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A B S T R A C T   

We separated a novel functional peptide IFPPKPKDTL from porcine plasma hydrolysate by chromatography, 
HPLC, and identified by Q Exactive LC-MS/MS. Results showed that IFPPKPKDTL had a significant ability of ACE 
inhibition (76.6%) likely due to the presence of hydrophobic, aromatic, and acidic amino acids that can inac-
tivate ACE by binding Zn2+, providing a hydrogen atom to maintain the link between ACE and the peptide. 
Furthermore, the ACE inhibition of synthetic IFPPKPKDTL was improved by 15.6% after in vitro digestion. 
Additionally, the systolic blood pressure and diastolic blood pressure of spontaneously hypertensive rats gavaged 
by the peptide (30 mg/kg). Thereby, ACE inhibitory peptide IFPPKPKDTL from porcine plasma was stable and 
has potential functional value.   

Practical Application 

A novel of hypotensive peptide was isolated from porcine plasma 
hydrolysates and its sequence was identified by Q Exactive LC-MS/MS. 
The ACE inhibition of the peptide shown it had significant hypoten-
sive properties. Moreover, the ACE inhibitory stability of the peptide 
was determined by in vitro digestion. Furthermore, spontaneously hy-
pertensive rat (SHR) also was used to confirm the hypotensive properties 
of the peptide in vivo. The results demonstrated a novel hypotensive 
peptide, which can provide new materials of hypertensive drugs and 
promote the application of porcine plasma in functional food. 

1. Introduction 

Animal blood from slaughterhouses is a useful source of protein and 
bioactives for those who include pork and pork products in their diet. 
Plasma proteins, including fibrinogen, albumin, and globulins, making 
up approximately 60% of blood, can be used as functional components 
in food engineering (Jin et al., 2020). Pigs occupy a large global market 
that has quadrupled in recent decades and is expected to continue to 
grow over the next three decades (Luis Lassaletta, et al., 2019), but 
exploitation of waste streams from pork production have not been 
considered extensively. Porcine plasma hydrolysates (PPH) demonstrate 

many bioactivities due to short sequences peptides (2–20 amino acids), 
which could be used in functional food products, thereby adding value 
to a waste stream from this food chain(Bernardini et al., 2011; Kim et al., 
2018). 

Hypertension defined as systolic anddiastolic blood pressure (SBP/ 
DBP) higher than 140/90 mmHg respectively, is a factor of cardiovas-
cular disease together with obesity, diabetes, and high blood lipids, 
which is a significantpublic health concern and can cause myocardial 
infarction, stroke and so on (Srikanth and Deedwania, 2016; SharifiRad 
et al., 2017). About 40% of adults suffer from raised blood pressure and 
more than 30% of them suffer from complications such as diabetes, 
which had reported by Norris et al (2020). Renin-angiotensin system 
(RAS), as one of the blood pressure regulation systems, involves two 
criticalenzymes called angiotensin I converting enzyme (ACE) and renin 
(Patricia et al., 2013). Angiotensinogen is firstly converted into 
angiotensin-I by hydrolysis of renin, and then it is cleaved to produce 
angiotensin-II by ACE, which can control blood pressure receptors by the 
combination between angiotensin-II and angiotensin I (Rong et al., 
2014). Therefore, inhibiting ACE activity in hypertension treatment is 
the most effective and commonly used method, such as ACE inhibitors. 
Herrera Chalé et al. (2014) had reported that ACE inhibitors could 
significantly reduce the morbidity and mortality of patients with 
myocardial infarction or heart failure. 
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However, ACE inhibitors may cause skin rash, angioedema, diarrhea, 
cough and dizziness, especially antihypertensive drugs, such as captopril 
tablets (Herrera Chalé et al., 2014). Moreover, because patients with 
hypertension usually require life-long medical treatment, people have 
been paying attention to the isolation and identification of ACE inhibi-
tion, which can be obtained from various food sources to decrease its 
side effects. Martina et al. (2017) found functional components in pork 
protease hydrolysates. Michio et al. (2009) also reported the identifi-
cation of pro-drug type ACE inhibitory peptide sourced from porcine 
myosin B. Additionally, the active peptides from different foods usually 
attract more attention because of their small molecular weight, easy 
absorption, and almost no toxic side effects. Ji et al. (2020) reported that 
flaxseed peptides had anexcellentability to lower blood pressure. ACE 
inhibitory peptide Lys-Arg-Val-Ile-Gln-Try was isolated and identified 
from porcine skeletal myosin B, which had reported by Muguruma et al 
(2009). While the variety of amino acid sequence combinations can 
influence their functions, the peptide sequences that can lower blood 
pressure need to be discovered and confirmed one by one. Therefore, 
this manuscript hydrolysate porcine plasma and obtained a new ACE 
inhibitory peptide from the hydrolysates by Chromatography, HPLC and 
Q Exactive LC-MS/MS. Furthermore, in vitro digestion and spontane-
ously hypertensive rats (SHR) were used to ensure its functional stability 
and hypotensive effect in vivo. 

2. Material and methods 

2.1. Materials and chemicals 

Fresh pig blood from several adult healthy pigs (6–7 months old) in 
local slaughterhouses was collected. 24 female spontaneously hyper-
tensive rats (SHRs) were obtained from Beijing Vital River Laboratory 
Animal Technology Co., Ltd (Beijing, China) and housed in Animal 
Experiment Center at Zhejiang University of Traditional Chinese Medi-
cine. The rats lived in the animal laboratory until rats increased to 
150–170 g. Trypsin and pepsin were purchased from Sinopharm 
Chemical Reagent Co., Ltd (Shanghai, China). The specific activity of 
trypsin and pepsin were greater than 1,000–2,000 BAEE units/mg solid. 
Angiotensin Converting Enzyme(ACE) from rabbit lung and N-Hippuryl- 
His-Leu hydrate (HHL) were purchased from Sigma-Aldrich (Shanghai) 
Trading Co.Ltd (Shanghai, China). The specific activity of ACE was 
greater than 2.0 units/mg protein. The purity of HHL is more than 98%. 

2.2. Methods 

2.2.1. Enzymatic hydrolysis of pig plasma 
We were obtained fresh porcine blood from the slaughterhouse and 

5% sodium citrate was added to prevent coagulation. The pig blood was 
centrifuged for 20 min at 4 ◦C to separate plasma and blood cells. The 
pig plasma was adjusted to pH 8 after 15 min in a 95 ◦C water bath, and 
then 0.2% alkaline protease was added to hydrolyze the mixture at 55 ◦C 
for 7 h, with enzymatic hydrolysates collected at 1, 2, 3, 4, 5, 6, and 7 h. 
The enzyme in the hydrolysate was inactivated by bathing in water at 95 
℃ for 15 min. After that, the hydrolysate was freeze-dried. The lyoph-
ilized hydrolysates were porcine plasma polypeptide powder. 

2.2.2. Determination of structure 
According to the methods of Li, Zhan, et al. (2020), the structural 

properties of proteins were analyzed using Fourier Transform Infrared 
Spectroscopy (FT/IR-4700, Jasco Corp., Tokyo, Japan). The dried 
plasma polypeptide powder was mixed with KBr powder in a ratio of 
1:20. The FT/IR spectra were collected over the range of 500–4,000 cm 
− 1 with a resolution of 4 cm − 1. The obtained datas were analyzed 
with Peakfit (Version 4.12, Systat Software Inc., San Jose, California) to 
evaluate plasma polypeptider secondary structure. 

2.2.3. Isolation, purification and identification of thepolypeptide 
Isolation, purification and analytical procedures were based on the 

method of Zhan J. et al (2021). The peptide solution was firstly sepa-
rated by G-15 gel chromatography (ZX-CXG-800Chromatography Cab-
inet, Shanghai Zhixin Experimental Instrument Technology Co., Ltd.). 
The Sephadex G-15 powder was mixed with plenty of water and soaked 
for 24 h. Pack G-15 Sephadex into a column(diameter: 1.6 cm, length: 
60 cm, Shanghai UNTOP Instrument Co.Ltd). According to the chro-
matographic peaks, the peptide solution was divided into multiple 
components, and they were collected. The collected components were 
subjected to functional screening, and the most functional components 
were selected for separation and purification by HPLC (Agilent High 
Performance Liquid Chromatography 1260. Chromatographic column: 
Agilent HC-C18 4.5 mm*250 mm). The obtained components were 
subjected to functional screening again to selectfunctional components 
and the most functional component was identifiedby Q Exactive LC-MS/ 
MS. The results of peptide sequences with strong signals and reliable 
protein sources were selected for synthesis in Sangong Biotech Co., Ltd 
(Shanghai, China). The purity of the synthetic peptides was greater than 
98%. 

2.2.4. ACE inhibition 
The method from Siriporn et al (2018) with appropriate modification 

was used. 80 μL of 5 mmol/L HHL and 30 μL of porcine plasma poly-
peptide gradient solution were added to the centrifuge tube, placing 5 
min at 37◦ C water bath. Then 40 μL of the ACE enzyme was added to 
incubate at 37◦ C water bath for 1 h. After incubation, 150 μL of 1 M 
hydrochloric acid was added to terminate the reaction. And then 700 μL 
water was added. 30 μL of ultrapure water was as a control group. 
During the reaction, 150 μL of 1 M hydrochloric acid was added 
immediately as a blank group after 40 μL of the ACE enzyme. The mixed 
liquid was filtered through a 0.22 μm aqueous phase filter, and the 
amount of hippuric acid produced was measured by high-performance 
liquid chromatography. The conditions of column (CAPCELIPAKCI-
SAQS-546150 mm) were 30 ◦C, mobile phase A (water + 0.2% formic 
acid), mobile phase B (acetonitrile), flow comparison Example A: B =
85%: 15%, flow rate 1.0 mL/min, detection wavelength 228 nm, in-
jection volume 100 μL, and analysis time 12 min. 

The hippuric acid absorption peak appeared at about 6.4 min and the 
inhibition rate of the ACE enzyme was calculated according to the peak 
area of the hippuric acid absorption peak. This experiment was repeated 
three times. The calculation formula is: 

ACE inhibition rate(%) =
(V Control − V Sample)
(V Control − V Blank)

*100 

Where: 
V Control: horse uric acid absorption peak of the control group. 
V Blank: horse uric acid absorption peak of the blank group. 
V Sample: Horse uric acid absorption peak of the sample group. 

2.2.5. In vitro digestion experiments 
According to the method of Li et al (2021), with some modifications. 

5 mL of the synthetic peptidesolution (1 mg/mL) was adjustedto pH 2.0. 
Then the 9,600 U/mL pepsin was added for incomplete digestion at a 
speed of 120 rpm/min for 1 h. After that, the mixture was adjusted to 
7.0, and 12,000U/mL trypsin was added for further digestion at a speed 
of 120 rpm/min for 2 h. After the digestion, the enzyme was inactivated 
by boiling water bath for 15 min. Then, the functions were detected 
according to the methods of 2.2.3. This experiment was repeated three 
times. 

2.2.6. SHR model experiments 
24 SHR rats were randomly divided into 4 groups, 6 in each group. 

The SHR rats were synthetic peptide dose group given. We gave SHR rats 
the different doses of peptide solution (low dose 10 mg/kg, high 30 mg/ 
kg), captopril (10 mg/kg), which were synthetic peptide group and 

J. Zhan et al.                                                                                                                                                                                                                                    



Food Chemistry: Molecular Sciences 4 (2022) 100101

3

positive control group respectively, and the model control group (SHR 
rats) was given the same amount saline. Each rat was weighed once a 
week, and the amount of gavage was adjusted according to the weight. 
In the experiment, each rat’s blood pressure was measured at 0, 2, 4, 6, 
and 8 h after gavage, including systolic blood pressure (SBH) and dia-
stolic blood pressure (DBH). 

2.3. Statistical analysis 

Statistical analysis was performed by one-way analysis of variance 
(ANOVA), and significant differences were analyzed by Duncan multiple 
comparisons (p < 0.05) using software SAS8.1 (SAS Campus Drive, Cary, 
NC USA). The results were considered statistically significant at p <
0.05. 

3. Results and discussion 

3.1. Selection of enzymatic hydrolysis time 

Plasma proteins contain many proteins, such as hemoglobin, fibrin-
ogen, and so on, which have hypotensive function, especially its hy-
drolysate (Bernardini et al., 2011). Enzymatic hydrolysis can destroy the 
peptide bond of protein to produce peptides, including some amino acid 
residues, which play mean role of function. Additionally, hydrolysis 
degree (DH) can influence the length and contents of peptides contain-
ing some groups with function, such as O–H, C = O and C-O groups (You 
et al., 2009). To isolate hypotensive peptides with low molecular weight, 
high activity and easy absorption better, the enzymolysis time should be 
ensured for high hydrolysis degree and more small peptides. Table 1 
shown the hydrolysis degree of hydrolysates raised with the enzymatic 
hydrolysis time, and reached the maximum after enzymatic hydrolysis 5 
h. Moreover, Fig. 1 and Table 1 also shown that hydrolysis could pro-
duce small peptides (<8 kDa). The content of peptides increased and the 
length of peptides decreased respectively, when hydrolysis time 
increasing until enzymatic hydrolysis time reached 5 h. Additionally, 
hydrolysis did not eliminate some active groups (Fig. 2), like O–H, C-O 
and C = O groups represented by the absorption peak at 3289.12 cm− 1, 
1129.43 cm− 1 and 1695.78 cm− 1, respectively. Therefore, the hydro-
lysate of 5 h enzymolysis was used to separate hypotensive peptide. 

3.2. Isolation and identification of ACE inhibitory peptide 

ACE has two active binding sites, one of them which contains Zn2+ is 
the necessary binding site of the influentialgroup of the ACE inhibitor. 
The activity of ACE will disappear if they bind. Fig. 3c shown the hy-
drolysate had better ACE inhibition (91.32%), which caused by that the 
enzymatic hydrolysis released some active amino acid and exposed some 
residues with some groups, like carboxyl, which could combine with 
Zn2+, inactivating ACE, which could inhibit the effect of ACE to lower 
blood pressure. Moreover, some hydrophobic amino acids of peptides 
produced by hydrolysis could also bind to the catalytic site of ACE and 
influenced the effect of enzyme, leading to inhibition of ACE (Wijesekara 
and Kim, 2010; Alemán et al., 2011). 

After separation, the results (Fig. 3a) shown two fractions P1 and P2. 
In these two groups, P1 had better ACE inhibitory capability (82.72%) 
than that of P2 (63.39%) from(Fig. 3c). Therefore, based on the current 
experimental results, P1 was further separated by HPLC. As a sensitive 
and rapid method, HPLC can separate smaller molecular weight peptide 
with molar weights below 1 kDa (López García et al., 2006), which was 
used to isolate P1. Fig. 3b shown 9 components P1-1 to P1-9 were iso-
lated and the P1-8 had the best ACE inhibition (97.37%) in the 9 com-
ponents (Fig. 3c). To further explore the relationship of peptides 
structure and ACE inhibition ability, Q Exactive LC-MS/MS was used to 
identify the peptide sequence of P1-8. 

Q Exactive LC-MS/MS can rapidly resolve peptide components and 
identify their structure and sequence by ion source, elec-
tricfieldandmagneticfield (Shazly, et al., 2017). Q Exactive LC-MS/MS 
analyzed the component P1-8. After analysis, peptide with 10 deter-
mined amino acids identified by Q Exactive LC-MS/MS was synthesized 
(Fig. 4a and b). Moreover, it showed better ACE inhibition capability 
(76.59%) in Fig. 4c. Since the active site of ACE cannot accommodate 
large peptides, the length of amino acid residues could influence ACE 
inhibition, Blanca et al. (2011) also had reported that peptide with 2–12 
amino acids could play mean role of ACE inhibition. While the sequences 
and species of amino acid in peptides also affected the ACE inhibition 
(Wang et al, 2017). The presence of hydrophobic amino acids phenyl-
alanine (F), leucine (L), isoleucine (I), proline (P), which could combine 
with ACE to inhibit its activity (Wijesekara and Kim, 2010). Gu and Wu 
(2013) also had reported 5 tripeptides IVF, LLF, LNF, LSW, LEF con-
taining hydrophobic amino acids had high ACE inhibitory activity by 
using Q Exactive LC-MS/MS combined with quantitative structur-
e–activity analysis. 

Furthermore, the stereo conformation of peptide also could influence 
the combination of peptide and ACE and the ACE inhibitory peptides 
mainly combined with the amino acid residues in the active center of the 
ACE molecule, such as Glu384, Tyr520, His387, etc. by hydrogen bonds 
(Wang et al, 2017). The different sequences of peptides could influence 
the effect of the combination of peptide and ACE.Rawendra et al (2014) 
conducted simulated molecular docking of turtle protein-derived ACE 
inhibitory peptide IVR and found that the role of hydrogen bonds be-
tween the C-terminus of IVR and the amino acid residues Lys511, 
Tyr520 of tACE molecule were related to its degree of inhibition. Li et al 
(2014) found that the amino acid residues Arg522 and Asp358 of ACE 
could form stable hydrogen bonds with the ACE inhibitor peptide 
ACKEP. Zhou et al (2012) found that LKP and IKP, both as tripeptides, 
had different ACE inhibition rates of L and I amino acid residues at the N- 
terminus and cACE, which affected the interaction between peptides and 
ACE. Therefore, the hydrophobic amino acids L appeared at C-terminal 
(Fig. 4b), which might better combine with the amino acid residues of 
ACE, playing the role of inhibiting, and Paiva et al.(2016) also found the 
same conclusion. 

Additionally, the amino acid F, P with imidazole ring and K, L with 
–NH2 and –CH3 groups could provide hydrogen atom to form hydrogen 
binding, enhancing the stable of combination between ACE and 
IFPPKPKDTL. Moreover, D had carboxyl which could inhibit ACE by 
binding to Zn2+. In addition, aromatic amino acids K, L and acidic amino 
acid D also could chelate with other peptides and metal ions (Jae-Young 
et al, 2007), which could result in that peptide chelate combining with 
other binding sites of ACE played better steric hindrance to the binding 
of angiotensin I and ACE to prevent ACE from working. Wang et al 
(2017) also reported the 21-peptide derived from tuna had much higher 
ACE inhibitory activity than tripeptides derived from rapeseed oil, 
which might cause by that macromolecules could play a steric hindrance 
to ACE. 

3.3. ACE inhibitory properties of IFPPKPKDTL after digestion 

The ACE inhibitor peptide can exert the hypotensive effect in the 
body if it enters the bloodstream in an active form. Thus, peptide needs 

Table 1 
Hydrolysis degree and molecular weight of Hydrolysates.  

Hydrolysis time (h) Hydrolysis degree (%) Mn Mw 

1 10.34 ± 0.36e 5749 5898 
2 14.23 ± 0.44d 5609 6256 
3 20.06 ± 0.56c 5518 6804 
4 25.66 ± 0.66b 5507 6947 
5 32.93 ± 0.58a 5451 6991 
6 33.45 ± 0.72a 5442 6967 
7 33.96 ± 0.61a 5414 7060 

Note: Different letters represent significant difference (p < 0.05); Mn represents 
average molecular weight, Mw represents peak areas. 
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Fig. 1. The GPC of porcine plasma hydrolysates. Note: 1, 2, 3, 4, 5, 6, 7 represent the enzymatic hydrolysis time (h).  
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to resist the hydrolysis of gastrointestinal enzymes and maintain its 
biological activity through the intestinal wall after oral administration 
(Escudero et al, 2010). Thereby the biological activity of peptides can be 
activated or inactivated due to the degradation of enzymes. After in vitro 
digestion, IFPPKPKDTL shown better ACE inhibitory capability 
(88.53%) than undigested peptide (76.59%) in Fig. 4c, meaning that the 
ability of ACE inhibition of IFPPKPKDTL was stable in the digestive 
environment of the gastrointestinal tract. The peptide bond composed of 
aromatic amino acids or acidic amino acids were the main part of pepsin 
action, while the trypsin specifically acts on the peptide bond composed 
of essentialamino acids arginine and lysine (K) carboxyl groups (Wen et 
al, 2015). Thereby, pepsin could destroy the peptide binding of F, P and 
D, while trypsin could destroy that of K, and the smaller peptides IFP, 
PK, DTL and free amino acids P, K, D might produce to continue to play 
the role of ACE inhibition due to the dissociation of IFPPKPKDTL. 
Moreover, tripeptides or dipeptides could better bind to the active site of 
ACE (Blanca et al., 2011) and free amino acids P, K, D had higher 
mobility, which could better provide hydrogen atom and chelate with 
other amino acids and Zn2+ (Jae-Young et al, 2007) to inhibit ACE ac-
tivity. Stuknytė et al. (2015) had reported the type and number of ACE-I 
peptides in cheeses changed from VPP, IPP, RYLGY, RYLG, AYFYPEL, 
AYFYPE, LHLPLP and HLPLP to only VPP, IPP, HLPLP and LHLPLP after 
in vitro static gastrointestinal digestion, which meant the digestion could 
enhance or eliminate the ACE inhibitory capability of the peptide by 
dissociation. Escudero et al (2014) also had reported the ACE inhibitory 
peptide IAGRP of Spanish dried ham retained almost the same ACE 
inhibitory activity before and after in vitro digestion, which caused by 
the peptide was partially degraded into smaller peptides, maintaining 
antihypertensive biological activity. Hwang (2010) also had reported 
that small ACE inhibitory peptides obtained from tuna cooking juice still 
could maintain the activity after digestion. 

3.4. Hypotensive effects of peptide IFPPKPKDTL under SHR model 

SHR is recognized internationally as the most similar animal model 
of hypertension to humans, especially in cardiovascular complications, 
the pathogenesis of hypertension (Yang et al, 2019). Therefore, SHR can 
be used to select and develop antihypertensive drugs. Fig. 5a show-
edthatthe positive control captopril (10 mg/kg) could decrease systolic 
blood pressure (SBP) and diastole blood pressure (DBP) after SHR took it 

for 2 h. Moreover, the antihypertensive effect reached maximum after 4 
h that the SBP and DBP decrease by 10.52% and 14.91% respectively, 
while the effect began to weaken after 6 h.However, the peptide 
IFPPKPKDTL (30 mg/kg) could lower SHR blood pressure and reached 
the maximum effect after 6 h, and the effect of the peptide was better 
than that of Captopril. Moreover, the best hypotensive effect of the 
peptide (30 mg/kg) with 6 h improved by about 33.33% in SBP and DBP, 
comparing with Captopril (10 mg/kg) with 4 h, which indicated that the 
peptide IFPPKPKDTL had the hypotensive effect comparable to the 
positive control Captopril. Moreover, IFPPKPKDTL could be digested to 
smaller peptides and free amino acids by the gastrointestinal tract and 
quicklyenter the blood, enhancing its function (Fig. 4c). Additionally, 
blood pressure was mainly regulated by the renin-angiotensin aldoste-
rone system (RAAS), which contained two antagonistic pathways acti-
vated by ACE and ACE2: ACE-AngII-AT-1R and ACE2-Ang- (1–7) -MAS- 
R, which played the opposite role in maintaining cardiovascular ho-
meostasis. ACE can convert AngI into the vasoconstrictor AngII, medi-
ating its biological function by binding to two G protein-coupled 
receptors: AT1 and AT2. The receptor AT1 and AT2 are related to 
vasoconstriction and vasodilation, respectively. While ACE2 can pro-
duce the vasodilator Ang-(1–7), inhibiting AngII-induced vasoconstric-
tion by binding the Mas receptor, lowering blood pressure (Wu et al., 
2016). The peptide IFPPKPKDTL with the hypotensive effect might be 
caused by that it might bind to AngII, inhibiting the vasoconstriction 
induced by the combination of AT1 and AngII. Peptides RPYL from 
lactoferrin could also lower blood pressure as an AT1 receptor antago-
nist, reported by Fernandez-Musoles et al (2013). In addition, 
IFPPKPKDTL also could decrease ACE (Fig. 4c), lowing blood pressure 
by inhibiting the role of the pathway ACE-AngII-AT-1R. SAGGYIW and 
APATPSFW from wheat gluten could regulate ionic and hydrophobic 
interactions at the catalytic site of ACE, decreasing the ACEactivity to 
lower blood pressure, which had been reported by Zhang et al (2020). 
He et al (2017) also found dendrobium flowers aqueous extract could 
inactivate ACE to decrease AngII, lowering blood pressure. Tao (2019) 
also had reported synthetic ACE polypeptides from Chinese Wolfberry 
could regulate blood pressure by reducing ACE to weaken the effect of 
the pathway of ACE-AngII-AT-1R. 

Fig. 2. FT/IR spectrum of different enzymatic hydrolysis time. Note: 1, 2, 3, 4, 5, 6, 7 represent enzymatic hydrolysis 1, 2, 3, 4, 5, 6, 7 h respectively.  
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Fig. 3. ACE inhibition of peptide after chromatography and HPLC. Note: Different letters represent significant difference (p < 0.05); In the Figure a, b and c, P1, P2 
represent the components corresponding to the different absorption peaks of chromatography; In the Figure c, P represents hydrolysate after 5 h enzymatic hy-
drolysis. P1-1 to P1-9 represent the components corresponding to the different absorption peaks of HPLC of P1. 
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Fig. 4. ACE inhibition of synthetic peptide IFPPKPKDTL before and after digestion. Note: Different letters represent significant difference (p < 0.05).  
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4. Conclusion 

The research has shown that the porcine plasma hydrolysate had a 
good ACE inhibitionrate (91.32%) due to active amino acids and car-
boxylbinding to Zn2+ to inactivate ACE. The fraction P1 from PPH also 
had better ACE inhibition (82.72%) in the two fractions isolated by 
chromatography. Moreover, the P1-8 with the best ACE inhibitory 
capability (97.37%) in all components separated by HPLC was purified. 
Additionally, the IFPPKPKDTLwas identified and synthesized from the 
component P1-8, whichhad a good ACE inhibition rate (76.59%) due to 
hydrophobic amino acids and aromatic amino acids providing hydrogen 
atom to enhance the combination of peptide and ACE. Moreover, it still 
showed ACE inhibitory properties (88.53%) after in vitro digestion 
because IFPPKPKDTL could be hydrolyzed to smaller active peptides 
and free amino acids. It (30 mg/kg) could also decrease the SBP and DBP 
of SHR to play the role of hypotensive effect by might binding to AngII to 
produce vasodilation and decrease the level of ACE. Thenovel type of 
ACE inhibitory peptide could be potentially used in formulating func-
tional foods. 
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