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Background: Inhibiting ROS overproduction is considered a very effective strategy for the treatment of peripheral nerve injuries, and 
Se has a remarkable antioxidant effect; however, since the difference between the effective concentration of Se and the toxic dose is 
not large, we synthesized a nanomaterial that can release Se slowly so that it can be used more effectively.
Methods: Se@SiO2 NPs were synthesized using a mixture of Cu2-x Se nanocrystals, and the mechanism of action of Se@SiO2 NPs 
was initially explored by performing sequencing, immunofluorescence staining and Western blotting of cellular experiments. The 
mechanism of action of Se@SiO2 NPs was further determined by performing behavioral assays after animal experiments and by 
sampling the material for histological staining, immunofluorescence staining, and ELISA. The effects, mechanisms and biocompat-
ibility of Se@SiO2 NPs for peripheral nerve regeneration were determined.
Results: Porous Se@SiO2 was successfully synthesized, had good particle properties, and could release Se slowly. CCK-8 experi-
ments revealed that the optimal experimental doses were 100 μM H2O2 and 200 μg/mL Se@SiO2, and RNA-seq revealed that porous 
Se@SiO2 was associated with cell proliferation, apoptosis, and the PI3K/AKT pathway. WB showed that porous Se@SiO2 could 
increase the expression of cell proliferation antigens (PCNA and S100) and antiapoptotic proteins (Bcl-2), decrease the expression of 
proapoptotic proteins (Bax), and increase the expression of antioxidative stress proteins (Nrf2, HO-1, and SOD2). EdU cell 
proliferation and ROS fluorescence assays showed that porous Se@SiO2 promoted cell proliferation and reduced ROS levels. The 
therapeutic effect of LY294002 (a PI3K/AKT pathway inhibitor) was decreased significantly and its effect was lost when it was added 
simultaneously with porous Se@SiO2. Animal experiments revealed that the regenerated nerve fiber density, myelin thickness, axon 
area, gastrocnemius muscle wet-to-weight ratio, myofiber area, sciatic nerve function index (SFI), CMAP, apoptotic cell ratio, and 
levels of antioxidative stress proteins and anti-inflammatory factors were increased following the administration of porous Se@SiO2. 
The levels of oxidative stress proteins and anti-inflammatory factors were significantly greater in the Se@SiO2 group than in the PNI 
group, and the effect of LY294002 was decreased significantly and was lost when it was added simultaneously with porous Se@SiO2.
Conclusion: Se@SiO2 NPs are promising, economical and effective Se-releasing nanomaterials that can effectively reduce ROS 
production, inhibit apoptosis and promote cell proliferation after nerve injury via the PI3K/AKT pathway, ultimately accelerating 
nerve regeneration. These findings could be used to design new, promising drugs for the treatment of peripheral nerve injury.
Keywords: Se@SiO2, PI3K/AKT, PNI, antioxidative stress, apoptosis

Introduction
The high prevalence of peripheral nerve damage can be attributed to the vulnerability of peripheral nerves to physical 
trauma, such as automobile accidents.1 Compared with that of the central nervous system, the capacity of peripheral 
nerves to be reproduced is limited.2,3 Natural disasters and armed conflicts can cause a substantial increase in peripheral 
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nerve injuries (PNIs) within a short period.4 According to statistics, thousands of people worldwide suffer from diseases 
related to peripheral nerve injuries every year,5 consuming a large amount of medical resources each year. Considering 
the limited regenerative capacity of nerve tissue, managing peripheral nerve damage poses challenges.6,7 For instance, the 
complex nature of peripheral nerves and the formation of fibrous scar tissue can impede the nerve repair process.8

After peripheral nerve injury, the distal end of the nerve undergoes Wallerian degeneration,9 ie, total destruction of 
myelin sheaths, after which the Schwann cells(SCs) reactivate the expression of pro-neural regeneration genes through 
a process of dedifferentiation.10 Dedifferentiated SCs can secrete neurotrophic and inflammatory factors to attract 
inflammatory cells, such as macrophages, to the site of injury to phagocytose myelin debris,11 which helps to promote 
the extension of axons to end organs and create a beneficial microenvironment for nerve regeneration. However, 
excessive macrophage aggregation often leads to excessive formation of local reactive oxygen species (ROS),12 and 
the overproduction of ROS disrupts the balance between oxidation and antioxidants, leading to impaired mitochondrial 
function and dynamics,13 apoptosis, and endoplasmic reticulum stress. Therefore, the inhibition of excessive ROS 
production is a key component in promoting nerve regeneration.

Nuclear factor erythroid 2-related factor 2 (Nrf2) is an important transcription factor.14 Nrf2 is recognized as 
a biomarker of neuronal stress and plays an important role in exogenously induced neuronal stress responses.15 Heme 
oxygenase 1 (HO-1) is an enzyme that catalyzes the rate-limiting step in the oxidative degradation of heme to ferrous 
ions, CO, and bilirubin,16 and also serves as a key Nrf2-dependent transcription factor mediating antioxidant or anti- 
inflammatory responses.17 The PI3K/AKT pathway is involved in the activation of the Nrf2/HO-1 signaling pathway, and 
is closely related to cell growth and development.18 Neural stem cells (NSCs) are a class of parent cells with 
differentiation potential and self-renewal ability that can give rise to neurons, oligodendrocytes, and other cell types 
through unequal division.19 During nerve injury, the PI3K/AKT signaling pathway is activated to positively induce the 
differentiation of NSCs to neurons and shorten the cellular interphase to enable them to rapidly enter the cytokinesis 
phase,20 and the expression of proliferation markers such as PCNA and S100 is also significantly increased,21 thus 
accelerating the proliferation and differentiation of unmyelinated and myelinated SCs. The expression of proliferation 
markers such as PCNA and S100 also increases significantly, thus accelerating the proliferation and differentiation of 
neuronal cells, promoting the encapsulation of axons by unmyelinated and myelinated SCs and increasing the synthesis 
of myelin proteins in myelinated SCs, which ultimately promotes the formation of myelin sheaths.22 Therefore, the 
search for a drug that promotes the activation of the PI3K/AKT signaling pathway seems extremely relevant.
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Selenium (Se), a vital micronutrient in the human body,23 plays an indispensable role in the functions of two major 
antioxidant kinases: glutathione peroxidase (GPx) and thioredoxin reductase.24 Its absence has been associated with 
cancer development, viral infections, and various cardiovascular conditions, such as Keshan disease.25 Studies suggest 
that consuming 200 mg of Se daily can significantly decrease the risk of cancer.26 Se plays a role in preventing ischemia‒ 
reperfusion injury by eliminating ROS and safeguarding liver cells from oxidation.27 Moreover, research has shown that 
Se can regulate iron-induced cell death through the activation of the Hippo pathway, providing enhanced protection for 
brain neurons.28 Se can also inhibit intestinal iron-induced death by activating the PI3K/AKT signaling pathway, thereby 
protecting the intestinal tract from inflammatory damage;29 another study has shown that selenium promotes endometrial 
repair by activating the PI3K/AKT signaling pathway in vitro, which promotes cell proliferation and migration.30 

Therefore, selenium, an effective antioxidant that activates the PI3K/AKT pathway, has promising applications in disease 
management.

Silica nanoparticles (NPs) have been extensively investigated due to their unparalleled advantages, such as 
excellent compatibility, an adaptable pore structure, cost-effective production feasibility, and manageable ther-
apeutic effects.31 In a recent study by Liu et al, porous Se@SiO2 nanocomposites were introduced as an innovative 
strategy for the controlled release of Se NPs.32 These NPs exhibited exceptional biocompatibility in healthy cells 
and served as efficient drug carriers. Porous Se@SiO2 nanocomposites not only minimize the risks associated with 
selenotoxicity but also demonstrate remarkable bioactivity both in laboratory settings and in living organisms.33 

Recent studies have revealed that porous Se@SiO2 NPs possess advantageous antioxidant properties and safety 
characteristics by promoting muscle regeneration through the regulation of mitochondrial oxidation processes.34 

However, documented evidence on how these particles influence the restoration of functionality within the 
perinucleolar compartment or relevant molecular mechanisms is currently unavailable.

This study investigated the potential neuroprotective effects of Se@SiO2NPs on axon regeneration and functional 
restoration following PNI, with the aim of exploring the underlying molecular mechanisms involved. These findings revealed 
that Se@SiO2 NP therapy effectively reduced SC apoptosis, decreased ROS levels, promoted myelin regeneration, and 
facilitated functional recovery after PNI. Moreover, based on our findings from both in vitro and in vivo experiments, these 
beneficial effects are likely mediated by activating the PI3K/AKT pathway and inhibiting oxidative stress. Our study 
indicated that Se@SiO2 NPs can be used to treat PNI effectively and are good candidates for clinical trials.

Materials and Methods
Reagents and Antibodies
H2O2 (10%) was purchased from Sigma, and ROS (S0033S), EdU cell proliferation kit (C0071S), and MDA (S0131S), 
GSH (S0053), SOD (S0101S), CAT (S0051), TNF-α (PT516), IL-4 (PI615), IL-6 (PI328), and IL-10 (PI525) assay kits 
were purchased from Beyotime. Antibodies against p-Akt (ab8805), Bax (ab32503), Bcl-2 (ab182858), GAPDH 
(ab9485), HO-1 (ab305290), SOD2 (ab68155), PCNA (ab92552), S100 (ab52642), Nrf2 (ab62352), and Akt 
(ab179463), and the PI3K/AKT inhibitor LY294002 (ab146593) were purchased from Abcam.

Preparation and Characterization of Porous Se@SiO2 NPs
Porous Se@SiO2 NPs were compounded using the methodology employed in the authors’ prior study.32 The 
nitrogen-synthesized Cu2–x Se nanocrystal mixture was meticulously blended with 20 mL of n-hexane, 20 mL of 
n-hexanol, 2 mL of Triton X-100, 0.6 mL of deionized water, and 0.08 mL of ethyl orthosilicate. Additionally, 
0.1 mL of ammonia was added. With the breakdown of orthosilicate, silica was enclosed in Se quantum dots, 
which were oxidized to create solid Se@SiO2 NP nanospheres. The polyvinylpyrrolidone solution was added to 
10 mg/mL of the substance, and the resulting porous structures were created by etching in hot water. Transmission 
electron microscopy (TEM) (HT7700, HITACHI, Tokyo, Japan) and a D/max2550 X-ray diffractometer (Cu K-α 
radiation; Rigaku, Tokyo, Japan) were utilized to analyze the porous Se@SiO2 NPs.
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Animals
We obtained 20 male Sprague‒Dawley (SD) rats weighing between 220 and 240 grams from the Laboratory Animal 
Center of Shanghai General Hospital in Shanghai, China. The Animal Experimental Ethics Committee of Shanghai 
General Hospital approved the use of animals in this study under approval number 2022AW022. Animals in laboratories 
received care and were used according to the National Institutes of Health (NIH) guidelines.

PNI Model and Drug Injection
The generation of the animal model involved a straightforward process. Anesthesia was administered to the animal, and 
a skin incision was created to expose the right sciatic nerves. Subsequently, those nerves were crushed using one vascular 
clip, which securely held the sciatic nerve 6 mm proximal to the sciatic incision from both ends, with a force of 30 g applied 
for 1.5 minutes. The incised skin was then sutured. Postoperatively, the animals were stochastically assigned to 4 groups  
(n = 5 rats per group): the sham surgery, PNI, Se@SiO2 NP, and Se@SiO2 NP + LY294002 groups. The sham group 
underwent the same surgical procedure but without PNI. Rats in the Se@SiO2 NP group received an intraperitoneal 
injection of a Se@SiO2 NP solution (9 mg/kg), and those in the Se@SiO2 NP + LY294002 group received an intravenous 
injection of LY294002 (a PI3K inhibitor, 0.3 mg/kg/day35) following the injection of the Se@SiO2 NP solution.22 In 
addition to the rats in the sham operation group, the rats in the PNI group were treated with the same volume of saline 
solution. After twenty-eight days, all the rats were subjected to a walking pattern analysis and electrophysiological 
assessments and subsequently euthanized.

Walking Pattern Analysis
The walking pattern of the rats was examined in a passageway measuring 100×10 x 15 cm, with the base wrapped in white paper. 
The back of each rat was marked with black ink. Bain et al utilized colored footprints to calculate the sciatic nerve function index 
(SFI) with the following formula: SFI = −38.3 × (EPL - NPL)/NPL + 109.5 × (ETS - NTS)/NTS + 13.3 × (EIT - NIT)/NIT - 8.8.23 

In this equation, E is the right hind limb, N is the left hind limb, PL is the distance between the heel and the front toe, and TS refers 
to the distance between the 1st toe and the 5th toe. In addition, the IT refers to the distance between the 2nd toe and the 4th toe. For 
the SFI, 0 indicates normal impairment, and −100 indicates complete impairment. After surgery, three observers performed 
testing until day 21.

Electrophysiological Assessments
Under anesthesia, the surgical site was reopened at twenty-eight days after surgery to reveal the sciatic nerve. In the 
gastrocnemius, complex muscle action potentials (CMAPs) and latency were measured after electrical stimulation (2 mV) 
was applied to the proximal sciatic nerve.

HE Staining, LFB Staining, TUNEL Staining and Myelin Analysis
Twenty-eight days after surgery, 5 mm of sciatic nerve tissue from each group was removed from the right side of the 
injury center, stored in a freezer at −80°C, placed in 4% paraformaldehyde for fixation, trimmed, dehydrated, and 
embedded in paraffin wax after 24 h. After deparaffinization, the sections were stained with a hematoxylin solution to 
stain the nuclei of the cells, stained with eosin for cytoplasmic staining, dehydrated and sealed. For LFB staining, the 
slices were incubated in an LFB staining solution and then placed in 70% ethanol and 0.05% lithium carbonate solution 
for differentiation, and then restained with eosin to seal the slices. For TUNEL staining, the slices were incubated in 
a TUNEL reaction mixture, rinsed with PBS, converter-POD was added to the slices, the sections were rinsed with 
PBS, DAB substrate was added, the sections were restained with hematoxylin, and the sections were then sealed after 
dehydration. The above stained slices were placed under a fluorescence microscope for observation. For the myelin 
analysis, the sciatic nerve was removed and placed in 2.5% glutaraldehyde buffer overnight. Then, the sample was 
fixed with a 1% osmium solution, rinsed with PBS, dehydrated with a gradient of ethanol concentrations, embedded, 
trimmed to a trapezoidal shape, and sectioned. The slices were 80 mm thick, and after staining with a lead citrate 
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solution and a saturated solution of 50% hydrogen peroxide acetate in ethanol, slices were observed under 
a transmission electron microscope. Image-Pro Plus software was used for myelin data analysis.

Evaluation of the Gastrocnemius Muscle
Twenty-eight days after surgery, we carefully weighed and photographed the gastrocnemius muscles of both the 
control and experimental rats. The weight recovery rate of the gastrocnemius muscle was determined with the 
formula Wr(%)=[Ws/Wn]×100. Paraffin sections (6 μm thick) were prepared from the gastrocnemius muscle, 
followed by Masson’s trichrome staining, with three different views obtained for each section. Using Image-Pro 
Plus software, the cross-sectional regions of muscle fibers (a) and collagen fibers (b) were calculated. The proportion 
of the collagen fiber region was determined using the formula c(%)=[b/(a+b)]×100, where (a) represents the cross- 
sectional area of muscle fibers, (b) denotes the cross-sectional area of collagen fibers, and (c) signifies the 
percentage.

Measurement of MDA, GSH, SOD, CAT, TNF-α, IL-4, IL-6, and IL-10 Levels
Twenty-eight days after surgery, 5 mm of the sciatic nerve centered on the right side of the injury was removed, and the 
nerve was stored at −80°C. Subsequently, malondialdehyde (MDA) levels were measured to assess lipid peroxidation, ie, 
0.2 mL of MDA assay solution was added to 0.1 mL of previously prepared standards and samples, heated at 100°C for 
15 min, cooled in a water bath to room temperature, and centrifuged at 1000 × g for 10 min at room temperature. 
Afterward, the absorbance was measured at 532 nm using an spectrophotometer. The glutathione (GSH) level in the cells 
was measured using a glutathione assay kit, ie, 100 μL of sample and standard were prepared, and then 150 μL of GSH 
assay solution was added and incubated for 5 min at room temperature. Subsequently, the absorbance was measured at 
412 nm using an spectrophotometer. SOD activity was determined by performing a xanthine oxidase assay, ie, 160 μL of 
WST-8 assay solution and 20 μL of starter working solution were added to 20 μL of previously prepared standards and 
samples, and the absorbance was measured at 450 nm. CAT activity was studied by performing a catalase (CAT) activity 
assay, ie, 4 μL and 20 μL of each of the samples were prepared with different concentrations of hydrogen peroxide 
solution, and 200 μL of the color development working solution was added simultaneously. The absorbance was 
measured at 520 nm after an incubation at 25°C for 15 min. Tumor necrosis factor α (TNF-α), interleukin 4 (IL-4), 
interleukin 6 (IL-6) and interleukin 10 (IL-10) levels were detected by adding the samples and different concentrations of 
standards to the wells at 100 μL/well, washing the plate 5 times, adding 100 μL of biotinylated antibody to each well and 
incubating the plate for 60 min at room temperature. After the plates were washed 5 times, 100 μL of horseradish 
peroxidase was added to each well, 100 μL of color developer TMB solution was added to each well, the plates were 
incubated at room temperature in the dark for 15–20 minutes, and finally, 50 μL/well termination solution was added. 
The absorbance at 450 nm was measured immediately after mixing.

Evaluation of in vivo Safety
The hearts, livers, spleens, lungs and kidneys of the rats from each group were collected at twenty-eight days after 
surgery, and HE staining was performed in the same manner as described above to observe the presence of edema, 
congestion and necrosis.

RSC96 Culture and Cell Viability Assay
The RSC96 SC system was provided by the ScienCell Research Laboratory. We seeded the cells in 96-well plates (104 

cells/well) and incubated them with various concentrations of H2O2 for twelve hours. Then, CCK-8 solution (Beyotime, 
China) was added to each well, and the plates were subsequently incubated at 37°C for another two hours. The optical 
density was measured 450 nm using an spectrophotometer from Thermo Fisher Scientific. After the cells were seeded 
into 96-well plates (104 cells/well), they were treated with different concentrations of Se@SiO2 (0, 50, 100, 200, 300, and 
400 μg/mL) for two hours. The appropriate concentration of H2O2 for treatment was determined to be 100 μM. In 
subsequent experiments, following the addition of 100 µM H2O2, 10 µL of CCK-8 solution was added to each well. In 
addition, the cells were incubated for two more hours at 37°C. The optical density was determined at 450 nm using an 
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spectrophotometer from Thermo Fisher Scientific. Every experiment was conducted no less than three times. Prior to the 
introduction of Se@SiO2 NPs, the cells were pretreated with LY294002 (20 μm), a PI3K inhibitor, for two hours to 
investigate the effect of PI3K/AKT activation on oxidative damage more comprehensively.

Intracellular ROS Production and Cell Proliferation Assays
A ROS assay kit (DCFH-DA, S0033, Beyotime, China) was used to measure intracellular ROS production, and 
a proliferation assay kit (C0071S, Beyotime, China) was used to analyze cellular proliferation. SCs were cultivated in 
a 12-well plate at a density of 5×104 cells/mL and incubated for 36 h. The cells were divided into four groups and 
incubated with the appropriate reagents. Subsequently, the cell fluorescence in three random regions in each group was 
photographed with a two-photon confocal fluorescence microscope (Zeiss, China). ImageJ software was used for the 
quantitative analysis.

Western Blotting
We measured protein concentrations with a BCA protein assay kit. Proteins were separated on 10% SDS‒PAGE gels and 
subsequently transferred to poly(vinylidene fluoride) (PVDF) membranes. After an incubation with 4% nonfat milk for 
1.5 hours, the membranes were incubated overnight at 4°C with primary antibodies. Then, the membranes were 
incubated with secondary antibodies for 1 h and rinsed 3 times with TBST. An Odyssey imaging system (Tanon) was 
used to detect fluorescence signals.

Statistical Analysis
The data are presented as the mean values and mean standard errors. One-way ANOVA was implemented using 
GraphPad Prism (software version 9.5, USA) to assess statistical significance. p<0.05 indicated statistical significance.

Results
Characterization of Se@SiO2 NPs
We employed XRD analysis to identify the Se@SiO2 NP constituents. The results revealed that the Se@SiO2 NPs retained 
a crystalline structure identical to that in the native Se phase. Furthermore, the 2θ angle of the Se@SiO2 NPs shifted by 
approximately 23° due to the silica coating (Figure 1C). The TEM findings confirmed the successful synthesis of Se@SiO2 NPs, 
which exhibited a consistent spherical morphology. The Se@SiO2 NPs had a diameter of approximately 55 nm, and 
numerous minute particles were spread around the surface or within the core (Figure 1A and B). Se@SiO2 NPs with pores 
were fabricated via heat treatment at 95°C, resulting in the development of a porous structure (Figure 1D). We successfully 
synthesized porous Se@SiO2 NPs according to previous experimental steps (Figure 1E).

Se@SiO2 NPs Activation of the PI3K/AKT Pathway Inhibits H2O2-Induced Apoptosis 
in vitro
Activation of the PI3K/AKT pathway is closely linked to nerve axon regeneration.36,37 We first conducted in vitro experi-
ments to investigate the possible mechanism of Se@SiO2 in nerve regeneration. CCK-8 assays were employed to assess the 
impacts of varying concentrations of H2O2 on SC activity. H2O2 effectively reduced cell viability up to a maximum of 100 
μM (Figure 2A). Consequently, 100 μM H2O2 was used in subsequent experiments to simulate oxidative stress-induced 
damage in vitro. SCs were treated with 100 μM H2O2 and different concentrations of Se@SiO2 for 24 h and subsequently 
evaluated using the CCK-8 assay. Our results showed that maximal cell viability was achieved at a concentration of 200 μg/ 
mL Se@SiO2 (Figure 2B). Therefore, this concentration was selected for further in vitro experiments. We then analyzed the 
mechanism of action of Se@SiO2 in nerve regeneration by performing RNA-seq. GO enrichment analysis (Figure 2C) of the 
H2O2+Se@SiO2 group revealed that pathways associated with oxidative stress were significantly upregulated, KO enrich-
ment analysis (Figure 2D) revealed that pathways associated with apoptosis were significantly enriched, and GSEA 
(Figure 2E) revealed that the PI3K/AKT pathway, which was upregulated according to the KEGG analysis, was significantly 
enriched in the H2O2+Se@SiO2 group. We used Western blotting to analyze the levels of phosphorylated Akt, Bax, and Bcl-2 
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(Figure 2F). Bax (a proapoptotic protein) expression was far lower in the Se@SiO2 group than in the H2O2 group 
(Figure 2G). The p-Akt/Akt ratio is shown in Figure 2I. Bcl-2 (an antiapoptotic protein) expression (Figure 2H) was 
significantly increased in the Se@SiO2 group. Notably, the expression levels of Bax were higher in the Se@SiO2 and 
LY294002 (cotreatment) groups than in the Se@SiO2 treatment group, and the p-Akt/Akt ratio and the expression level of 
Bcl-2 were lower in the Se@SiO2 and LY294002 groups than in the Se@SiO2 group. Collectively, these findings suggest that 
Se@SiO2 NPs may inhibit hydrogen peroxide-induced apoptosis through activation of the PI3K/AKT pathway.

Figure 1 Examination of Se@SiO2 NPs. Images of Se@SiO2 nanoparticles at various magnifications: (A) low and (B) high magnifications. (C) The X-ray diffraction (XRD) 
patterns of the Se@SiO2 NPs were compared to those of the standard Se hexagonal phase (JCPDS card number: 65–1876). (D) Medium-magnification images of porous 
Se@SiO2 nanocomposites. (E) Schematic of the method used to synthesize the Se@SiO2 NPs. TEM micrographs revealed that the Se@SiO2 NPs were composed of 
a porous silica shell and encapsulated selenium (Se).
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Figure 2 In vitro, Se@SiO2 suppressed H2O2-triggered cell death. (A) The impacts of varying H2O2 concentrations on cell viability were evaluated using the CCK-8 assay. (B) 
The CCK-8 assay was performed to assess the viability of cells treated with various Se@SiO2 NPs and 100 µM H2O2. (C) GO enrichment analysis of the top 10 pathways. (D) 
KEGG enrichment analysis of the top 10 pathways. (E) GSEA showing that enriched PI3K/AKT pathway was significantly upregulated in the Se@SiO2 group. (F) Western 
blotting was used to assess the p-Akt, Akt, Bax and Bcl-2 protein levels. A gel imaging system was used to quantitatively evaluate p-Akt/Akt (I), Bax (G) and Bcl-2 (H) expression. 
N = 3. *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001.
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Se@SiO2 NPs Alleviates Oxidative Damage and Promotes Cell Proliferation Through 
the PI3K/AKT Pathway in vitro
Nrf2, HO-1 and SOD2 (antioxidant proteins) levels were determined via Western blotting (Figure 3A), and H2O2 

treatment resulted in slight increases in the expression levels of these proteins. Additionally, Se@SiO2 treatment 
promoted a substantial increase in the expression levels of these antioxidant proteins. These effects were reversed by 
LY294002 treatment (Figure 3D–F). The variation in ROS levels across each group was used to analyze oxidative stress. 
Compared to the level in the H2O2 treatment group, the fluorescence intensity was lower in the Se@SiO2 group but much 
higher in the Se@SiO2 + LY294002 group (Figure 3G). The fluctuations in the intracellular ROS levels were directly 
proportional to the fluorescence intensity (Figure 3I). These findings suggest that Se@SiO2 NPs may reduce oxidative 
damage by activating the PI3K/AKT pathway.

Then, we examined whether Se@SiO2 enhanced cell proliferation via an EdU incorporation assay. Compared with 
H2O2, Se@SiO2 obviously increased the percentage of EdU-positive cells (Figure 3H–J). Nonetheless, the ratio of EdU- 
positive cells was notably lower in the Se@SiO2 + LY294002 group. S100 is an SC marker that regulates cell proliferation, 
and PCNA is also a proliferation marker. We employed Western blotting to assess the levels of both proteins. The S100 and 
PCNA expression levels were much higher in the Se@SiO2 group than in the H2O2 group, but the LY294002 treatment 
reversed this effect (Figure 3A). The quantitative analysis corroborated this trend (Figure 3B and C). These findings suggest 
that Se@SiO2 NPs enhances cellular proliferation in vitro via the PI3K/AKT pathway.

Se@SiO2 NPs Activates the PI3K/AKT Pathway in vivo to Promote Nerve 
Regeneration
According to the results of our preliminary in vitro experiments, Se@SiO2 strongly activated the PI3K/AKT pathway. 
Subsequently, animal experiments were performed in which LY294002 (a PI3K/AKT inhibitor) and Se@SiO2 were 
administered to the animal groups to examine whether the in vivo effect of Se@SiO2 was similarly associated with the 
activation of the PI3K/AKT pathway (Figure 4F). A cross-section of the regenerated nerve was taken twenty-eight days after 
surgery for HE and LFB staining (Figure 4A). As measured by the density of regenerated myelin nerve fibers, the densities in 
the sham operation, PNI, Se@SiO2, and Se@SiO2 + LY294002 groups were 18359.6, 11,272.2, 16,195.1, and 13623.1/mm2, 
respectively (Figure 4B). As illustrated by TEM (Figure 4A), histomorphologic parameters of reproductive nerves, such as the 
axon diameter, myelin thickness, and the myelinated axon region (Figure 4C–E), were analyzed. As depicted in Figure 4A–C, 
the average diameters of axons in the sham operation group, PNI group, Se@SiO2 group, and Se@SiO2 + LY294002 group 
were 6.80, 3.19, 6.21, and 4.25 μm, respectively; the trends for the myelin thickness and myelinated axon area were analogous. 
The density of axonal fibers was lower and disorganized in the PNI group, and the density of nerve fibers was greater and more 
ordered in the Se@SiO2-treated group, with a degree of regeneration comparable to that of normal nerves. However, nerve 
fiber regeneration was obviously impaired after cotreatment with LY294002 and Se@SiO2.

Se@SiO2 NPs Activates the PI3K/AKT Pathway in vivo to Promote Recovery of 
Motor Function
CMAPs were recorded from each surgical side to assess whether the injection of Se@SiO2 enhanced the recovery of motor 
conduction velocity, and the results are presented in Figure 5A. Moreover, the CMAP peak amplitude, CMAP conduction 
velocity, and latency were measured after biosignal acquisition and analyzed at twenty-eight days postsurgery (Figure 5B–D). 
CMAP signals were investigated in all the groups; nevertheless, the signal waveforms differed, suggesting varying degrees of 
nerve conduction recovery. As depicted in Figure 5B, the mean amplitudes of CMAPs in the sham operation group, PNI group, 
Se@SiO2 group, and Se@SiO2 + LY294002 group were 21.57, 6.67, 20.87, and 12.07 mV, respectively. These findings 
suggest that Se@SiO2 enhances motor conduction velocity recovery and that LY294002 partially attenuates this effect. 
A walking pattern analysis was conducted at twenty days postsurgery. Figure 5E and F shows the results of the walking pattern 
analysis. The average sciatic nerve function index in the Se@SiO2 group was higher than that in the PNI group and the 
Se@SiO2 + LY294002 group, approaching that of the sham operation group. These results indicate that Se@SiO2 NPs 
promotes motor function recovery and that LY294002 partially inhibits this effect.
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Figure 3 In vitro, Se@SiO2 stimulates the PI3K/AKT pathway to reduce oxidative damage and increase cell growth. (A) Western blotting was used to assess the expression 
of PCNA, S100, Nrf2, SOD2, and HO-1 in Schwann cells (SCs). A gel imaging method was used to evaluate the expression of PCNA (B), S100 (C), SOD2 (D), HO-1 (E), 
and Nrf2 (F). (G) Reactive oxygen species (ROS) in SCs were detected by performing immunofluorescence staining with dichlorodihydrofluorescein diacetate (DCFH-DA). 
(H) Images of EdU-labeled cells from each group. (I) Statistical analyses were conducted to assess the fluorescence intensity of ROS. (J) The cell proliferation ratio in each 
group. N = 3. *P < 0.05, **P < 0.01, and ***P < 0.001.
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Figure 4 Histology confirmed that the Se@SiO2 NPs stimulated axon regeneration. (A) We performed HE staining, Luxol fast blue (LFB) staining, and transmission electron 
microscopy (TEM) on cross-sections of regenerated nerves from both groups twenty-eight days after surgery. (B) Statistical analysis of the density of myelinated nerve fibers 
in the reproductive nerves of each group, including the (C) axon diameter, (D) myelin thickness, and (E) myelinated axon region of the regenerating nerves. (F) Schematic 
representation of animal experiments performed on the groups and tests of the effects on nerve regeneration. N = 3. *P < 0.05, **P < 0.01, and ***P < 0.001.
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Se@SiO2 NPs Activates the PI3K/AKT Pathway in vivo to Promote Gastrocnemius 
Muscle Recovery
Twenty-eight days after surgery, the gastrocnemius muscles were excised from both sides of each rat. In each group, the 
gastrocnemius muscles on the operated side were smaller than those on the unoperated side (Figure 6A). As illustrated in 
Figure 6C, the recovery rate of muscle weight was lower for the PNI and Se@SiO2 + LY294002 groups than for the 
Se@SiO2 group, and the muscle weight recovery rate for the Se@SiO2 group was nearly identical to that for the sham 

Figure 5 Se@SiO2 NPs help to restore motor function following peripheral nerve injury (PNI). (A) Representative CMAPs of the injured side of rats in each group. The 
peak amplitude of CMAPs (B), conduction velocity (C), and latency (D) were statistically analyzed. (E) Images of footprints from rats four weeks after sciatic nerve injury. 
(F) The sciatic functional index (SFI) was statistically analyzed twenty-eight days after surgery. N = 3. *P < 0.05, ***P < 0.001 and ****P < 0.0001.
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Figure 6 Se@SiO2 NPs aid in the restoration of the gastrocnemius muscle. (A) Images of normal and surgically treated gastrocnemius muscles. (B) Images of Masson’s 
trichrome-stained cross sections of the gastrocnemius muscle. (C) The gastrocnemius weight recovery ratio. (D) The muscle fiber cross-sectional area. (E) The mean 
proportion of the collagen fiber area. N = 3. *P < 0.05, **P < 0.01, and ***P < 0.001.
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operation group. In images of Masson’s trichrome-stained gastrocnemius muscles, the muscle fibers appeared red, and the 
collagen fibers appeared blue (Figure 6B). The cross-sectional area of the muscle fibers was notably smaller in the Se@SiO2 

group than in the PNI and Se@SiO2 + LY294002 groups, and the cross-sectional area of the muscle fibers in the sham 
operation group was similar to that of the muscle fibers in the Se@SiO2 group (Figure 6D). As depicted in Figure 6E, the 
percentage of the collagen fiber area in the Se@SiO2 group was greater than that in the PNI and Se@SiO2 + LY294002 
groups but only marginally less than that in the sham operation group. These findings suggested that Se@SiO2 NPs 
promotes gastrocnemius muscle recovery by activating the PI3K/AKT pathway in vivo.

Se@SiO2 NPs Activates the PI3K/AKT Pathway in vivo to Inhibit Oxidative Stress and 
Suppress Inflammation Induced by Sciatic Nerve Injury
The levels of MDA, SOD, GSH, and CAT in the sciatic nerve were assessed twenty-eight days after surgery. As shown in 
Figure 7A, the MDA content in the PNI group prominently exceeded that in the sham operation group, but it decreased 
obviously after the addition of Se@SiO2. However, an increase in the MDA content was observed after the simultaneous 
administration of Se@SiO2 and LY294002, suggesting that Se@SiO2 reduces lipid peroxidation by influencing the PI3K/ 
AKT pathway. As depicted in Figure 7B–D, SOD activity, CAT activity, and the GSH level were markedly higher in the 
PNI group than in the sham operation group. Nonetheless, the administration of Se@SiO2 notably increased SOD 
activity, CAT activity, and GSH levels. However, SOD activity, CAT activity, and the GSH level decreased after 
cotreatment with Se@SiO2 and LY294002, indicating that Se@SiO2 NPs can maintain the equilibrium of oxidative 
pressure by adjusting the PI3K/AKT pathway.

After the samples were collected, we measured the levels of anti-inflammatory factors (IL-10 and IL-4) and proin-
flammatory factors (IL-6 and TNF-α). We found that Se@SiO2 significantly increased the levels of anti-inflammatory 
factors (IL-10 and IL-4) (Figure 7G and H) and inhibited the expression of proinflammatory factors (IL-6 and TNF-α) 
(Figure 7E and F), while LY294002 reversed these effects. These results suggest that Se@SiO2 NPs can activate the PI3K/ 
AKT pathway in vivo, which has an excellent anti-inflammatory effect.

Se@SiO2 NPs Activates the PI3K/AKT Pathway in vivo to Inhibit Apoptosis Induced 
by Sciatic Nerve Injury
TUNEL staining of the sciatic nerve was assessed at twenty-eight days postsurgery (Figure 8A). As shown in Figure 8B, 
the proportion of apoptotic cells in the PNI group prominently exceeded that in the sham operation group, but the 
proportion of apoptotic cells was significantly reduced after the addition of Se@SiO2. However, the quantity of apoptotic 
cells increased again after concurrent administration of Se@SiO2 and LY294002, suggesting that Se@SiO2 NPs reduces 
apoptosis by affecting the PI3K/AKT pathway.

Assessment of Se@SiO2 NPs Biosafety
In vivo studies were conducted to determine whether Se@SiO2 causes visceral injury. No significant histological injury 
was detected in the hearts, livers, spleens, lungs, or kidneys of the Se@SiO2-treated mice (Figure 9).

Discussion
In vitro and in vivo tests indicated that porous Se@SiO2 NPs effectively promoted nerve regeneration, inhibited 
inflammation, significantly increased antioxidant enzyme activity, and decreased ROS levels. These effects could be 
ascribed to the function of oxidative stress in disrupting the balance between oxidants and antioxidants during 
neurological damage recovery.38 Blocking oxidative stress following peripheral nerve damage can expedite nerve 
regeneration and enhance functional recovery.39 Notably, selenium has the advantages of being economical and 
stable,40 and Se is an important component of several reactive oxygen-scavenging enzymes, such as GSH-PX and 
thioredoxin reductase (TrxRs). TrxR plays a vital role in inhibiting oxidized H2O2, thioredoxin, and organic 
hydroperoxides.41 Therefore, Se is crucial for safeguarding cells and tissues from oxidative damage. The Se content is 
directly correlated with the quantity and functionality of antioxidant proteins. By incorporating porous Se@SiO2 NPs 
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Figure 7 Se@SiO2 effectively suppresses oxidative stress caused by PNI and is safe for use in living organisms. Twenty-eight days after sciatic nerve injury, kits were used to 
assess (A) the MDA level, (B) SOD activity, (C) GSH level, (D) CAT activity, (E) TNF-α content, (F) IL-6 content, (G) IL-10 content, and (H) IL-4 content. N = 3. *P < 0.05, 
**P < 0.01, ***P < 0.001, and ****P < 0.0001.
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into the system, we significantly increased the availability of the raw materials needed for antioxidant protein synthesis 
and enhanced the ability of these proteins to maintain an optimal oxidant–antioxidant balance within the microenviron-
ment. Consequently, porous Se@SiO2 NPs provide a scientifically sound option for supplementing Se and antioxidants to 
treat PNIs.

As shown by Western blotting, the addition of Se@SiO2 NPs significantly upregulated Bcl-2 (an antiapoptotic 
protein) expression and downregulated Bax (a proapoptotic protein) expression, indicating a pronounced inhibitory 
impact of Se@SiO2 NPs on apoptosis. High expression levels of the antiapoptotic protein Bcl-2 have been shown to 
protect neurons from apoptosis and necrosis,42 while the proapoptotic protein Bax induces apoptosis by binding to the 
mitochondrial membrane, leading to an increase in the activation of proapoptotic cystathionine, which then induces cell 
death.43 Moreover, the induction of apoptosis by excessive ROS after PNI is strongly linked to Bax and Bcl-2 expression 
levels.44 Therefore, we hypothesize that Se attenuates SCs apoptosis by mitigating the intensity of oxidative stress and 
the inflammatory response related to SCs overactivation.

Myelin sheath formation is critical for axonal function.45 In vitro experiments revealed that the expression of both 
PCNA and S100 increased significantly after the addition of Se@SiO2 NPs. Both PCNA and S100 act as key marker 
proteins for the proliferation of SCs,46 which suggests that Se@SiO2 NPs can significantly promote cell proliferation and 
that proliferating SCs can secrete neurotrophic factors to promote neural recovery,47 indicating that Se@SiO2 NPs can 
promote axon growth and myelin regeneration by promoting SCs proliferation.

We analyzed the RNA-seq data using the KEGG database and found that Se@SiO2 NPs were closely associated with the 
upregulation of the PI3K/AKT pathway. In vitro, Western blotting analysis revealed a significant increase in the p-Akt/Akt ratio 
in the Se@SiO2 NPs group. Furthermore, the administration of Se@SiO2 NPs notably decreased ROS production and 
apoptosis. The beneficial effects were partially reversed by inhibiting AKT phosphorylation with LY294002. The simultaneous 
administration of Se@SiO2 NPs+LY294002, compared with Se@SiO2 NPs alone, in PNI rats led to a significant decrease in 

Figure 8 Se@SiO2 effectively inhibits PNI-induced apoptosis. (A) Detection of apoptosis using TUNEL staining at Twenty-eight days after sciatic nerve injury. (B) Statistical 
analyses were conducted to assess the number of TUNEL-positive cells. N = 3. *P < 0.05, **P < 0.01, and ***P < 0.001.
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the myelin number, axon length, gastrocnemius muscle wet-to-weight ratio, and action potential conduction velocity. These 
findings suggest that the antioxidant and antiapoptotic effects of Se@SiO2 NPs on nerve regeneration are partially mediated by 
the inhibition of the PI3K/AKT pathway. This effect is because activated AKT continues to regulate a variety of downstream 
target molecules, such as inhibiting proapoptotic proteins like Bax, increasing the expression of the antiapoptotic Bcl-2 
protein,48 and blocking transcription factors (eg, FOXO) from residing in the nucleus or binding to target genes.49 This process 
ultimately prevents apoptosis and the transcription of genes that arrest the cell cycle. In addition, PI3K/AKT signaling has been 
shown to play a role in the inhibition of oxidative stress, promoting the upregulation of the expression of the Nrf2-HO-1 
signaling pathway.50 Additionally, the PI3K/AKT signaling pathway is involved in neuron differentiation, branching, and 
synapse formation.51 Therefore, our study provides novel evidence supporting the promotion of nerve regeneration by 
Se@SiO2 NPs through an antioxidant and antiapoptotic mechanism involving the activation of the PI3K/AKT pathway.

Intraperitoneal injection of Se@SiO2 NPs can prevent local inflammation caused by implanted materials,52 and Se@SiO2 

NPs can be absorbed and spread to other organs and damaged nerve tissues through the greater omentum into the blood 
circulation, which can improve the whole body and promote accelerated regeneration of peripheral nerves. HE staining of the 
heart, liver, spleen, lung and kidney of rats treated with Se@SiO2 NPs revealed no obvious edema, congestion or tissue necrosis, 
indicating that Se@SiO2 NPs can release Se in a controlled and slow manner and have no obvious toxic side effects but have 
obvious therapeutic effects. These findings further show that Se@SiO2 NPs have good prospects for clinical application in 
peripheral nerve injury treatment.

Conclusions
The results of our research showed for the first time that the use of Se@SiO2 NPs efficiently promoted SC proliferation, 
nerve regeneration, and functional recovery following PNI. The neuroprotective effects of Se@SiO2 NP treatment might 

Figure 9 Se@SiO2 NPs are safe for use in living organisms. Twenty-eight days after the in vivo model was established, the heart, liver, spleen, lung, and kidney tissues of the 
rats were subjected to histological analysis.
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be attributed to the inhibition of excessive oxidative stress-triggered apoptosis by activating the PI3K/AKT pathway. 
Se@SiO2 NPs also have good biocompatibility, and our study could provide a very promising strategy for the clinical 
treatment of acute traumatic PNI using Se@SiO2 NPs.
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