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Abstract

Background: Modern biological approaches generate volumes of multi-dimensional data, offering unprecedented
opportunities to address biological questions previously beyond reach owing to small or subtle effects. A fundamental
question in plant biology is the extent to which below-ground activity in the root system influences above-ground
phenotypes expressed in the shoot system. Grafting, an ancient horticultural practice that fuses the root system of one
individual (the rootstock) with the shoot system of a second, genetically distinct individual (the scion), is a powerful
experimental system to understand below-ground effects on above-ground phenotypes. Previous studies on grafted
grapevines have detected rootstock influence on scion phenotypes including physiology and berry chemistry. However, the
extent of the rootstock’s influence on leaves, the photosynthetic engines of the vine, and how those effects change over the
course of a growing season, are still largely unknown. Results: Here, we investigate associations between rootstock
genotype and shoot system phenotypes using 5 multi-dimensional leaf phenotyping modalities measured in a common
grafted scion: ionomics, metabolomics, transcriptomics, morphometrics, and physiology. Rootstock influence is ubiquitous
but subtle across modalities, with the strongest signature of rootstock observed in the leaf ionome. Moreover, we find that
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2 Leaf phenotypes reflect root system genotype

the extent of rootstock influence on scion phenotypes and patterns of phenomic covariation are highly dynamic across the
season. Conclusions: These findings substantially expand previously identified patterns to demonstrate that rootstock
influence on scion phenotypes is complex and dynamic and underscore that broad understanding necessitates volumes of
multi-dimensional data previously unmet.

Background

High-throughput data acquisition has afforded unprecedented
capacity to quantify and understand plant form and function.
Recent advances in imaging and computation have expanded
our ability to measure plant traits or phenotypes [1,2] and to
extend those comprehensive measurements into latent space
phenotypes [3]. Now broadly known as phenomics, this bur-
geoning field is characterized as the acquisition and analysis
of high-dimensional phenotypic data at different hierarchical
levels [4,5], often with an eye toward multiscale data integra-
tion. A holistic and hierarchical approach to plant phenotypic
variation affords unique insights into plant evolution and how
plants change over development and in response to environ-
mental cues and horticultural manipulation.

A fundamental question in plant biology is how root systems
influence phenomic variation in above-ground shoot systems
including leaves, flowers, and fruits. Grafting, a common hor-
ticultural manipulation that joins the shoot system of one in-
dividual (the scion) with the root system of another individual
(the rootstock), is commonly used in crop species to confer favor-
able phenotypes to commercial scions [6], including enhanced
disease resistance [7,8], fruit quality, plant form [9], response to
water stress [10], and growth on particular soils [11,12]. Because
grafting often uses clonally propagated materials, it is possible
to manipulate and replicate different combinations of root sys-
tems and shoot systems, offering a valuable experimental sys-
tem in which root system effects on shoot system phenotypes
can be evaluated.

The European grapevine (Vitis vinifera) is among the most
economically important grafted crops in the world. Grapevines
are cultivated primarily for fruits used to make wine and juice,
as well as for table grape and raisin production. Grafting in
grapevines became widespread in the mid-1800s following the
accidental introduction of the root-feeding aphid phylloxera
from its native North America into Europe, where it began at-
tacking the roots of European grapevines [13]. Because European
grapevines often do not survive phylloxera infestation, in re-
gions where phylloxera has been introduced most grapevine cul-
tivation consists of European grapevines grafted to rootstocks
derived from phylloxera-resistant North American Vitis species
including Vitis berlandieri, Vitis riparia, and Vitis rupestris, and
their hybrid derivatives. In addition to grapevines, >70 major
perennial crops are grafted including many fruit trees and vines
[9]. Grafting decouples the breeding of shoot systems and root
systems, with selection in plants targeted for use as scions fo-
cusing primarily on fruit phenotypes, and selection in plants tar-
geted for use as rootstocks focused on below-ground biotic and
abiotic stress resistance, as well as their effects on shoot system
phenotypes.

The effects of grafting in grapevine show a remarkable
breadth of scion response patterns. For example, a study of V.
vinifera cv. “Cabernet Sauvignon” grafted to different rootstocks
identified transcriptome reprogramming in the scion of grafted
plants; this seemed to be a general effect of grafting to a root-
stock and was not rootstock specific [14]. In contrast, other stud-
ies have found signatures of rootstock genotype in the tran-

scriptome in early berry development, although this distinction
was lost in later development [15,16], but see [17]. Comprehen-
sive phenomic analyses, including those that link transcriptome
data with other high-throughput phenotyping assays, offer an
opportunity to expand understanding of rootstock effects on
grapevine shoots. In one study, leaves of the V. vinifera cultivar
“Gaglioppo” showed variation in stilbene and abscisic acid con-
centrations owing to rootstock genotype, as well as differences
in transcriptional profiles [18]. Likewise, gene expression, ion
concentrations, and leaf shape in the cultivar “Chambourcin”
varied in response to rootstock genotype [19]. Collectively, these
studies suggest that the effects of grafting are diverse and may
vary over the course of vine development. However, to date few
studies have surveyed multiple high-dimensional scion pheno-
types to understand rootstock influence on shoot system phe-
notypes over the course of the growing season or the extent to
which grafting effects on the scion covary with one another.

Leaves are the photosynthetic engine of the organism and
a primary site for perception and response to environmental
change. Grapevine leaves have been used for centuries as mark-
ers of species and cultivar delimitation, developmental vari-
ation, disease presence, and nutrient deficiency [20,21]. More
recently, analysis of grapevine leaf morphology has identified
the genetic architecture of leaf shapes [22], developmental pat-
terns across the season [23], and signatures of evolution in the
grapevine genus [24]. Grapevine leaves respond to stress through
gas and water exchange with the atmosphere [25,26] and have
been shown to differentially partition the ionome depending on
their position on the shoot [19] and their rootstock genotype
[19,27,28]. The volume of work on grapevine leaves provides a
foundation for the analysis of phenomic variation in a vineyard
over a season in response to grafting.

In this study, we investigate effects of grafting on high-
dimensional leaf phenotypes of the hybrid cultivar “Cham-
bourcin” over the course of the growing season. We quantify
leaf elemental (ion) concentrations, metabolite abundance, gene
expression, shape, and vine physiology in a replicated root-
stock trial where the hybrid grapevine cultivar Chambourcin
is growing ungrafted and grafted to 3 different rootstocks.
The 4 root-shoot combinations (Chambourcin ungrafted, Cham-
bourcin grafted to 3 different rootstocks) are replicated 72 times
in a randomized block experimental design with an irriga-
tion treatment (Supplementary Fig. S1). Phenotypic data, data
that describe variation for a particular trait within a particu-
lar modality, were collected either on the full 288-vine set (ion
concentrations, leaf shape) or on a subset of 72 vines (the 72-
vine set; metabolite abundance, gene expression, vine physiol-
ogy). Using data collected at 3 time points that span the grow-
ing season (anthesis, veraison, and harvest), we show that all
phenotyping modalities (ionomic, metabolomic, transcriptomic,
morphometric, and physiology phenotypes) reflect subtle but
ubiquitous responses to grafting and rootstock genotype. Root-
stock effects on shoot system phenotypes were often dynamic
across the season, suggesting that accounting for seasonal vari-
ation could enhance our understanding of grafting effects in
viticulture.
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Data Description
Leaf ionomics

The ionome describes the elemental composition of a tissue
at a particular time point [29]. Three leaves per vine were col-
lected from the 288-vine set at 3 seasonal time points: anthe-
sis (roughly mid-May), veraison (roughly late July), and harvest
(roughly mid-September). Leaves were sampled from a single
shoot and included the youngest fully opened leaf at the shoot
tip, the approximate middle leaf, and the oldest leaf at the shoot
base. Teams were deployed in the vineyard so that multiple vine-
yard rows were being sampled concurrently. As such, “block”
represented unmeasured spatial variation but did not strictly
correlate with time of sampling owing to the nature of sam-
pling (see Methods). Whole leaves were placed in zip-lock bags
in the field and stored in a cooler on ice packs, scanned for leaf
shape analysis in the laboratory (see Leaf Shape), and then dried
in coin envelopes at 50◦C for 1–3 days for elemental analysis.
Between 20 and 100 mg of leaf tissue was acid digested and
20 ions were quantified using inductively coupled plasma mass
spectrometry (ICP-MS) following standard protocol of the Don-
ald Danforth Plant Science Center (DDPSC) Ionomics Pipeline
[30,31]. Ion quantifications were corrected for internal standard
concentrations, instrument drift, and by initial sample mass.
The output of the Pipeline contained estimated concentrations
of each of the following 20 elements: aluminum, arsenic, boron,
calcium, cadmium, cobalt, copper, iron, potassium, magnesium,
manganese, molybdenum, sodium, nickel, phosphorus, rubid-
ium, sulfur, selenium, strontium, and zinc. For each ion concen-
tration, we computed z-score distributions and used those val-
ues as the basis for linear models. Following convention, non-
standardized values were used for machine learning analysis.

Leaf metabolomics

The metabolome comprises small mostly organic molecules
present in a tissue and represents a catalogue of the products
of metabolic processes [32,33]. Metabolomic analysis was com-
pleted at veraison (the onset of fruit ripening) and immediately
prior to harvest for the 72-vine set. For each vine, 3 mature leaves
were sampled from the middle of a single shoot and immedi-
ately flash frozen in liquid nitrogen in the field to capture the
metabolic state of the leaves when attached to the vine. Leaves
were sampled by a single team near midday in row and block
order, ensuring that “block” captured both unmeasured spatial
variation and temporal variation over the sampling window (see
Methods). Frozen leaves were transported to the University of
Missouri Enology Lab on dry ice and stored at −80◦C. Following
the protocol of [34], whole leaves were manually ground in liquid
nitrogen with a mortar and pestle, 0.5 g of powder was weighed
into a centrifuge tube, and 1.5 mL of 1:1 methanol:acetonitrile
was added. Samples were vortexed to suspend leaf particles and
sonicated for 20 minutes in an ice bath. After extraction, sam-
ples were centrifuged for 10 minutes at 3,000g and filtered with a
0.22 PTFE syringe filter into a 1.5-mL sample vial before injecting
into a Waters XEVOTM QToF LCMS system (Waters Corporation,
Milford, MA, USA). Chromatographic separation was achieved
using a Waters Acquity TM Ultra Performance LC H-Class sys-
tem (Waters Corporation, Milford, MA, USA) equipped with Wa-
ters Acquity BEH C18 column (2.1 × 150 mm and 1.7 μm particle
size) and a diode array detector. Samples were injected in ran-
dom order across the sampling periods. The injection volume
was set at 2.5 μL and the flow rate was set at 0.4 mL/min. The mo-
bile phase consisted of 0.1% formic acid in water (solvent A) and

0.1% formic acid and 5% water in acetaldehyde (solvent B) and
the gradient was as follows: 100% A for 0.5 min; 0.5–18 min in-
creased to 99% B; 18–19 min held at 99% B; mobile phase was re-
equilibrated for 2 min between runs. Diode array was monitored
at 225–500 nm. Mass spectrometry was performed on a XevoTM
QTof (Waters Corporation, Milford, MA, USA). The electrospray
ionization (ESI) was operated in both positive and negative ion-
ization modes in separate runs. The scan range was set as m/z
50–1,500 with 0.2 sec accumulation time. MS settings were as fol-
lows: capillary voltage was 2.5 kV; cone voltage ramped from 20
to 40 V; collision energy was set to 6 V; detector voltage was set
to 1950 V; desolvation gas was set to 1000 L/hour; cone gas was
set to 50 L/hour; source temperature was 120◦C and desolvation
temperature was set at 550◦C.

LC-MS instrument files were converted to .cdf format and up-
loaded to XCMS online [35] for chromatogram normalization and
feature detection via “single job” parameters. The 661 identified
metabolomic features were used as the basis of a principal com-
ponent (PC) analysis. The top 20 PCs were treated as distinct phe-
notypes to model according to the experimental design. In PCs
that varied significantly by rootstock, features that loaded >1.96
standard deviations (SD) above or below the mean were fit inde-
pendently with the same model design.

Leaf gene expression

The youngest fully opened leaves on 2 shoots were collected
from each plant of the 72-vine set (see Study Design). The
2 leaves, which were distinct from leaves used for ionomics,
leaf shape, metabolomics, and physiology data collection, were
pooled for RNA sequencing. Leaves were sampled by a single
team near midday between 10:00 AM and 2:00 PM in row or-
der, ensuring that “block” and “row” accounted for unmeasured
spatial variation and temporal variation over the sampling win-
dow (see Methods). Samples were sequenced using 3′-RNAseq, a
method ideal for organisms with reasonably characterized ref-
erence genomes [36]. Total RNA was extracted from plant tis-
sues using the Sigma Spectrum Plant Total RNA kit with modi-
fication of the addition of 2% PVP40 to the extraction buffer to
decrease phenolic inhibitors. All RNA extractions were checked
for quality control using a Nanodrop. Sequencing was conducted
using the Illumina NextSeq500 platform, which returned single-
end 86-bp reads. To accommodate the large number of sam-
ples in this study, we opted to obtain fewer reads per sam-
ple, which might have limited our ability to detect differen-
tial expression in genes with low expression levels. The first
12 nucleotides from each read were trimmed to remove low-
quality sequences using Trimmomatic (options: HEADCROP:12
[37]). Low-quality trimmed reads were additionally identified on
the basis of overrepresentation of k-mers and removed using
BBduk (April 2019 release) [38]. Trimmed and quality-controlled
reads were mapped to the 12Xv2 reference V. vinifera genome
[39,40] using STAR (v2.7.2b) [41] with default alignment param-
eters. RNAseq read alignments were quantified using HTSeq-
count (v0.11.2) [42] and a modified version of the VCost.v3 ref-
erence V. vinifera genome annotation [40]. To capture misanno-
tated gene body boundaries in the genome, all gene boundaries
in the annotation were extended 500 bp.

Variation in gene expression was assessed using 2 method-
ologies. First, we identified individual genes that responded
to specific factors in the experimental design using DESeq2
(v1.24.0) [43]. Each gene was fit with the model “∼ Block + Irriga-
tion + Phenology Rootstock,” where the “Phenology Rootstock”
model term was used to understand the potential interaction
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of phenology and rootstock. Genes were filtered to a gene set
that included only genes with a normalized count ≥2 in ≥5
samples. To check the validity of our expression results, we as-
sayed 2 classes of housekeeping genes (Ubiquitin-domain and
actin-family) and 8 previously annotated circadian genes [44]
(Supplementary Fig. S2). Differentially expressed genes were
identified for each pairwise contrast in the model. Second, we
used principal component analysis (PCA) to collapse variation in
co-expressed genes into fewer dimensions. Normalized count-
filtered genes from DESeq2 were transformed using the vari-
ance stabilizing transformation (VST [45]) and input into a PCA.
We then analyzed the top 100 PCs in the context of the broader
experimental design. We previously showed that the transcrip-
tome varied by the time of collection and was potentially inter-
acting with the rootstock effect [19]. Moreover, the other modal-
ities in this study point to weak if any effects from the irrigation
treatment (see Supplementary Note S1). Owing to the nature of
the vineyard design, we could not identify both irrigation and
time effects (marked by row) in a single model (irrigation and
row are collinear; see Study Design). To approximate the impact
from time of collection (row) in the vineyard on gene expres-
sion, linear models were first fit to remove variation imparted
by irrigation from each of the top 100 PCs. The residuals were
then used as the basis for linear models and machine learning
analysis.

Leaf shape

All leaves from a single shoot directly emerging from a trained
cordon were collected from each vine in the 288-vine set at an-
thesis and veraison. At harvest, we collected only the oldest
(first emerging leaf), middle (estimated from the middle of a
whole shoot), and youngest (smallest fully emerged leaf at the
shoot tip, >1 cm). Leaves were collected approximately in row
order (from south to north) and stored in a cooler. Each leaf
was imaged using an Epson DS-50,000 scanner in color against
a white background at 1,200 DPI and written as JPEG format-
ted images. Following scanning of leaves for leaf shape analy-
sis, the oldest, middle, and youngest leaves were dried and used
to estimate leaf elemental composition (see Ionomics). Because
the leaf shape samples and ionomics samples were identical,
“block” represented unmeasured spatial variation but did not
strictly correlate with time of sampling (see Methods). While all
leaves were collected from a single shoot, only the oldest, mid-
dle, and youngest leaves were used in this analysis.

We assessed leaf shape using generalized Procrustes analysis
(GPA) of landmarks. For the 3 leaves per vine used in leaf shape
analysis, 17 homologous landmark features were identified [22].
The GPA-rotated coordinate space was used for all subsequent
statistical analysis including PCA in order to summarize varia-
tion in leaf shape [46]. From the PCA, we extracted the top 20 PCs
and fit linear models and machine learning models to describe
variation.

Vine physiology

Intracellular CO2 concentration, stomatal conductance, and leaf
transpiration rate were measured at midday (each measured
simultaneously between 10:00 AM and 1:00 PM) on one fully
expanded sun-exposed leaf for each of the vines in the 72-
vine set. Physiology measurements were taken in row order,
ensuring that “block” correlated with temporal variation over
the sampling window. Measurements were taken using an LI-
6400XT Portable Photosynthesis system coupled with a pulse

amplitude–modulated (PAM) leaf chamber fluorometer (Li-Cor,
Inc., Lincoln, NE, USA) with the following parameters: incident
photosynthetic photo flux density level of 1,000 μmol/m2/s gen-
erated by a red LED array and 10% blue light to maximize stom-
atal opening, CO2 mixer of 400 μmol/s, fixed flow of 300 μmol/s,
and ambient leaf and block temperature. Soil moisture was mea-
sured for each plant in the 72-vine set using a fieldScout TDR
300 Moisture meter equipped with 20-cm rods (Spectrum Tech-
nologies, Inc., Aurora, IL, USA). Midday stem water potential was
measured using a pressure bomb/chamber (PMS Instrument Co.,
Albany, OR, USA) after enclosing the leaves in an aluminum foil
bag for ≥15 minutes to equilibrate the water potential of the
xylem in the stem to that attached leaf (for a discussion on equi-
libration time, see [47, 48]).

Analyses
Leaf ionome

To characterize the leaf ionome over the growing season, we
sampled the youngest, middle, and oldest leaf from a single
shoot from each of the vines within the 288-vine set at 3 phe-
nological stages and measured the concentrations of 20 ions
in each leaf individually. Bivariate correlations showed that ion
concentrations are not independent of each other but that the
strength and direction of relationships between ions vary with
respect to phenological stage and leaf position (Supplementary
Fig. S3). As such, we fit independent linear models to each ion.
Leaf position, phenological stage, or the interaction of phenolog-
ical stage and leaf position explained the highest amount of vari-
ation for most ions (Fig. 1A and B). Many ions significant for the
interaction showed a clear signal of leaf position at anthesis and
veraison, and either no explainable variation or muted variation
at harvest. For example, calcium (Fig. 1B) varied with leaf posi-
tion (22.7% variation explained; P < 1e−05), phenology (24.0%;
P < 1e−05), and their interaction (7.4%, P < 1e−05). All possi-
ble pairwise combinations of leaf position were significantly dif-
ferent at anthesis, and both the youngest and middle leaves
were different from the oldest leaves at veraison and harvest.
In the case of potassium (Fig. 1B), significant variation was ex-
plained by leaf position (16.1%; P < 1e−05), phenology (19.6%; P
< 1e−05), and their interaction (10.6%; P < 1e−05). However, post
hoc comparisons of phenology-wise mean calcium concentra-
tions showed that differences were present only at anthesis and
veraison.

Rootstock genotype showed remarkable influence on the
composition of the leaf ionome. All ions except aluminum,
sodium, and zinc were significant for rootstock as a single fixed
effect (Fig. 1A). Rootstock explained between 0.4% (rubidium;
P = 3.2e−05) and 14.3% (nickel; P < 1e−05) of variation in ion
concentrations (Fig. 1A). For some ion concentrations (such as
cobalt and nickel), significant variation was explained by the in-
teraction of rootstock and phenology; this pattern was observed
mostly in ions that responded weakly to the interaction of leaf
position and phenology. These ions showed similar patterns to
the leaf position by phenology interaction where a clear sig-
nal was exhibited at anthesis and veraison then was either ab-
sent or muted at harvest. For example, cobalt was most abun-
dant in 1103P-grafted vines at anthesis (Fig. 1C). At veraison,
both 1103P-grafted and SO4-grafted had elevated concentrations
compared to ungrafted and 3309-grafted vines. However, by har-
vest, cobalt concentration variation was muted and only SO4-
grafted vines showed evidence of elevated concentration. Sim-
ilarly, nickel showed significant variation partitioned into the
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Figure 1: The ionome shows strong signal from rootstock genotype, leaf position, and phenological stage. (A) Percent variation captured in linear models fit to each
of 20 ions measured in the ionomics pipeline. Presence of a cell indicates the model term (top) was significant (FDR; padj < 0.05) for that ion (left). (B) Example ions
shown to vary significantly by the interaction of leaf position (Y = Youngest, M = Middle, O = Oldest) and phenological stage in parts per million. Boxes are bound by

25th and 75th percentile with whiskers extending 1.5 IQR from the box. Dots indicate outliers. Significant changes are indicated by letters above boxes and are only
meant for comparison within each phenological stage. Group means are displayed with black squares. (C) Example ions shown to vary significantly by the interaction
of rootstock genotype and phenological stage in parts per million. Significant changes are indicated by letters above boxes and are only meant for comparison within

each phenological stage. Boxes are bound by 25th and 75th percentile with whiskers extending 1.5 IQR from the box. Group means are displayed with black squares.
Dots indicate outliers. (D) Standardized heat map for out-of-bag (OOB) predictions by a random forest trained to predict rootstock genotype, (E) the interaction between
rootstock genotype by phenology, and (F) the interaction between rootstock genotype and leaf position.

rootstock by the phenology effect (Fig. 1C). Both anthesis and ve-
raison show reduced nickel concentration in 1103P-grafted vines
and elevated concentrations in SO4-grafted vines. However, at
harvest, no comparisons are significant.

Machine learning on ion concentrations confirms that the
leaf ionome contains a signature from the rootstock genotype
and the interactions of rootstock genotype with phenology and
leaf position. A random forest model trained to predict rootstock
showed an overall accuracy of 75.2% (Fig. 1D). Ions important
for this classification were nickel (mean decrease in accuracy
[MDA] = 0.089), molybdenum (MDA = 0.058), and magnesium
(MDA = 0.054), corroborating the rootstock term’s significance in
the linear models. Notably, when we trained a model to simul-

taneously predict rootstock and phenological stage, rootstock
prediction accuracy increased appreciably (Fig. 1E). For exam-
ple, the ability of the model to detect ungrafted vines (the bal-
anced accuracy of ungrafted predictions) improved from 81.7%
accuracy overall to 91.1% accuracy at anthesis and 85.9% at har-
vest. Generally, performance at veraison matched the rootstock-
only model performance. The ions most important for this joint
(rootstock/phenological stage) prediction were nickel (MDA =
0.167), phosphorus (MDA = 0.110), and strontium (MDA = 0.065).
The rootstock by phenology model term was significant in the
linear models for these ions but was not a largest descriptor
of variation. The joint prediction of rootstock and leaf position
performed substantially better than chance (P < 1e−05), but
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accounting for leaf position did not improve rootstock predic-
tion as was the case in the joint prediction of rootstock and phe-
nology (Fig. 1F). Ions important for this classification were sul-
fur (MDA = 0.051), rubidium (MDA = 0.051), and nickel (MDA =
0.049).

Leaf metabolomics

We performed untargeted metabolomics on leaves from the 72-
vine set at veraison and harvest, quantifying the concentrations
of 661 metabolites (Fig. 2). The top 20 PCs accounted for a total of
67.3% of the total metabolomic variation, with the top 3 captur-
ing 23.1%, 9.2%, and 6.2%, respectively. Individual PCs after the
top 20 explained <0.82% of the metabolome. Linear models for
each of the top 20 PCs found that the strongest drivers of varia-
tion in leaf metabolomics were phenology and temporal block-
ing factor. For example, 90.6% of variation on PC1 was due to
phenology (P < 1e−05; Fig. 2A). PC2 primarily reflected the inter-
action of phenology and temporal block (26.4%, P < 1e−05) and
temporal block as a main effect (18.9%, P < 1e−05). The patterns
of variation attributable to PC2 were similar in PCs 3–10 (Fig. 2A).

PC17 was controlled by rootstock as a main effect (18.5%, P
< 1e−03; Fig. 2B). On PC17, ungrafted vines were significantly dif-
ferent from vines grafted to 3309C (P = 0.02) and SO4 (P < 1e−05).
Vines grafted to 1103P were also significantly different from
vines grafted to SO4 (P = 0.009). Metabolites that loaded >1.96
SD from the mean loading on PC17 were extracted and indepen-
dently fit to additional linear models. We identified 4 metabo-
lite features (M374T1 [rt = 1.33, m/z = 374.1146], M117T1 [rt =
0.61, m/z = 117.0583], M175T1 1 [rt = 0.87, m/z = 175.1269], and
M333T1 3 [rt = 0.71; m/z = 333.1582]) that were influenced by
rootstock as a main effect and the metabolite (M112T1 [rt =
1.48, m/z = 112.0061]), which was influenced by the interaction
of rootstock genotype and phenological stage. At this time, the
identification of these features remains unknown.

Linear discriminant analysis confirmed that many exper-
imental factors likely influence the metabolome. For exam-
ple, when trained to maximize variation between classes of
rootstocks, the model identified a space that weakly separates
1103P-grafted and SO4-grafted vines from ungrafted and 3309C-
grafted vines (LD1) and separates 3309C-grafted vines from other
classes (on LD2) (Fig. 2C). Despite this, machine learning showed
minimal predictability for any class other than phenology, which
was predictable with an accuracy of 100% for withheld sam-
ples. Rootstock genotype based on the metabolome was not
predictable, with accuracy only marginally better than chance
(34.6%).

Gene expression

We performed 3′-RNAseq on the youngest fully opened leaves of
the 72-vine set at 3 time points (Fig. 3). On average, each sam-
ple contained 4.1 million 3′-reads and measured the expression
of 17,852 genes. Overall, we identified variation in 23,460 genes
that had a DESeq2-normalized count ≥2 in ≥5 samples. We com-
puted the expression of 2 classes of housekeeping genes and
showed that they are generally stable across samples over phe-
nological time (Supplementary Fig. S2). We noted that some vari-
ation is expected for housekeeping genes (see, e.g., [49]). More-
over, we showed that patterns of previously annotated circadian
genes conform to expected results over the sampling window.
For example, predicted orthologs of LHY and RVE1 are correlated
and decreasing over our sampling window, and a predicted TOC1

ortholog is invariant. The results of these analyses provide gen-
eral confidence in the gene expression data presented here.

Using a traditional differential expression analysis frame-
work based on established DGE software (Deseq2), all genes
returned as significantly differentially expressed by rootstock
seemed to be false-positive results, evidenced by a single ex-
treme outlier altering group means. Hierarchical clustering of
the 500 most variable genes after variance stabilizing transfor-
mation (VST) showed strong latent structure in the transcrip-
tome and that most variation in the transcriptome was ex-
plained by the phenological stage (Fig. 3A). The top 100 PCs on
the VST-transformed gene counts accounted for 92.3% of vari-
ation in the transcriptome. Linear models on each of the top
100 PCs indicated that 82.4% and 61.4% of the variation on PC1
and PC2, respectively, were attributable to the phenological stage
(Fig. 3B and C). Row was also a significant descriptor of variation
as a single, fixed effect and in interactions with rootstock and
phenological stage. For example, row accounted for 36.0% and
43.3% of the variation on PC4 and PC6, respectively. Interacting
with the phenological stage, row accounted for >10% of varia-
tion on 17 additional PCs.

Patterns of gene expression identified through linear dis-
criminant analysis (LDA) corresponded to phenological stage,
vine row, and rootstock. LDA separated phenological stages into
3 distinct, non-overlapping groups in the space spanning LD1
and LD2 (Supplementary Fig. S4). When trying to separate rows
into distinct classes, the model converged on a “horseshoe”
shape in the LD1-LD2 space (Fig. 3D), suggesting either a circa-
dian topology to the transcriptome or continuous spatial vari-
ation over the vineyard [50]. LD1 maximized the variation be-
tween row 8 (sampled early in the day) and row 16 (sampled a
few hours later). LD2 maximized the separation of both rows 8
and 16 with row 12 (the row sampled in the middle of the sam-
pling window). A model trained to separate rootstock classes
(Fig. 3E) showed that LD1 separated the rootstock 1103P from
other rootstock genotypes, and LD2 primarily separated the
rootstock 3309C from ungrafted vines (Supplementary Fig. S4).

Formal machine learning on gene expression PCs largely sup-
ported the linear models. A random forest trained to predict
phenological stage classified testing samples with 92.9% accu-
racy. Anthesis was the most predictable class, with a balanced
accuracy of 100%; veraison and harvest displayed balanced accu-
racies of 92.7% and 92.4%, respectively. The PCs most important
in phenology prediction were PC1 (MDA = 0.16) and PC2 (MDA =
0.12). Gene expression PCs were unable to predict rootstock, with
a total prediction accuracy of 23.4%. While no features were es-
pecially important in the prediction processes, PC44 showed the
largest mean decrease in Gini impurity, corroborating its signal
in the linear models.

Leaf shape

We collected leaves from the 288-vine set at 3 time points and
landmarked a total of 2,422 leaves (Fig. 4). Homologous leaf land-
marks were used for GPA. PCA on the GPA-rotated coordinates
revealed that ∼97.2% of the total shape variation was captured
by the top 20 PCs, with PC1, PC2, and PC3 explaining 24.1%,
19.0%, and 13.3% of the variation, respectively. Lower values on
PC1 primarily capture leaves with shallow petiolar sinuses and
short midvein distance from the depth of the superior sinus to
the top of the midvein, whereas higher values on PC1 capture the
opposite (Fig. 4A). Similarly, lower values on PC2 capture deep
petiolar sinuses combined with very shallow superior sinuses,
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Figure 2: The metabolome is influenced by rootstock genotype, phenological stage, and time of sampling. (A) Percent variation captured in linear models fit to each
of the top 20 principal components (PCs) of the metabolome (661 measured metabolites). Presence of a cell indicates the model term (top) was significant for that PC
(left, percent variation explained by the PC in parentheses). (B) The distribution of projections onto PC17, the strongest captured rootstock effect in the metabolome.

Boxes are bound by the 25th and 75th percentiles with whiskers extending 1.5 IQR from the box. Dots indicate outliers. (C) Projections of all samples into the first 2
dimensions of a linear discriminant space trained to maximize variation between rootstock genotypes.

and vice versa for higher values. PC3 primarily captures asym-
metry (Fig. 4A).

In total, 5.76% of variation on PC1 was explained by the ex-
perimental design. Of this, variation in leaf shape was explained
by phenology (2.63%; padj < 1e−05), then rootstock (0.95%; padj
< 0.001), leaf position (2.61%; padj = 0.03), and the interaction of
phenology and leaf position (0.62%; padj = 0.009) (Supplemen-
tary Fig. S5A). Post hoc mean comparisons on PC1 showed that
shapes of leaves from ungrafted vines were significantly differ-
ent from leaves of vines grafted to 1103P (P < 0.001), 3309C (P
< 0.001), and SO4 (P < 0.001) (Supplementary Fig. S5B). More-
over, PC1 captured subtle variation in the leaf position by phe-
nological stage interaction, where middle leaves showed signifi-
cant differences between anthesis and veraison (P < 1e−03), and
the oldest leaves showed significant differences when compar-
ing anthesis to veraison (P < 1e−05) and anthesis to harvest (P
< 1e−03).

For PC2, 61.4% of variation could be assigned to an experi-
mental factor. This included significant variation from leaf po-
sition (46.9%, padj < 1e−05), phenology (1.4%; padj < 1e−05),
and the interaction of leaf position and phenology (12.05%;
padj < 1e−05; Fig. 4D). Specifically, younger leaves tended to
have shallower sinuses and exaggerated superior sinus depths
(higher values on PC2), whereas older leaves tended to de-
velop deeper petiolar sinuses and more shallow superior sinuses
(lower values on PC2). The degree of this separation decreased
across the season, and the shapes converged on the mean leaf
shape on PC2, consistent with the middle leaf at all 3 pheno-
logical stages. PC2 additionally reflected the interaction of leaf
position and rootstock (0.22%; P = 0.04; Supplementary Fig. S5B),
but post hoc comparisons did not find any significant pairwise
comparisons.

Machine learning on the GPA-rotated coordinate space iden-
tified moderate division of developmental and phenological
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Figure 3: Gene expression primarily responds to time of season and circadian correlates. (A) Heat map showing 500 genes with the highest variance following the
filtering of genes with low expression levels and gene-by-gene variance stabilizing transformations (VST) ordered by example model factors (below). (B) Percent variation

captured in linear models fit to the top 100 principal components (PCs) of the VST-transformed gene-expression space. Presence of a cell indicates that the model term
(top) was significant for that PC (left, percent variation explained by the PC in parentheses). (C) Projections of all samples into the first 2 PC dimensions to show that
the largest descriptors of variation are due to phenology. (D) Projections of all samples into the first 2 dimensions of the linear discriminant space trained to maximize
variation between the rows of the vineyard, and (E) rootstock genotype.

classes. Random forest models could predict the leaf position
with 73.1% accuracy, with the most important feature being the
y-component of the leaf apex (MDA = 0.051). A model trained to
predict phenology performed at 64.3%, with the most important
features being the x-components of the points corresponding to
superior sinus depth (left sinus MDA = 0.030, right sinus MDA
= 0.019). A model trained to predict rootstock performed only
marginally better than chance, at 28.1% accuracy.

Vine physiology

We measured intracellular CO2 concentration (Ci), stomatal con-
ductance (gs), leaf transpiration, water potential (ψ), and soil
moisture for the 72-vine set (Fig. 5). Each physiological pheno-
type varied significantly across phenology and the block by phe-
nology interaction (Fig. 5A). For example, at harvest, we observed
specific differences in leaf CO2 concentration (A vs C: P = 0.003; B
vs C: P = 0.002) and leaf transpiration (A vs B: P < 1e−03; A vs C: P

< 1e−05; B vs C: P < 1e−05). Leaf transpiration and stomatal con-
ductance varied significantly with the interaction of rootstock
and phenology. A post hoc comparison of means showed that
leaf transpiration and stomatal conductances were elevated in
Chambourcin vines grafted to 1103P at veraison as compared to
leaves of ungrafted vines (leaf transpiration: P = 0.001; stomatal
conductance: P = 0.002; Fig. 5B and C).

Phenomic covariation

Four leaf phenotyping modalities consisted of ≥10 measured
phenotypes and were measured for all plants in the 72-vine set
(leaf ionome, leaf metabolomics, gene expression, leaf shape).
Using these data, we explored the extent to which different phe-
notypes (within and between modalities) covaried over phenol-
ogy and rootstock genotype (Fig. 6; Supplementary Figs S6 and
S7). Within each phenotyping modality, we summarized the pri-
mary dimensions of phenotypic variation using PCA (see Meth-
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Figure 4: Leaf shape variation is primarily determined by shoot position but changes over the season. (A) Representative shapes showing leaf variation (−3 SD, mean,
+3 SD) captured in each of the top 4 principal components of the generalized Procrustes analysis–rotated leaf shapes. (B) Projections of all leaves into the first 2
dimensions of principal component space colored by the strongest determinant of variation in the top 2 PCs. (C) Projections of all leaves into the first 2 dimensions
of a linear discriminant space trained to maximize variation between phenological stages. (D) Variation in leaf shape captured on PC2 shown by leaf position and

phenological stage. Large points (and error bars) represent the mean (and SD) of the group when projected onto PC2.Variation in each group is shown as a composite
leaf trace scaled to a standard size and centered over the mean.

ods) so as to not weigh any modality too heavily. From each PCA,
we extracted the top 10 PCs, which explained a total of 88.9%
of variation in the ionomics PCA (iPCA), 55.9% of the variation
for the metabolomics PCA (mPCA), 74.8% of the variation in the
gene expression PCA (gPCA), and 87.9% of the variation in the
leaf shape PCA (sPCA).

Pairwise correlations of each PC within each phenological
stage showed diverse correlation magnitudes and directions
both within a phenotyping modality and between phenotyp-
ing modalities (Fig. 6; Supplementary Fig. S6). Generally, the
strongest relationships were between PCs within phenotyping
modalities. For example, the strongest correlations identified
were between gene expression PCs gPC1 and gPC2 at anthe-
sis (r = 0.85, CI = [0.81, 0.87]; Supplementary Fig. S6A) and
metabolomics PCs mPC1 and mPC2 at harvest (r = −0.78, CI =
[−0.82, −0.76]). Correlations between modalities represented a
diversity of responses across phenological stages. For example,
the correlation between gene expression gPC4 and shape sPC3
was similar across the phenological stages, but only the correla-
tion at veraison was significant (r = 0.41, CI = [0.34, 0.47]; Supple-
mentary Fig. S6B). Correlations such as between metabolomics
mPC3 and gene expression gPC6 were similar and significant at
both veraison (r = −0.44, CI = [−0.50, −0.37]; Supplementary Fig.
S6C) and harvest (r = −0.37, CI = [−0.45, −0.28]; Supplementary
Fig. S5C). While many correlations varied over the course of the

season, some relationships entirely shifted in direction. For ex-
ample, the correlation between metabolomics mPC3 and mPC6
shifted from a positive significant relationship (r = 0.58, CI =
[0.52, 0.63]) at veraison to a negative significant relationship at
veraison (r = −0.66, CI = [−0.73, −0.59]) (Supplementary Fig. S6D).

Pairwise comparisons of PCs within each rootstock geno-
type show a suite of latent phenotypes with significant pres-
ence/absence variation in significant correlations. Where each
phenological stage showed modularity by phenotyping modal-
ity, variation over rootstock genotype shows a strong ionomics
module with latent combination of other modalities inter-
spersed (Supplementary Fig. S7). For example, in ungrafted
vines, metabolomics mPC1 was correlated with 4 PCs from
the ionome (Supplementary Fig. S7A). Each of the other root-
stock genotypes had dramatically different topologies, with the
ionome tending to be more connected within the ionome and
connected to other modalities only on the periphery (Supple-
mentary Fig. S7B–D). Examples of presence/absence variation
were shown in small modules of 2 latent phenotypes that were
present in only 1 rootstock genotype. For example, in the un-
grafted vines, the correlation between gene expression gPC4
and metabolomics mPC3 was significant (r = −0.58, CI = [−0.65,
−0.51]), and, in 1103P-grafted vines, the correlation between
metabolomics mPC3 and shape sPC6 (r = 0.59, CI = [0.53, 0.70])
was significant.
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Figure 5: Vine physiology varies with rootstock and the rootstock by phenology interaction. (A) Percent variation explained by model terms (top) from linear models fit
to each of 4 physiology traits (left). (B) Variation in leaf transpiration rate for each rootstock genotype over the course of the season. Boxes are bound by the 25th and
75th percentiles with whiskers extending 1.5 IQR from the box. Significant changes are indicated by letters above boxes and are only meant for comparison within

each phenological stage. Group means are displayed with black squares. (C) Variation in stomatal conductance for each rootstock genotype over the course of the
season. Boxes are bound by the 25th and 75th percentiles with whiskers extending 1.5 IQR from the box. Group means are displayed with black squares. Significant
changes are indicated by letters above boxes and are only meant for comparison within each phenological stage. Dots indicate outliers.

Discussion

In this study, we used grafted grapevines as an experimental sys-
tem for characterizing root system effects on multi-dimensional
leaf phenotypes over the course of a growing season. We de-
tected ubiquitous but subtle effects of the root system on all
assayed modalities and demonstrated that rootstock influences
on leaf phenotypes can be specific to the vine’s developmental
stage. The strongest signals of rootstock influences on leaves
were observed in the ionomics dataset, phenotypes for which
the root system has a noted and well-understood role.

Phenology explains significant variation in all leaf
phenotypes

The timing of sampling or phenological stage of the vines (an-
thesis, veraison, harvest) was the strongest driver of phenomic
variation for most leaf phenotypes. For example, all 20 ions var-
ied with phenology and most ions showed that phenology, or
the interaction of phenology with leaf developmental position,
was the strongest source of variation (Fig. 1). Nearly one-third of
all measured transcripts responded to seasonal variation, and
the strongest effects on the transcriptome were phenology and



Harris et al. 11

iPC1

iPC2

iPC3

iPC4

iPC5

iPC6

iPC7

iPC8

iPC9

iPC10

gPC1

gPC2

gPC3

gPC4
gPC5

gPC6

gPC7

gPC8

gPC9

gPC10

sPC1

sPC2sPC3

sPC4

sPC5

sPC6

sPC7

sPC8

sPC9

sPC10
iPC1

iPC2

iPC3
iPC4

iPC5

iPC6

iPC7 iPC8

iPC9

iPC10

mPC1

mPC2

mPC3

mPC4

mPC5 mPC6

mPC7

mPC8

mPC9

mPC10

gPC1

gPC2

gPC3

gPC4

gPC5

gPC6

gPC7

gPC8

gPC9

gPC10

sPC1

sPC2

sPC3

sPC4

sPC5

sPC6

sPC7

sPC8

sPC9

sPC10

A

iPC1

iPC2

iPC3
iPC4

iPC5

iPC6

iPC7

iPC8

iPC9

iPC10

mPC1

mPC2

mPC3 mPC4

mPC5

mPC6

mPC7

mPC8

mPC9

mPC10

gPC1

gPC2

gPC3

gPC4

gPC5

gPC6

gPC7

gPC8

gPC9

gPC10

sPC1

sPC2

sPC3

sPC4

sPC5

sPC6

sPC7

sPC8

sPC9

sPC10

B

Ionomics (i) Metabolomics (m) Gene Expression (g) Morphometrics (s)

C

Figure 6: Phenomic covariation varies over the course of the season. Correlation networks showing patterns of covariation within and between phenotyping modalities.
Nodes of the network are connected if they are significantly correlated (Pearson, FDR; padj < 0.05). Edge thickness is proportional to the strength of correlation
(multiplied by 16 for visibility). Edge color reflects the direction of the correlation, where blue edges indicate positive correlations and orange edges indicate negative

correlations. Modalities are indicated by a leading character and node color: ionomics (iPCs; purple), metabolomics (mPCs; pink), gene expression (gPCs; yellow), leaf
shape (sPCs; green). Network topologies are shown for (A) anthesis, (B) veraison, and (C) harvest.

row, a correlate for the time within a 3-hour sampling window.
The only phenotype for which phenology was not the most ex-
planatory factor is leaf shape. Consistent with previous studies
[23], we confirm that most of the leaf shape variation reflects
development along a single shoot, but much of this variation is
explained via interaction with phenology. These data highlight
the dynamic nature of biological processes taking place within
grapevines over the course of a season.

The seasonal component to grapevine phenomic variation is
a subject of much research, especially in the berry. In studies
designed to quantify molecular underpinnings of terroir, sea-
sonal variation was identified as the strongest signal in the
metabolome [51–54]. Several studies have characterized tran-
scriptomic variation over the course of the season. For exam-
ple, in conjunction with metabolomics, seasonal variation of
berry development was used to identify transcriptomic and
metabolomic developmental markers in “Corvina” [55]. Follow-
up analysis showed that 18% of transcripts varied seasonally
[56]. Grapevine leaf shape also varies tremendously over the
growing season [23] and is stable over multiple growing sea-
sons; interestingly, grapevine leaves are patterned in the previ-
ous year, and the climate of the season in which the leaves were
patterned influences aspects of leaf shape [57,58].

Grafting and rootstock genotype exhibit a complex and
subtle signal on leaf phenotypes

Consistent with previous studies, we confirm that grafting, as
well as rootstock genotype, has a complex effect on phenomic
variation in the scion (the grafted shoot system). Most notably,
we show that the rootstock to which a scion is grafted influ-
ences ion concentrations in leaves. Rootstock genotype is pre-
dictable from ion concentrations in the leaves, and this signal is
strengthened when phenological stage is included in the model.
For example, we previously showed that nickel concentration
was elevated in vines grafted to the rootstock SO4 [19]. At a
similar point in the season, we observe the same pattern, but
by harvest, nickel was almost entirely excluded from the leaf.
This suggests that the biological implications of this differential
uptake could be missed if not surveyed across the season. We
also confirm that rootstock genotype influences the metabolome

of grafted grapevine, in some cases in a season-specific man-
ner. In the transcriptome, PCA was able to identify dimensions
of variation that were significantly described by rootstock and
the interaction of rootstock and time of day, confirming prior
observations [19]. Patterns of gene expression were associated
with rootstock in some analyses; e.g., supervised methodologies
identified linear discriminants in the PC space that separated
gene expression patterns of some rootstock genotypes. However,
gene-by-gene analysis found no genes modulated by rootstock
genotype, or even just from the act of grafting, that were not
driven entirely by a single outlier. We suspect that these results
are due, at least in part, to the strength of the phenology ef-
fect overpowering more subtle variation imparted by rootstock
genotype. Finally, of the physiology phenotypes that we mea-
sured, leaf transpiration and stomatal conductance were higher
in vines grafted to 1103P in the middle of the season. Through
these analyses, we have identified subtle but ubiquitous effects
of rootstock genotype on shoot system phenotype across modal-
ities and have shown that the effect of grafting on leaf phenomic
variation varies from one phenotype to the next.

Understanding the rootstock genotype influence on shoot
system phenotypes is a growing area of research, especially
in grapevine. For example, in Cabernet Sauvignon, grafting in-
creased ion uptake globally and some rootstock genotypes pro-
vide a clear signal in the scion [28]. The wild Vitis species from
which the rootstocks were derived (V. berlandieri, V. riparia, and V.
rupestris) differ in root architecture, preferred soil substrate, and
genetic background; however, the specific aspects of their biol-
ogy that contribute to differences in ion uptake are not known
[27]. To our knowledge, there is not yet a strong causal link be-
tween the micronutrient component of the ionome and factors
of vine growth or development that might influence traits such
as wine quality. However, it is noted that macronutrient defi-
ciencies can have negative effects on such traits [59,60] and can
be mediated by rootstock [61]. This suggests that a strong under-
standing of the rootstock influence on the vine’s ionome is war-
ranted, and more work needs to be done to establish these re-
lationships. Similarly, the metabolome is a key driver of the for-
mation of the graft junction and some key metabolites could be
responsible for graft incompatibility [62]. Building on this work,
targeted metabolomics showed that 2 classes of metabolites,
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flavanols and stilbenes, were differentially abundant at graft
junctions and in the rootstocks of Cabernet Sauvignon vines 1
month after grafting [63]. However, flavanols were not differen-
tially abundant in the scion, but scion stilbene concentrations
were apparently controlled by rootstock genotype. The effect
of rootstock genotype on the scion transcriptome is perhaps
the most varied. For example, Cabernet Sauvignon shoot api-
cal meristems show no effects by rootstock genotype [14], but
berries of the same cultivar do, although the effect is tempered
by seasonal variation [15]. Variation in Chambourcin leaf shape
was also driven by rootstock genotype, especially in conjunction
with differences in irrigation [19]. Collectively, these studies all
suggest that rootstock genotype influences scion phenotypes,
but those effects will vary by phenotype, scion genotype, and
perhaps other experimental conditions.

Data presented here confirm and expand upon previous ob-
servations of rootstock effects on scion phenotypes. Notably,
this study was carried out using a robust experimental design
(288-vine set and 72-vine set comprising replicates of 3 root-
stocks grafted with a common scion and an ungrafted control)
in a vineyard that had been in the ground for 8 years at the time
of sampling. Our coordinated collection of 5 multi-dimensional
leaf phenotypes and inclusion of 3 sampling points spanning
the growing season allowed us to investigate the comprehen-
sive nature of rootstock influences on the scion. Furthermore,
this thorough analysis demonstrates that rootstock effects on
scion phenotypes shift in magnitude over the course of the sea-
son, indicating that aspects of time are tremendously influential
to the observed results regardless of phenotype.

While the results of previous studies on grafted grapevine are
worthy of comparison, the work presented here has a few lim-
itations that render comparisons with other studies challeng-
ing for a variety of reasons. One novelty in our study is the ex-
ploration of a hybrid grapevine system, Chambourcin. Cham-
bourcin has a complex pedigree, including contributions from
V. riparia and V. rupestris, species that are each parent to 2 of
the rootstocks used in this study [64]. Many of the significant
effects that we observed in this study were subtle, which could
reflect the genomic similarity between shoot and root systems.
It might be expected that rootstocks derived from V. riparia, V.
rupestris, and other North American species might prompt more
pronounced responses in European scions that lack North Amer-
ican Vitis in their pedigrees. Moreover, our results were derived
from data collected in a single year at a single location. The phe-
notypes that we measured are known to be heavily influenced by
the environment, and we expect some inter-annual variation in
rootstock influences on shoot system phenotypes. This study fo-
cused on a single scion, and as a result we are unable to explore
how rootstock effects on shoot system phenotypes vary across
scions. To our knowledge, this is among the largest populations
to have been surveyed for such phenotypes in a near-decade-
old established vineyard. While many studies have been con-
ducted in greenhouses or recently planted vineyards, the juxta-
position of our results and those previously established serves
as a powerful foundation for the generation of hypotheses for
future studies.

Phenomic covariation warrants work toward latent
phenotypes

In the present study, we assess the extent of covariation among
leaf phenotypes. For the primary dimensions of variation in each
modality, within-modality correlations were strongest when ac-
counting for phenological timing. Correlations also existed be-

tween modalities, suggesting room for the analysis of latent
phenomic structure or targeted integrative analyses for experi-
mental questions. For example, aspects of the metabolome were
frequently correlated with the transcriptome and leaf shape
when accounting for both phenological stage and rootstock
genotype. Interestingly, correlations within and between modal-
ities were highly dynamic over a growing season and across
rootstock genotype. For example, several correlations with leaf
shape were present at veraison but were not detected at anthe-
sis and harvest. Moreover, the topology of connections in the
ionomic network was variable over the rootstock genotype (Sup-
plementary Fig. S6). This variation in topology confirms that root
system genotype has a strong influence on shoot system el-
emental composition and suggests that root system genotype
can alter correlative patterns in the ionome. We believe that
phenomic covariation warrants further investigation, specifi-
cally, by further including additional phenotypes such as long
non-coding RNA expression [65,66], epigenetics [67], and micro-
biomes [68,69], which could yield more mechanistic understand-
ings of the influence of root systems on shoot systems and how
plants interact with their environments through their root sys-
tems. These mechanistic understandings could be used to fur-
ther understand and optimize consumer-facing traits such as
fruit quality and yield. To date, much of the work constituting
phenomics in grapevine has addressed how berries develop over
the growing season, how cultivars differ from one another, and
how the concept of terroir influences wine [51,52,55,70–72]. De-
spite data integration techniques becoming more popular, there
are still many open questions as to what analytical methods are
most appropriate and how to most effectively utilize them (re-
viewed for grapevine in [73,74]; reviewed broadly in [75,76]). On-
going work attempts to integrate high-dimensional phenomic
datasets generated within a single organ system (e.g., leaves);
and future studies will expand this to explore phenomic covari-
ation in and among organs, over time, and across space.

Potential Implications

Our work on the influence of root system genotype on shoot sys-
tem phenotype has broad implications for a holistic understand-
ing of how plants detect and respond to changing environmental
conditions and how this response is coordinated among differ-
ent organ systems. Data presented here demonstrate that root
systems that are genetically distinct from the scion exert influ-
ence on the scion, leading to statistically significant differences
in scion phenotypes based on the identity of their root systems.
This observation suggests that the above-ground phenotype re-
sults, at least in part, from below-ground activity of the root sys-
tem. Further, these data highlight the value of coordinated col-
lection of different multi-dimensional phenotypes for compar-
ative studies, and for describing whole-plant phenotypic shifts
over seasons and in response to horticultural manipulations.

Beyond its use as an experimental model that is ideal for
studying root/shoot interaction, grafting is an important horti-
cultural technique that is used in >70 major crops. In grapevines,
grafting was developed primarily to combat the below-ground
pest phylloxera, and grapevine rootstocks were selected initially
on the basis of their resistance to this pest. Results presented
here indicate that beyond phylloxera resistance, grafting to ge-
netically distinct rootstocks is a potential source of variation
for the scion. Ongoing work explores how root system effects
on shoot system phenotypes vary across scion genotypes and
how the rootstock × scion interaction changes over space. The
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long-term implications of this study are the potential honing
of viticulture for future climates including the optimization of
rootstock-scion combinations based in part on an understand-
ing of how rootstock effects on scion phenotypes change over
the course of the season. This work is relevant for breeding ef-
forts and may play a role in the optimization of quantitative
phenotypes such as vigor, fruit quality, and yield that may be
enhanced by, constrained by, or partially predicted from pheno-
typic variation elsewhere in the plant.

Methods
Study design

Data were collected in 2017 from a split-plot experimental root-
stock trial established in 2009 at the University of Missouri’s
Southwest Research Center near Mount Vernon, MO (37 4.26
N; 93 52.44 W; Supplementary Fig. S1). The rootstock trial in-
cludes the interspecific hybrid cultivar “Chambourcin” growing
ungrafted (own-rooted) and grafted to 3 rootstocks: 1103P, 3309C,
and SO4 (Supplementary Fig. S1D). Clonal replicates of each of
the 4 rootstock-scion combinations were planted 72 times for a
total of 288 vines planted in 9 rows. Each row was treated with 1
of 3 irrigation treatments: full evapotranspiration replacement,
partial (50%) evapotranspiration replacement (reduced deficit ir-
rigation), or no evapotranspiration replacement (Supplementary
Fig. S1A). However, rainfall in 2017 likely mitigated the applied ir-
rigation treatment (see Supplementary Note S1). Vine position in
the vineyard corresponded to time of sampling for some pheno-
types (metabolomics, gene expression, and physiology), as sam-
ples were taken from one end of the vineyard to the other over
the course of 2–3 hours. Because vineyard microclimates and
sampling time may be associated with phenomic variation, we
defined “block” as a factor that captures this spatial and tem-
poral variation inherent in sampling for those phenotypes. In
the other phenotypes (ionomics and leaf shape), neither row nor
block correlated with time, so block was simply a spatial covari-
ate. Unique rootstock-scion combinations were planted in cells
of 4 adjacent replicated vines (Supplementary Fig. S1A and B),
with rows consisting of 8 cells (32 vines/row). To our knowledge,
a field-planted rootstock experimental vineyard of this size and
age is rare. For some phenotypes (ionomics and leaf shape), it
was possible to collect samples from all vines in the experimen-
tal vineyard (the 288-vine set; Supplementary Fig. S1A and B). For
other phenotypes (metabolomics, gene expression, and physiol-
ogy), time and/or expense associated with the phenotyping pro-
cess required that we reduce sampling to a nested set of 72 vines
representing the middle 2 vines in each 4-vine cell in the front
half of the vineyard (the 72-vine set; Supplementary Fig. S1B and
C). All phenotypes were assayed at 3 phenological stages: an-
thesis (∼80% of open flowers; 22 May 2017), veraison (∼50% of
berries had transitioned from green to red; 30 July 2017), and
immediately prior to harvest (25 September 2017). At each phe-
nological stage, effort was made to sample on days with full to
partial sun and minimal precipitation.

This design was used to assess the following questions: (i)
What is the influence of root system genotype on shoot system
phenotype? (ii) How do systems of plant phenotypes vary over
the growing season, and does rootstock genotype influence this
variation? (iii) How do phenotypes covary within and between
phenotyping modalities?

Linear models

Linear models were fit to the 20 measured ion concentrations,
the top 20 PCs of the leaf metabolome, the top 100 PCs of the
leaf transcriptome, the top 20 PCs of leaf morphospace, and each
measured physiological trait. Outliers were detected using the R
function “anomalize” (options: alpha = 0.03, max anoms = 0.1).
Each model was fit with fixed-effect factors representing phe-
nological stage (anthesis, veraison, or harvest), rootstock (un-
grafted, 1103P, 3309C, or SO4), leaf position (youngest, middle,
or oldest; only used in leaf morphology and leaf ion concentra-
tion models), and all pairwise interactions of those terms. Both
irrigation and block were included as fixed, non-interacting ef-
fects with the exceptions of physiology and metabolomics, for
which we allowed the interaction of block as it correlates with
the time of sampling, potentially capturing temporal variation.
Row, an additional correlate for time and spatial variation, was
included in place of a temporal block for the gene expression
models after removal of the variation attributable to irrigation,
a factor collinear with row. All linear models were interpreted
using a Type 3 sum-of-squares computation using the R pack-
age “car” [77]. Estimated P-values for each term in the models
were corrected for multiple tests (within phenotype) using false
discovery rate (FDR) correction as implemented by the R package
“stats” [78]. Results from the models are reported as the varia-
tion explained by a particular term in the model and the esti-
mated P-value. When appropriate, post hoc mean comparisons
were computed using the package “emmeans” [79]. Where mul-
tiple linear models were being simultaneously interpreted, we
applied a Bonferonni correction to reduce the number of false-
positive results.

Machine learning to identify rootstock effects

For visualization of between-class variation, we fit LDA mod-
els to each modality (ionomics, metabolomics, gene expression,
and leaf morphology) using the “lda” function of the R package
“MASS” [80]. Projections of all samples into the LD space were
plotted using ggplot2 [81]. In addition, we used machine learning
to capture subtle experimental effects. We partitioned data from
each modality into 80% training and 20% testing samples. Mod-
els were fit to predict the phenological stage from which a sam-
ple was taken, the rootstock to which the scion was grafted, and
the joint prediction of phenology and rootstock. We also tested
the predictability of leaf position for ionomics and leaf shape,
and the interaction of rootstock and leaf position for ionomics.
We used the “randomForest” [82] implementation of the random
forest algorithm. Models were fit and tuned using the R pack-
age “caret” [83]. Each performance was assessed using accuracy,
with performance on each class being assessed using the bal-
anced accuracy, the midpoint of class-wise sensitivity and speci-
ficity. Where appropriate, models were compared to “chance,”
or the occurrence frequency of each class. Confusion matrices
were visualized from the out-of-bag predictions using ggplot2.
Important features were identified from the randomForest ob-
ject on the basis of a phenotype-specific MDA.

Phenomic trait covariation

We extracted ionomics, metabolomics, gene expression, and leaf
shape data for the youngest available leaf from the 72-vine set.
Each data modality was summarized along the primary dimen-
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sions of variation using PCA. For each class, we extracted the
top 10 PCs and fit Pearson correlations across all pairs of PCs at
each phenological stage. P-values from computed correlations
were corrected using the FDR method from the package “stats”
[78]. Correlations and their strengths were visualized using the
R package “igraph” [84]. Example correlations were reported af-
ter running 10,000 bootstrapped subsamples of 90% of data for
paired phenotypes. From the distribution of estimated correla-
tion coefficients, confidence intervals were computed from the
0.025 and 0.975 quantiles. A subset of example correlations were
plotted using the R package ggplot2.

Availability of Source Code and Requirements

All code to replicate the findings of this article including shell
scripts for RNAseq analysis and Jupyter Notebooks for data anal-
ysis in R can be found on the Vitis Underground GitHub:

Project name: mt vernon 2017 leaf
Project home page: https://github.com/PGRP1546869/mt ver

non 2017 leaf
Operating system: Platform independent
Programming language: R and Shell
Other requirements: R requirements are listed in the Jupyter

Notebooks. Shell requirements: trimmomatic v0.36, bbmap (11
February 2019), STAR v2.7.1a, htseq-count v0.11.2

License: GNU GPL 3.0
Any restrictions to use by non-academics: None

Data Availability

Raw metabolomics data are available at MetaboLights, acces-
sion MTBLS2831. Gene expression data are available in the Se-
quence Read Archive under BioProject PRJNA674915. All other
data supporting this article including ionomics, partially pro-
cessed metabolomics, leaf scans, leaf landmarks, physiology,
and weather data are available from figshare [85–89]. Other data
further supporting this work are openly available in the Giga-
Science repository, GigaDB [90].

Additional Files

Supplementary Figure S1. Experimental design. (A) Vineyard
map. The vineyard features a randomized block design where
“Chambourcin” is grown ungrafted and grafted to 3 rootstock
genotypes: 1103P, 3309C, and SO4. Each row is treated with 1
of 3 irrigation treatments: full replacement of evapotranspira-
tion, reduced-deficit, or no replacement of evapotranspiration.
Each cell of the vineyard contains 4 replicate grafts. (B) Pheno-
type sampling scheme across the 4 replicates in a cell. For ex-
ample, the top panel (purple) shows all 4 vines in the first cell
of Row 8 in Block D. From each vine in that cell, ionomics and
leaf shape were sampled. In contrast, the bottom panel shows
the first cell in Row 8 in Block A. Here, the first and fourth repli-
cates were sampled for ionomics and leaf shape while the sec-
ond and third replicates were sampled for all phenotypes. All
vines (288) were sampled for ionomics and leaf shape. The mid-
dle 2 vines in the front half of the vineyard (72) were addition-
ally sampled for metabolomics, gene expression, and physiol-
ogy. (C) Phenotype sample scheme within a vine (along a shoot).
For each plant, young leaves were sampled for ionomics, leaf
shape, and gene expression. Middle leaves were sampled for io-
nomics, leaf shape, metabolomics, and physiology. Older leaves
were sampled for ionomics and leaf shape. Samples for ionomics

and leaf shape were taken from the same shoot. All other phe-
notypes were sampled from independent shoots. (D) Rootstock
relatedness. Each of the rootstocks in this trial shares a parent
species with a different rootstock. 1103P is a cross between V. ru-
pestris and V. berlandieri. 3309C is a cross between V. rupestris and
V. riparia. SO4 is a cross between V. riparia and V. berlandieri. The
parent that is shared between each pair of rootstocks is high-
lighted. This figure is partially reproduced from [19] available un-
der a Creative Commons license (CC BY 4.0).
Supplementary Figure S2. Quality and validity assessment of 3′

RNAseq data. (A) A survey of recently annotated circadian clock
orthologs from the grapevine genome annotation [44]. Orthologs
surveyed included the morning-phased RVE1 and LHY, evening-
phased LUX and ELF4, and the night-phased TOC1. (B) A survey
of genes with housekeeping domains related to IPR000626 (ubiq-
uitin) and IPR004000 (actin).
Supplementary Figure S3. Patterns of ion covariation change
over experimental treatments. Correlation networks showing
patterns of ion covariation across phenological stages and shoot
position. Nodes of the network are connected if they are sig-
nificantly correlated (Pearson, FDR; padj < 0.05). Edge thickness
is proportional to the strength of correlation (multiplied by 16
for visibility). Edge color reflects the direction of the correla-
tion, where blue edges indicate positive correlations and orange
edges indicate negative correlations.
Supplementary Figure S4. Patterns of variation contributing to
gene expression linear discriminants (LDs). (A) Projections of
leaf gene expression samples into the first 2 dimensions of an
LD space trained to maximize variation between phenological
stages, rows in the vineyard, and rootstock genotype. For each
LD, the PCs that loaded significantly (>1.96 SD from the mean
loading) are listed in order of loading magnitude. (B) Distribution
of the top loading PCs onto LD1 and LD2 for each of the trained
models.
Supplementary Figure S5. Patterns of variation in leaf shape are
subtle. (A) Percent variation captured in linear models fit to each
of the top 20 principal components (PCs) of leaf morphology.
Presence of a cell indicates that the model term (top) was sig-
nificant for that PC (left, percent variation explained by the PC
in parentheses). (B) Composite leaf traces for the main rootstock
genotype effect identified on PC1.
Supplementary Figure S6. Example correlations within and be-
tween phenotyping modalities over the course of the season. (A)
Example correlation showing a strong within-modality correla-
tion between the ionomics gPC1 and gPC2 at anthesis. Pearson
correlations by phenological stage and CIs derived from 10,000
random 90% draws are shown for each panel. Generally speak-
ing, CIs overlapping with 0 were not accepted as significant.
(B) Example correlation showing one of the stronger between-
modality correlations between the gene expression gPC4 and
morphology (shape) sPC3 at veraison. (C) Example correlation of
a relationship that is present multiple times over the course of
the season between metabolomics mPC3 and gene expression
gPC6 at both veraison and harvest. (D) Example correlation that
is dynamic over the course of the growing season between the
ionomics mPC3 and mPC6.
Supplementary Figure S7. Phenomic covariation varies over
rootstock genotype. Correlation networks showing patterns of
covariation within and between phenotyping modalities. Nodes
of the network are connected if they are significantly correlated
(Pearson, FDR; padj < 0.05). Edge thickness is proportional to the
strength of correlation (multiplied by 16 for visibility). Edge color
reflects the direction of the correlation, where blue edges in-
dicate positive correlations and orange edges indicate negative

https://github.com/PGRP1546869/mt_vernon_2017_leaf
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correlations. Modalities are indicated by a leading character and
node color: ionomics (iPCs; purple), metabolomics (mPCs; pink),
gene expression (gPCs; yellow), leaf shape (sPCs; green). Network
topologies are shown for (A) ungrafted, (B) 1103P-grafted vines,
(C) 3309C-grafted vines, and (D) SO4-grafted vines.

Supplementary Note 1. Supplemental analaysis of the irriga-
tion treatement. This file contains the results of supplemental
analysis of the irrigation treatment as it related to seasonal rain-
fall in the vineyard. In the Note, we show that rainfall more than
made up the difference of the reduced-deficit and droughted ir-
rigation treatments leading to no measureable effect from irri-
gation.

Supplementary Note S1.

Abbreviations

bp: base pairs; CI: confidence interval; DGE: differential gene
expression; DPI: dots per inch; FDR: false discovery rate; GPA:
generalized Procrustes analysis; gPCA: gene expression PCA; LC-
MS: liquid chromatography–mass spectroscopy; MS: mass spec-
troscopy; iPCA: ionomics PCA; IQR: interquartile range; LDA: lin-
ear discriminant analysis; LD: linear discriminant; MDA: mean
decrease in accuracy; mPCA: metabolomics PCA; m/z: mass to
charge ratio; pajd: adjusted P-value; PAM: pulse amplitude mod-
ulated; PCA: principal component analysis; PC: principal compo-
nent; rt: retention time; sPCA: shape (morphology) PCA.
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metabolic profiling of Cabernet Sauvignon and Merlot culti-
vars during grapevine berry development and network anal-
ysis reveals a stage- and cultivar-dependent connectivity of
primary metabolites. Metabolomics 2016;12:39.

54. Dal Santo S, Fasoli M, Negri S, et al. Plasticity of the berry
ripening program in a white grape variety. Front Plant Sci
2016;7:970.

55. Zamboni A, Di Carli M, Guzzo F, et al. Identification
of putative stage-specific grapevine berry biomarkers
and omics data integration into networks. Plant Physiol
2010;154(3):1439–59.

56. Dal Santo S, Tornielli GB, Zenoni S, et al. The plasticity of
the grapevine berry transcriptome. Genome Biol 2013;14:
r54.

57. Chitwood DH, Rundell SM, Li DY, et al. Climate and devel-
opmental plasticity: Interannual variability in grapevine leaf
morphology. Plant Physiol 2016;170(3):1480–91.

58. Chitwood DH, Mullins J, Migicovsky Z, et al. Vein-to-blade ra-
tio is an allometric indicator of climate-induced changes in
grapevine leaf size and shape. Am J Bot 2021;108(4):571–9.

59. Bravdo B. Effect of mineral nutrition and salinity on grape
production and wine quality. Acta Hortic 2000;512:23–30.

60. Brunetto G, Melo G, Toselli M, et al. The role of mineral nutri-
tion on yields and fruit quality in grapevine, pear and apple.
Rev Bras Frut 2015;37(4):1089–104.

61. Gautier A, Cookson SJ, Hevin C, et al. Phosphorus acqui-
sition efficiency and phosphorus remobilization mediate
genotype-specific differences in shoot phosphorus content
in grapevine. Tree Physiol 2018;38:1742–51.

https://sourceforge.net/projects/bbmap/
https://www.fs.fed.us/psw/publications/documents/psw_gtr184/035_ShackelGross.pdf


Harris et al. 17

62. Canas S, Assunção M, Brazão J, et al. Phenolic compounds in-
volved in grafting incompatibility of Vitis spp: development
and validation of an analytical method for their quantifica-
tion. Phytochem Anal 2015;26(1):1–7.

63. Prodhomme D, Valls Fonayet J, Hévin C, et al. Metabolite pro-
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