellations of lateral and ventral occipital 

areas of visual cortex. Finally, the data could also be used to address questions of pRF 

shape, such as center surround organization (Zuiderbaan et al., 2012), ellipticity (Silson et 

al., 2018), or possibly validate recently identified areas in visual cortex (Elshout et al., 2018; 

Mikellidou et al., 2017).

As we have implemented the vistasoft pRF model on the HCP data, we also provide a new 

release of the vistasoft pRF model solutions for all 181 HCP participants on the fsaverage 
surface (https://osf.io/e6vqk/). This complements the published pRF solutions from the same 

data using different software.

4.2. Vertex-wise polar angle, eccentricity, and pRF size estimates are well-correlated 
between datasets

First, we tested the vertex-wise similarity of NYU and HCP polar angle, eccentricity, 

and pRF size estimates using the parameter-median data. Overall, the pRF estimates were 

strongly correlated between the two datasets.

Vertex-wise polar angle estimates were almost perfectly correlated between the two datasets. 

Both the NYU and HCP data produced similar polar angle estimates at each vertex, and 
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this was consistent across visual areas. Previously, a within-session split-half analysis of the 

HCP 7T Retinotopy Dataset identified polar angle estimates as the most internally reliable 

pRF parameter (Benson et al., 2018). Other work has shown that the polar angle estimates 

are consistent for the same participants across sessions and across aperture types (van Dijk et 

al., 2016). Here, we extend these analyses by showing that at the group level, the polar angle 

maps are highly similar between datasets.

Similarly, vertex-wise eccentricity estimates were strongly correlated, however, the two sets 

of estimates differed by a scale factor (~.75 in V1 to V3 and ~0.4 in hV4), with the NYU 

eccentricity estimates higher than those derived from the HCP data.

A scale factor difference in eccentricity between the datasets could arise for multiple 

reasons. First, it could be due to an anatomical shift of one dataset relative to the 

other. Specifically, one could account for the observed 3:4 ratio in eccentricity estimates 

by a translation along the posterior-anterior axis of about 4 mm, assuming the cortical 

magnification function of (Horton and Hoyt, 1991). Differences in the registration methods 

used during preprocessing might result in such a small, but systematic, shift in alignment: 

A cortical curvature-based alignment is used for the NYU data whereas a multimodal 

“MSMAll” alignment is used for the HCP data (Glasser et al., 2016). The MSMAll 
alignment includes a dedrifting relative to the MSMSulc algorithm, making a simple large­

scale translation unlikely. Nonetheless, the differences in methods are likely to produce 

some differences in alignment. A second possibility is calibration errors in the stimulus 

size. In each dataset, it was assumed that all participants viewed the stimulus from a fixed 

distance (83.5 cm for NYU experiment and 101.5 cm for HCP experiment). Inevitably, there 

are small variations in the viewing distance, and thus stimulus size, due to differences in the 

positioning of each participant in the scanner. This has previously been noted in the methods 

of the HCP retinotopy study (Benson et al., 2018). Errors in stimulus size estimation would 

result in a scale factor difference in the eccentricity but not polar angle data, as is observed 

in our data. Third, differences in eccentricity estimates might be linked to differences in the 

pRF stimuli. The stimuli differed in temporal frequency (3 vs 15 Hz stimulus image update), 

width (3.1° vs 2°), and maximal extent (12.4° vs 8° radius). Differences in estimated 

eccentricity possibly arise from non-linearities in the neural response that are not modeled in 

the 2-D Gaussian pRF model. Finally, any of these three factors might combine to give rise 

to the observed differences.

Like eccentricity, pRF sizes were well-correlated between the two datasets, with a 

systematic bias towards larger pRFs in the NYU data. This bias was found in V1, V2, 

V3, and hV4. The simplest explanation is that the pRF size difference is caused by the same 

factors that cause the eccentricity difference. Supporting this, when pRF size is compared 

to eccentricity within a dataset, the differences between datasets are greatly reduced. For 

example, in both datasets, at 4° eccentricity, the pRF sizes are about 1° in V1 and are 

about 2° in V3. Nonetheless, some differences remain. In particular, the NYU pRF sizes 

were larger than the HCP sizes at central eccentricities (below 3°) but the pRF sizes were 

relatively similar in both datasets at more peripheral eccentricities (beyond 3° eccentricity). 

In accordance with a previous report (Linhardt et al., 2021), differences in pRF size may 

arise from the rotating wedge and expanding ring stimuli that were used in the HCP 
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experiments, but not the NYU experiments. This is because the wedge and ring stimuli scale 

in size with eccentricity and may be useful for estimating small pRF sizes near the fovea.

In a supplemental analysis, we tested whether restricting the HCP data to bar scans alone 

would result in larger foveal pRF sizes. In V1 - hV4, HCP bar only pRF sizes were larger 

around foveal eccentricities when compared to HCP pRF sizes computed from the bar, 

wedge, and ring stimuli. We then tested whether using HCP bar only data could account 

for differences in pRF size between the NYU and HCP datasets. We found that V1 and V2 

foveal HCP pRF sizes computed from HCP bar only data were larger than the NYU pRF 

sizes. The HCP pRF sizes in V3 were similar (although marginally smaller) than those in 

the NYU data, and this marginal difference was consistent across eccentricity. The HCP pRF 

sizes remained smaller in hV4 when compared to the NYU data, and this was also consistent 

at all eccentricities. These supplementary analyses show that using a bar stimulus increases 
pRF sizes around the fovea relative to using wedges, rings, and bars, and this suggests 

that there must be additional contributors (beyond the inclusion of the rotating wedge and 

expanding/contract ring stimuli) to the differences between NYU and HCP pRF sizes.

4.3. Differences between the NYU and HCP datasets in hV4

The hV4 map properties differ more between the two datasets than the V1, V2, and V3 map 

properties. Several factors may contribute to this difference. First, because the two datasets 

were aligned to the template surface using different algorithms, there is likely to be some 

degree of systematic spatial warping between the two datasets. A spatial warping will cause 

a relatively larger misalignment between small visual areas than large visual areas. This 

could explain the shallow slope in the hV4 vertex-wise scatter plots of both eccentricity 

and pRF size. Second, we compared map properties between the two datasets using visual 

field map ROIs defined by an anatomical template, rather than ROIs identified in individual 

participants based on functional data. Anatomical atlases tend to be most accurate for early 

visual areas, especially V1 (Benson et al., 2012), but also V2 and V3 (Benson et al., 2014; 

Benson and Winawer, 2018). They tend to be less accurate for higher visual areas such as 

hV4 (Wang et al., 2015). As a result, the hV4 comparisons are likely to include more data 

from other neighboring areas than the V1, V2, and V3 comparisons. Third, the two datasets 

differ in voxel size. The NYU voxels at acquisition are about two times greater in volume 

than the HCP voxels. Greater volume could result in larger pRF sizes, as PRF size depends 

on both neural receptive field size and the scatter of neural receptive field centers across 

the visual field (Dumoulin and Wandell, 2008). At acquisition, larger voxels contain more 

neurons and hence more scatter. Neural receptive field scatter will likely have a large effect 

on estimated pRF size for voxels in small visual areas. If a visual area is small (such as hV4, 

which is about half the size of the V1 to V3 maps) then the neurons within a single voxel 

will sample a relatively large portion of the visual field, hence there will be more scatter 

per voxel. The effect of voxel size on pRF size, however, is potentially complicated by 

pre-processing procedures, especially the spatial resampling of the fMRI data to the surface. 

For example, the HCP pRF analyses were conducted on a spatially downsampled mesh, 

which could blur the time series and affect pRF size.
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4.4. Fitting predicted time-series based on the NYU pRF parameter estimates to the HCP 
bold percent signal change

We assessed cross-dataset reproducibility by comparing vertex-wise pRF parameters 

between the NYU and HCP datasets. A good model should also be able to predict the 

time-series data, in addition to the estimated parameters. If the estimated parameters were 

identical, then it would trivially follow that the predicted time-series would also match. 

However, the relation between pRF parameters and the time-series is non-linear. Thus, the 

similarity of the time-series between the datasets is not directly inferred from the similarity 

of the pRF parameters. We showed that indeed, the NYU pRF dataset could be used to 

predict the HCP BOLD signal of the vertices within the V1-hV4 maps, with high variance 

explained (more than 70%). This is a strong test of generalization, as there are many 

differences between the datasets, such as wedge and ring stimuli in the HPC data, and only 

bar stimuli in the NYU data.

Finally, the variance explained metric provides a condensed overview of the cross-dataset 

reproducibility. This metric takes three parameter comparisons (polar angle, eccentricity, and 

size) and reduces it to one (variance explained, R2). This single metric is easily visualized 

as an overview map, which shows high variance explained in visual cortex, especially 

V1-hV4, but also nearby lateral, temporal, and dorsal regions, suggesting that cross-dataset 

reproducibility extends outside the regions tested here.

4.5. Implications of the similarities and differences between the NYU and HCP datasets

The pattern of similarities and differences between the two datasets is important for 

quantitative interpretation of retinotopic data, especially with respect to comparisons among 

data from different sites. The polar angle data are highly consistent between the NYU and 

HCP experiments, with circular correlation coefficients above 95% in each of V1, V2, V3, 

and hV4. Polar angle is especially important for identification of visual area boundaries, thus 

different studies are likely to be able to achieve close agreement in delineation of visual 

field maps. Why do the polar angle estimates show such close agreement? First, polar angle 

estimates are immune to differences in scale of stimulus coordinates. Second, they are likely 

to be insensitive to differences in voxel size. Third, pRF model predictions, given typical 

stimulation sequences, are sharply tuned to polar angle, enabling precise estimates of this 

parameter (Lage-Castellanos et al., 2020; Lerma-Usabiaga et al., 2020).

The small but systematic differences in eccentricity and pRF size indicate that a measure 

of tolerance is required when generalizing from one dataset to another. For example, the 

anatomically defined retinotopic template from Benson and Winawer (2018) was generated 

using the HCP data. If the template is applied to a different dataset without constraints 

from functional measures, there might be a small-scale factor error in the eccentricity 

estimates in V1, V2, and V3, and a larger error in hV4 and other higher visual areas. The 

fact that the parameter estimates are so strongly correlated between the datasets indicates 

that random noise plays a minimal role in generating the differences in eccentricity and 

pRF size seen here. In turn, this suggests that it should be feasible to resolve the modest 

between-dataset differences, for example, with a corrective spatial warping or a calibration 

using a standardized stimulus and anatomical landmarks. However, we do not currently 
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know where ground truth lies relative to either dataset, thus it is not prudent to warp one 

dataset to match the other.

4.6. What is ground truth?

Discrepancies between the NYU and HCP data should not be taken as proof that either of 

the datasets is the more precise one. There are multiple possible reasons for discrepancies in 

pRF estimates when comparing between two datasets that differ in so many ways.

First, a pRF is a population measure. If the underlying neural populations differ, their 

receptive fields should differ as well. For example, a larger voxel is expected to have a larger 

pRF; this is not a measurement error, but rather an inherent property of population measures. 

Likewise, larger voxels are unlikely to have pRF centers at extreme values, such as those 

along vertical meridian, because any pooling will tend to push the measure toward the 

population average. This too is not a measurement error, but rather a property of population 

measures. Second, pRF models (like all models) are approximations of more complex 

underlying systems. The pRF models used here, and in the HCP paper (Benson et al., 2018), 

make predictions based on the stimulus apertures, and do not account for either the spatial 

or temporal properties of the stimulus carrier, nor the task the participant performs, both of 

which are known to influence the neural responses (Le et al., 2017; Wandell and Winawer, 

2015). Whereas retinotopic maps are not very flexible (Liu et al., 2006), pRF parameters do 

depend upon a variety of factors that are frequently not modeled (Fang et al., 2008). Even 

at the level of individual V1 neurons, when a linear receptive field is fit to neural data, the 

shape differs depending on the mapping stimuli (Victor et al., 2006). Thus, it is reasonable 

to expect experimental differences to result in differences in pRF parameters. By quantifying 

pRF similarity across two retinotopy datasets that were acquired using different methods, 

our work provides a reasonable estimate of how similar pRF parameters are likely to be 

when experiments differ across many dimensions.

Finally, we note that we do not have access to ground truth (i.e., the underlying true 

retinotopic arrangement in each participant’s visual cortex). Some systematic differences 

in pRF results are expected due to the nature of population measures and the simplifying 

assumptions of the models. Other differences may arise from preprocessing differences (e.g., 

registration methods). In principle, it may be possible to assess which preprocessing method 

better represents the ground truth data, however, this is only possible given access to ground 

truth data. This may be possible through simulation methods such as those used to validate 

pRF software (Lerma-Usabiaga et al., 2020), but such methods do not yet exist for assessing 

retinotopic maps themselves.

4.7. Polar angle meridian asymmetries in V1 cortical magnification are reproducible 
across datasets

Reports of performance fields show that visual performance on a range of tasks changes 

as a function of polar angle (Abrams et al., 2012; Baldwin et al., 2012; Barbot et al., 

2021; Cameron et al., 2002; Carrasco et al., 2001, 2002; Corbett and Carrasco, 2011; 

Fortenbaugh et al., 2015; Fuller et al., 2008; Greenwood et al., 2017; Himmelberg et al., 

2020; Kurzawski et al., 2021; Levine and McAnany, 2005; Lundh et al., 1983; Montaser­
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Kouhsari and Carrasco, 2009; Pointer and Hess, 1989; Regan and Beverley, 1983; Rijsdijk 

et al., 1980; Robson and Graham, 1981; Silva et al., 2008; Talgar and Carrasco, 2002; Virsu 

and Rovamo, 1979). Previous fMRI studies have reported similar polar angle asymmetries 

in V1 BOLD amplitude (Liu et al., 2006b; O’Connell et al., 2016), cortical magnification 

(Benson et al., 2021; Silva et al., 2018), and pRF sizes (Silva et al., 2018). In parallel to 

behavior, more cortical space is dedicated to processing the horizontal than vertical visual 

field meridian (i.e., a cortical HVA). Likewise, there is more cortical space dedicated to the 

lower vertical than upper vertical visual field meridian (i.e., a cortical VMA). We tested 

whether these polar angle asymmetries in V1 surface area are also found in the NYU data.

The HVA was identified in the NYU data; around a 65% HVA asymmetry index for a 

±15° wedge. Thus, there is almost twice as much cortical space along the horizontal than 

the vertical visual field meridian. The HVA became progressively weaker with increasing 

wedge-width. Thus, the cortical HVA is strongest along the meridians themselves. This 

measurement qualitatively and quantitatively corresponds to the cortical HVA identified by 

Benson et al. (2021) in the HCP data. Likewise, the VMA was identified in the NYU data; 

around a 30% VMA asymmetry index for a ±15° wedge. Thus, there is more surface area 

dedicated to the lower than upper visual field meridian. This is similar to the cortical VMA 

identified by Benson et al. (2021), however, one discrepancy is that in the NYU data, the 

VMA asymmetry decreased with wedge-width more gradually than in the HCP data.

Notably, our cortical HVA and VMA measurements are commensurate with recent 

psychophysical data, both of which show a larger HVA than VMA. For contrast sensitivity, 

the HVA is approximately 60% (similar to the ~65% cortical HVA reported here) whereas 

the VMA is weaker at approximately 20% (similar to the ~30% cortical HVA reported 

here) (Himmelberg et al., 2020). For acuity, the HVA is approximately 40% and the 

VMA is approximately 20% (Barbot et al., 2021). Our cortical magnification measurements 

match these perceptual measurements; in fact, the contrast sensitivity measurements from 

Himmelberg et al. (2020) come from a subsample of the participants included in the 

present study. Recent implementations of computational models have shown that polar angle 

asymmetries in photoreceptor and retinal ganglion cell sampling density only account for 

a small portion of performance field asymmetries, and that the sampling of the visual field 

as a function of polar angle is more asymmetric in cortex than in the retina (Kupers et al., 

2019, 2020). We are currently developing a computational model to assess the extent to 

which these cortical asymmetries can account for perceptual performance field asymmetries 

in contrast sensitivity.

Overall, the HVA is strong and clear, and these asymmetries in cortical geometry can be 

measured robustly in independent datasets. Qualitatively, the VMA was also reproduced 

between the two datasets, corroborating that this cortical asymmetry exists. However, there 

were small differences in the detailed characterization of the VMA between the two datasets. 

The asymmetry between the upper and lower meridian declined faster with angular distance 

from the vertical meridian in the HCP dataset than in the NYU dataset. Such differences 

may arise from subtle differences in our analysis compared to Benson et al. (2021). In this 

study, we examined the surface area within V1 only, whereas Benson et al. (2021) accounted 

for vertical meridian surface area in both V1 and V2. Additionally, the methods used to 
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define the wedge, and the sizes of the wedges themselves, differed between the two studies. 

Further, the NYU data used cleaned polar angle data (see 2.9.2 Eccentricity boundaries for 

sub-ROIs), whereas Benson et al. (2021) used raw polar angle data. Thus, it is not surprising 

that small differences in results arise from small differences in analysis. Nonetheless, despite 

some quantitative differences, the overall pattern of more surface area for the horizontal than 

the vertical visual field meridian representation, and for the lower than the upper vertical 

visual field meridian representation, holds across datasets and analysis methods.

4.8. Retinotopic maps are reproducible

Identifying and understanding retinotopic maps is a central aim of visual neuroscience. We 

endeavor to understand how the visual brain is organized into multiple visual areas, identify 

the functional roles of these areas, and understand how they unite to make sense of the 

influx of sensory information that ultimately gives rise to visual perception. This is no small 

feat, and if newly identified retinotopic areas and features are to be considered generalizable 

across the human population, they must be subject to tests of validity and reliability to 

ensure that findings are robust and generalizable across independent datasets.

Previous studies have assessed reproducibility of retinotopic maps via different tests of 

validity. PRF estimates are reported to have good intersession reliability. Specifically, they 

are consistent across time in the same observers who were measured twice in the same 

scanner (Lage-Castellanos et al., 2020; van Dijk et al., 2016). This is supported by split-half 

analysis in the HCP retinotopy data, in which each participant’s functional scans were 

split into first and second halves, and pRF parameters were estimated twice (Benson et al., 

2018). Likewise, pRF estimates have been shown to be similar across participants when 

measured with the same stimuli, in the same scanner, and analyzed from the same data; 

the HCP data analyzed as split half by participants showed that each subgroup of half 

the participants had similar average pRF maps (Benson et al., 2018). Furthermore, it has 

been shown that pRFs are reproducible when the same participants are tested with different 

stimulus apertures and carrier images, using the same scanner and same software (van 

Dijk et al., 2016). Finally, computational validity is the ability of software to reproduce 

the correct result for simulated ground truth test data (irrespective of whether it is the 

same answer), and this has been assessed using a recent validation framework tested 

against different pRF modelling software (Lerma-Usabiaga et al., 2020). These studies 

have addressed the reproducibility of retinotopic maps within their own datasets. Here, we 

have assessed retinotopic reproducibility in a different way from these prior studies. We 

assessed reliability of retinotopic maps at the group level, by comparing two independent 
datasets that differed in their stimulus apertures, participants, MRI hardware, fMRI protocol, 

and preprocessing pipeline. Many experimental differences are typical for retinotopy data 

collected from different labs or sites, and up to now it was unknown how similar pRF 

estimates were when many elements of experimental design were simultaneously altered. 

Here, we have shown that fundamental retinotopic properties in human V1 to hV4 can be 

reliably reproduced in independent datasets that simultaneously differ in many aspects.

There is much considerable interest in the reproducibility of scientific results in the 

biomedical sciences (Ioannidis, 2005), with attention drawn to results in psychology (Open 
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Science Collaboration, 2015) and neuroimaging (Poldrack et al., 2017). For example, the 

same data analyzed by different groups often led to different results and conclusions 

(Botvinik-Nezer et al., 2020). Similarly, reports show that reproducibility is poor for many 

task-based fMRI experiments (Elliott et al., 2020). However, this may reflect limitations 

in the kind of experiments tested, as some studies show higher reproducibility than others 

(Kragel et al., 2021), and differences in analysis, as surface-based cognitive neuroscience 

studies of cerebral cortex (such as the current study) perform well with regards to 

reproducibility (Assem et al., 2021).

Our data show that human retinotopic maps are reliable and reproducible between 

independent datasets that have been acquired using different fMRI protocols, measured 

using different stimuli, and have undergone different preprocessing. This is likely because 

the method underlying the measurement of retinotopic maps circumvents many of the issues 

involved in irreproducibility (see Poldrack et al. (2017) for review). PRF estimates are 

computed using an explicit computational model of the fMRI response and this model is 

defined in terms of input parameters (Dumoulin and Wandell, 2008; Wandell and Winawer, 

2015). These input parameters are grounded in solid theory of neural visual receptive fields; 

a pRF is formalized as a 2D-Gaussian and this is based on the established physiological 

structure of neural receptive fields in the visual cortex (Hubel and Wiesel, 1968). Thus, the 

fMRI response is modelled using a quantitative characterization of neural activity. Using this 

powerful computational modeling approach, retinotopic maps can be reliably measured, and 

integrated, across different neural measurements (Wandell, 1995; Wandell et al., 2015).

5. Conclusion

We have tested the cross-dataset reproducibility of retinotopic properties by comparing 

two independent datasets that differ in many aspects. We have reported that polar angle, 

eccentricity, and pRF size estimates are well-correlated between the NYU and HCP 

datasets, albeit with systematically greater eccentricity and pRF size estimates in the NYU 

data. These systematic differences in eccentricity and pRF size might be linked to small 

differences in anatomical alignment methods or viewing distance. Differences in pRF size 

may also arise from differences in voxel size and stimulus aperture. Next, we identified 

polar angle asymmetries in V1 cortical magnification similar to those found in the HCP data. 

There was more cortical surface area dedicated to the horizontal than vertical visual field 

meridian, and to the lower than upper vertical visual field meridian, and these asymmetries 

decreased gradually with increasing angular distance from the meridians. The pattern and 

strength of these asymmetries was similar to those reported from previous behavioral 

measurements, supporting a link between brain and behavior. Overall, we have shown that 

we can reliably describe retinotopic properties in human V1 to hV4 from two datasets that 

differ in many ways, and we highlight the importance of the cross-dataset validation of new 

retinotopic findings to ensure that they can be generalized across the human population. 

The NYU Retinotopy Dataset can serve as a benchmark for testing hypotheses about the 

organization of human visual cortex and for comparison to the HCP 7T Retinotopy Dataset.
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Fig. 1. 
Example of the pRF stimulus and experimental design. (A) The pRF stimulus at a single 

time point. The bar aperture reveals the stimulus image pattern composed of colorful 

objects, faces, and scenes at different scales, randomly placed across an achromatic pink 

noise background. The fixation point at the center of the fixation grid changes from green to 

red and red to green at random times. (B) Experimental design for a single scan across 

192s – the pRF bar is swept across the screen in the eight cardinal directions, with 

each directional sweep lasting 24 s. Gray triangles indicate blank periods. Black regions 

correspond to the visual field covered by the sweeping bar (excluding the stimulus aperture).
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Fig. 2. 
Examples of the pRF model fit to an individual participant’s (wlsubj126) and the group­

average BOLD percent signal change for two example fsaverage vertices in V1 and V2. 

(A-B) The BOLD signal and pRF model fit for a V1 and V2 vertex for an individual 

participant. (C-D) The BOLD signal and pRF model fit for a V1 and V2 vertex for the 

group-average time-series data. (E) Visual field representation with pRFs plotted for V1 and 

V2. The inset text lists the predicted x and y values, representing the pRF center coordinates 

(in degrees), and the σ value, representing the pRF size (in degrees), and the R2 which is the 

variance explained of the pRF model fit to the BOLD signal.
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Fig. 3. 
Defining wedge-ROIs and eccentricity band sub-ROIs. The wedge-ROI on the cortex (A) is 

defined as a wedge in the visual field (B). As there is measurement noise in the retinotopy 

data, the visual field wedge will not project to a single, enclosed region on the cortex. To 

circumvent this, we find all vertices in the V1 map which lie between 0 and m mm distance 

from the appropriate meridian. The vertices along the hand-drawn meridian are by definition 

at 0 mm from the meridian. To identify the distance mi of the +15° isoangle boundary line 

from the upper vertical meridian in the ith eccentricity bin, we calculate the average cortical 

distance of the vertices that fall ±8° around the 15° polar angle data. The ±8° boundaries 

are represented by the dashed black lines in (A) and (B). The average cortical distance 

of the +15° isoangle boundary from the UVM is calculated separately for each of 10 log 

spaced bins (pink lines in A and B). We then define the wedge-ROI mask on the cortex (the 

blue data in A) as all the vertices between 0 mm distance and mi mm for each eccentricity 

sub-region. The cortical surface area within the wedge-ROI mask is summed across the 10 

sub-regions. This is repeated for the right hemisphere (left visual field) to define the opposite 

portion of the UVM wedge.
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Fig. 4. 
Transform of a left hemisphere cortical surface from white matter mesh through to 

orthographic projection on a flatmap. The pRF data (in this example, subj004′s eccentricity 

map) are projected onto the fsnative surface. The surface is then inflated and smoothed, 

warped into a sphere, and then rendered as a flatmap with the occipital pole rotated to be at 

the center of the map.
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Fig. 5. 
Examples of polar angle, eccentricity, and pRF size maps for three individual participants 

(subj004, subj014, and subj042). The maps are presented on cortical flat maps on the 

fsnative surface of the left hemisphere. V1, V2, V3, and hV4 ROI boundaries are defined in 

black. R2 threshold = > 0.12.
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Fig. 6. 
Group-average time-series polar angle, eccentricity, and pRF size maps shown on the left 

and right hemisphere fsaverage inflated surface.

Himmelberg et al. Page 36

Neuroimage. Author manuscript; available in PMC 2021 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7. 
Group-average NYU retinotopic maps shown on the fsaverage flatmaps for the left and 

right hemisphere. The top row presents flatmaps of the left hemisphere (representing the 

right visual hemifield) and the bottom row presents flatmaps from the right hemisphere 

(representing the left visual hemifield). Black boundaries are ROI definitions derived from 

the Wang Maximum Probability Atlas (Wang et al., 2015).
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Fig. 8. 
Median-parameter retinotopic maps for the NYU and HCP data shown on fsaverage 
flatmaps for the left and right hemisphere. The top two rows present the median-parameter 

maps for the NYU data, and the bottom two rows present the median-parameter maps for 

the HCP data. Black boundaries are ROI definitions derived from the Wang Maximum 

Probability Atlas (Wang et al., 2015). Note that pRF sizes are larger in the group-average 

time-series maps in Fig. 7 than the parameter-average maps shown here; this is due to 

blurring of the fMRI signal during time-series averaging, resulting in larger pRF size 
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estimates. Likewise, eccentricity estimates appear greater in the Fig. 7 group-average 

time series maps; this is because of individual variation in the anterior V1 border across 

participants in the parameter-median data.
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Fig. 9. 
Scatterplots comparing vertex-wise pRF estimates from the NYU and HCP parameter­

median data (visualized in Fig. 8) within V1, V2, V3, and hV4. Each data point represents 

an fsaverage vertex that has survived a double mask. (A) Vertex-wise comparison of polar 

angle estimates. 0° to +180° polar angle represents the right visual hemifield (with 0° at 

the upper vertical meridian and −180° the lower vertical meridian), and 0° to −180° polar 

angle represents the left visual hemifield. (B) Vertex-wise comparison of NYU and HCP 

eccentricity estimates. (C) Vertex-wise comparison of NYU and HCP pRF size estimates. 

Note the different values of the X and Y axis for the hV4 plot in panel C. The black dashed 

line represents y = x. All reported r values are highly significant (p < .001) and m represents 

slope.
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Fig. 10. 
PRF sizes as a function of eccentricity for the NYU (solid lines) and HCP (dashed lines) 

parameter-median data for V1, V2, V3, and hV4. pRF sizes are binned into 1° eccentricity 

bins and a linear function is fit to the mean sizes. The NYU data are plotted to 0.5°–

9.5° eccentricity, whereas the HCP data are plotted out to 0.5°–6.5° eccentricity due to 

differences in maximum stimulus extent. Note that the lines do not converge to the origin. If 

they are extended, then the x-axis intercepts for the NYU fits are: V1: −3.5°, V2: −2.6°, V3: 

−4.2°, and hV4: −2.6°. The x-axis intercepts for the HCP fits are: V1: −1.1°, V2: −1.7°, V3: 

−1.5°, and hV4: −1.0°. Error bars are ±1 SEM (vertices per bin), R2 threshold => 0.40.
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Fig. 11. 
Variance explained maps of the NYU-derived predicted time-series fit to the HCP BOLD 

signal for the full left and right hemisphere, and histograms of the variance explained of 

the NYU-derived predicted time-series fits in V1, V2, V3, and hV4. (A) Fsaverage flatmaps 

illustrating the variance explained of the recreated NYU-derived model predictions fit to 

the HCP BOLD signal. (B-E) Histograms of the vertex-wise variance explained (%) of the 

NYU-derived model fits for V1 to hV4. The median variance explained of the fits are shown 
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as a dotted colored vertical line. Data are restricted to V1 to hV4 defined by the Wang atlas 

and between 0.2 - 6° eccentricity.
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Fig. 12. 
Examples of wedges in the visual field and their representation on the cortical surface of V1, 

and group-mean cortical surface area measurements plotted as a function of wedge width. 

(A) An inflated left hemisphere. The black borders show the boundaries of V1. The right 

visual field is mapped onto the left hemisphere of V1, and the wedges are centered on the 

upper vertical meridian, right horizontal meridian, and lower vertical meridian. We sum the 

cortical surface area of the vertices within each colored wedge to find the total surface area 

of each wedge. The horizontal meridian wedge is ±15° whereas the upper vertical meridian 

and lower vertical meridian are +15° and −15° because the full upper vertical meridian and 

lower vertical meridian wedge is formed by summing cortical space from the left and right 

hemisphere. (B) Cortical surface area measurements for wedges centered on the horizontal 

and vertical meridians, plotted as a function of wedge-width. (C) Cortical surface area 
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measurements for wedges centered on the upper and lower vertical meridians, plotted as a 

function of wedge-width. Colored lines represent the average of 1000 bootstrapped linear 

fits to the data (colored data points). The shaded error bar represents the 68% bootstrapped 

CI of the linear fit to the data.
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Fig. 13. 
Group-mean HVA and VMA indices plotted as a function of wedge width. Green and orange 

lines represent the average of 1000 bootstrapped linear fits to the mean values (colored data 

points) at each wedge width. The light shaded error bar represents the 95% bootstrapped CI 

and the dark shaded error bar represents the 68% bootstrapped CI.
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Table 1

Key differences between the NYU and HCP retinotopy datasets.

NYU HCP

Participants 44 181

MRI Strength 3 Tesla 7 Tesla

Voxel Size 2 mm isotropic 1.6 mm isotropic

Stimulus Aperture Bars Bars, wedges, and rings

Stimulus Extent 12.4° (radius) 8° (radius)

Stimulus Width 3.1° 2°

Stimulus Update 3 Hz 15 Hz

Stimulus Motion Discrete steps Continuous drift

Pre-processing fMRIPrep HCP Pipeline

pRF Model vistasoft analyzePRF for prior public release (reanalyzed with vistasoft here)
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