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Background.  It is unclear whether data-driven machine learning models, which are trained on large epidemiological cohorts, 
may improve prediction of comorbidities in people living with human immunodeficiency virus (HIV).

Methods.  In this proof-of-concept study, we included people living with HIV in the prospective Swiss HIV Cohort Study with 
a first estimated glomerular filtration rate (eGFR) >60 mL/minute/1.73 m2 after 1 January 2002. Our primary outcome was chronic 
kidney disease (CKD)—defined as confirmed decrease in eGFR ≤60 mL/minute/1.73 m2 over 3 months apart. We split the cohort 
data into a training set (80%), validation set (10%), and test set (10%), stratified for CKD status and follow-up length.

Results.  Of 12 761 eligible individuals (median baseline eGFR, 103 mL/minute/1.73 m2), 1192 (9%) developed a CKD after 
a median of 8 years. We used 64 static and 502 time-changing variables: Across prediction horizons and algorithms and in con-
trast to expert-based standard models, most machine learning models achieved state-of-the-art predictive performances with areas 
under the receiver operating characteristic curve and precision recall curve ranging from 0.926 to 0.996 and from 0.631 to 0.956, 
respectively.

Conclusions.  In people living with HIV, we observed state-of-the-art performances in forecasting individual CKD onsets with 
different machine learning algorithms.

Keywords.   chronic kidney disease; digital epidemiology; HIV; machine learning; prediction.

With the advent of combined antiretroviral therapy, human 
immunodeficiency virus (HIV)–related morbidity and mor-
tality have continuously decreased—with people living with 
HIV (PLWH) having nowadays, under optimal conditions, an 

almost identical life expectancy to the general population [1–
4]. As HIV infection has become a chronic condition, accurate 
prediction of primarily non-HIV-related comorbidities such as 
chronic kidney disease (CKD) have gained importance in the 
individualized care of PLWH [5].

As the occurrence of CKD and of other non-HIV-related 
chronic conditions may be influenced by hundreds of poten-
tially interacting, static and time-changing factors across the 
healthcare continuum, data-rich and well-curated HIV cohorts 
may offer ideal conditions to develop machine learning models 
and to validate their usefulness to optimize personalized pre-
vention and treatment strategies in PLWH. Cohort-based ma-
chine learning is an evolving field in digital epidemiology, which 
has the potential to improve decision support and underlying 
prediction models [6, 7]. Previous prediction models of CKD 
and of other multifactorial conditions may be limited, as it is 
challenging to account for complex interactions and to analyze 
high-dimensional datasets (ie, data collections with a multitude 
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of variables) with standard regression models. Conversely, some 
machine learning prediction models have limited generaliza-
bility to other settings with intransparent predictions for single 
individuals [8].

In the present proof-of-concept study conducted in PLWH, 
we aimed to evaluate different machine learning algorithms and 
modeling strategies for individual CKD prediction to exem-
plify whether machine learning models can be readily trained 
in a high-dimensional cohort setting. The resulting machine 
learning prediction models of CKD onsets may become part of 
an integrated decision support tool for shared decision-making 
and personalization of prevention and treatment strategies in 
PLWH. In a wider context, our investigation may be helpful 
for current large-scale cohorts to assess the feasibility and chal-
lenges with cohort-based machine learning prediction.

METHODS

Swiss HIV Cohort Study

The Swiss HIV Cohort Study (SHCS; www.shcs.ch) is a na-
tionwide, prospective multicenter cohort study with sem-
iannual visits and blood collections with an enrollment of 
> 20 000 HIV-infected adults who live in Switzerland [9]. The 
SHCS is representative of the HIV epidemic in Switzerland [9]. 
A standardized protocol is used in the SHCS for data collection: 
Sociodemographic and clinical data are recorded at study entry, 
and various laboratory tests are routinely performed at registra-
tion. At each follow-up visit, extensive laboratory, clinical, and 
treatment data are recorded. Additional interim laboratory and 
clinical evaluations are recorded, if available. The SHCS is reg-
istered on the longitudinal study platform of the Swiss National 
Science Foundation (www.snf.ch/en/funding/programmes/
longitudinal-studies).

For the training of pragmatic and individualized machine 
learning models, most SHCS variables have been used, but po-
tentially identifying variables (including living/working situ-
ations), information on sexual behavior, variables recorded only 
within a short period, genetic/-omics data, and some metadata 
(eg, name of study nurse) were omitted as defined a priori in 
the study group and as discussed with a national representative 
of PLWH. Where applicable, we followed the Strengthening the 
Reporting of Observational Studies in Epidemiology (STROBE) 
and the Transparent Reporting of a Multivariable Prediction 
Model for Individual Prognosis or Diagnosis (TRIPOD) state-
ments when reporting our study results [10, 11]; furthermore, 
we used the reporting criteria developed by Luo et al [12].

Study Population and Definitions

After 1 January 2002, when calibrated creatinine measurements 
were incorporated into the SHCS, we included HIV-infected in-
dividuals aged ≥ 18 years with a baseline estimated glomerular 
filtration rate (eGFR) >60  mL/minute/1.73 m2—independent 
of antiretroviral treatment regimen/status—and at least 3 

calibrated serum creatinine measurements before 10 October 
2018. Individuals with a baseline eGFR ≤ 60  mL/minute/ 
1.73 m2, < 3 creatinine measurements, and/or < 3  months of 
follow-up were excluded.

We defined the baseline as the first creatinine measurement 
after 1 January 2002. We followed individuals from baseline 
until occurrence of CKD or the last recorded creatinine meas-
urement, whichever came first. However, we used horizons of 
3–12 months for machine learning prediction of CKD onset.

We defined CKD, our a priori primary outcome, as a con-
firmed (over 3  months apart) decrease in eGFR ≤ 60  mL/
minute/1.73 m2, in line with the Kidney Disease–Improving 
Global Outcomes (KDIGO) algorithm and previous large-scale 
investigations on CKD in PLWH [5, 13]. As a measure of kidney 
function, we calculated the eGFR using the well-established 
Chronic Kidney Disease Epidemiology Collaboration equation, 
which has been validated extensively in PLWH [14–17].

All participants in the SHCS provided informed consent and 
the study was approved by the ethical committees of the re-
spective participating centers (Ethikkommission Nordwest und 
Zentralschweiz project number 2017-02252). We report devi-
ations from the study protocol in the Supplementary Appendix.

Predictive Modeling

We trained a set of data-driven machine learning models 
(full models) to predict CKD events within prespecified 
prediction horizons—representing a classification problem, 
which relied on both static and irregularly sampled time 
and event series data. We applied the following 5 machine 
learning algorithms for CKD prediction with single patient 
visits as unit of observation and parameter tuning (selection) 
on the validation set:

1. 	Elastic net is a regularized, linear logistic regression method 
that includes both the lasso (L1) and the ridge (L2) penalty via 
a linear combination [18]. It optimizes the following objec-

tive: max
β, λ,ν

log
N∑

i=1
log p (yi | xi,βi) + λ||β||2 + ν||β||1 where 

{(x1, y1) , (x3, y2) , . . . , (xN , yN)} is the training dataset, 
and β, λ, and ν are the model parameters.

2. 	Random forest models [19] average a collection of 
de-correlated classification or regression trees, in which 
a prespecified number of trees are fitted—each on a sep-
arate bootstrap sample drawn with replacement from the 
training data. We describe the details of the algorithm in 
Supplementary Appendix Table 1.

3. 	Gradient boosting machine [20] is an ensemble approach 
that iteratively adds simple models to the ensemble such that 
in each iteration a new model is trained with respect to the 
updated error of the ensemble learned in the previous itera-
tion. We describe the details of the respective training algo-
rithm in Supplementary Appendix Table 2.

http://www.shcs.ch
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4. 	Multilayer perceptron [21] is a nonlinear machine learning 
approach—representing a feed-forward neural network with 
at least 3 fully connected layers. We used the rectified linear 
unit: f (x) = max (0, x) as activation function.

5. 	Recurrent neural networks (RNNs) are artificial neural net-
works that use a directed graph to model the connections be-
tween the nodes and are thus directly applicable to temporal 
sequence data. We used the “long short term memory” archi-
tecture [22]. We describe the details of the respective training 
algorithm in Supplementary Appendix Table 3.

For comparison with data-driven machine learning models, we 
have manually built logistic regression models (short models) 
for the different prediction horizons—in analogy to the well-es-
tablished full risk score model by Mocroft et al for prediction 
of CKD in PLWH [13]. We used the following predictors: HIV 
exposure through intravenous drug use (yes, no, or unknown), 
hepatitis C coinfection (yes or no), birth year, estimated glo-
merular filtration rate until day of prediction (normalized scale; 
modeled as described for the data-driven machine learning 
models), sex (male or female), CD4 cell count until day of pre-
diction (normalized scale; modeled as described for the data-
driven machine learning models), hypertension (yes, no, or 
unknown), prior cardiovascular disease (yes or no), and dia-
betes mellitus (yes or no). Our manually built logistic regression 
models use the 2 most recent measurements of the considered 
variables along with the summary statistics of all their previous 
measurements.

Dataset Representation

To train our machine learning models, we extracted the an-
onymized study data from the SHCS main database—com-
prising a vast collection of static and time-changing (dynamic) 
variables, which were often irregularly measured as part of the 
clinical routine. The RNN-based methods process sequences of 
inputs and can thus use the visit sequence directly. For the re-
maining machine learning methods, the input information for 
each individual is a concatenation of the information from the 
2 last (most recent) hospital visits and the corresponding sum-
mary statistics (mean, median, maximum, standard deviation) 
from all previous visits. The visit sequence for each patient is 
derived from the considered observation period determined by 
the target prediction horizon, and the last (most recent) visits 
refer to these derived sequences. We describe the detailed data 
representation and missing value imputation strategy in the 
Supplementary Appendix.

Model Evaluation
To evaluate the performance of the different machine learning 
approaches and models, we split all study data into 3 subsets—
namely, a training set, a validation set, and a test set. We cre-
ated the validation and test sets by randomly sampling (without 

replacement) 10% of the study population. The sampling was 
stratified with respect to the follow-up length and CKD status—
that is, 10% of individuals were at first randomly sampled from 
the group of individuals that have developed CKD and then 
10% were randomly sampled from the group of the individuals 
that did not develop CKD. The remaining 80% of the individ-
uals comprised the training set.

We applied each of the described machine learning methods 
to predict CKD events as a set of adjusted hyperparameters to 
deliver accurate predictions on unseen data. We performed the 
model selection/hyperparameter tuning process on the vali-
dation set. Finally, we evaluated the predictive performance of 
the best-performing model for each considered approach on 
the test set (reported in the Results). We considered 4 different 
evaluation scenarios, each with a different prediction horizon—
namely, 90, 180, 270, and 365  days. The prediction horizon 
specifies how many days in advance we aimed to predict the 
occurrence of CKD where the time of diagnosis is determined 
by the second eGFR measurement of the CKD definition used.

Performance Measures
Due to the large CKD imbalance in our dataset (ie, most indi-
viduals did not develop CKD), the classification accuracy was 
not suitable to measure the models’ performance. Therefore, we 
calculated 5 well-established measures for the class imbalance 
scenario; namely, the F-score, precision (ie, positive predictive 
value), recall (ie, sensitivity), area under the receiver operating 
characteristic curve (ROC-AUC), and area under the precision 
recall curve (PR-AUC). The precision, recall, and F-score are 
defined as follows:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F − score =
2 · Precision · Recall

Precision + Recall

where TP denotes the true positives, FP denotes the false posi-
tives, FN denotes the false negatives, and positives refer to the 
minority class (in our case, individuals with CKD onset).

The precision recall curve is a plot of the recall vs the preci-
sion for all possible decision thresholds. As the precision and 
recall focus only on the correct prediction of the minority class 
(ie, CKD), the F-score and the PR-AUC reflect the model’s pre-
diction quality for CKD events. The receiver operating charac-
teristic curve is a widely used plot of the false-positive rate (the 
proportion of false positives out of all negatives) vs the true-
positive rate (the proportion of true positives out of all posi-
tives) for all possible decision thresholds. The ROC-AUC thus 
illustrates the ranking ability in binary classification: An ROC-
AUC of, for instance, 0.80 indicates that 80% of the predictions 
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are correctly classified (for pairs of individuals with and without 
the endpoint). For model selection, we used the F-score for 
the RNN-based approaches and the log loss for the remaining 
approaches.

Due to the time-consuming model selection process, we per-
formed all experiments and computed all relevant evaluation 
metrics for 1 training, validation and test split. We believe that 
our results reflect the predictive quality of the considered ma-
chine learning models, as our test set was fairly large.

RESULTS

Within the study period, 12 761 individuals were included in 
the final analysis—with 10  209 (80%), 1276 (10%), and 1276 
(10%) of participants’ prospectively collected cohort records 
contributing to the machine learning model training, valida-
tion, and test sets, respectively (Figure 1). We describe the main 
characteristics of the study population in Table 1: Overall, 1192 
of 12  761 (9%) individuals developed CKD within the study 
period; the median follow-up in individuals with and without 
CKD was 8 years (interquartile range [IQR], 4–12 years) and 
9 years (IQR, 4–15 years), respectively.

We describe the eGFR distribution of individuals with and 
without CKD in Figure 2: At baseline, eGFR distributions were 
partly overlapping between individuals with and without a sub-
sequent CKD—with increased eGFRs of individuals without 
subsequent CKD onset across prediction horizons. For in-
dividuals with and without subsequent CKD, the overlap in 

eGFR distributions increased over longer prediction horizons. 
Overall, at day of prediction, the frequency of subsequent eGFR 
measurements within 365  days was slightly increased for in-
dividuals with a decreased eGFR of ≤ 60  mL/minute/1.73 m2 
compared to individuals with eGFRs > 60 mL/minute/1.73 m2 
(median, 1.8 [IQR, 1.0–2.5] vs 1.5 [IQR, 0.7–2.3] measurements 
per month, respectively).

We used 64 static and 502 dynamic variables for machine 
learning model development (full models)—including 28 
demographic variables, 159 variables pertaining to treat-
ment information, 93 laboratory variables, and 286 clinical 
variables. Across prediction horizons and machine learning 
algorithms, most models achieved similar predictive per-
formances with ROC-AUCs and PR-AUCs ranging from 
0.926 to 0.996 (ie, 92.6%–99.6% of predictions are correctly 
classified for pairs with and without CKD) and from 0.631 
to 0.956, respectively (Table  2). In regard to ROC-AUCs 
and PR-AUCs, the machine learning models’ classification 
performance can be considered as excellent and moderate 
to excellent, respectively; the PR-AUCs were lower than the 
corresponding ROC-AUCs, as CKD events were relatively 
rare. For comparison with the full machine learning models, 
we have manually built logistic regression models (short 
models) based on well-established predictors (Table  2); in 
most cases, these short models had a worse predictive per-
formance than the full machine learning models for CKD 
prediction.

Patients in the SHCS (until 10 Oct 2018)
N = 20 343

Patients included in the final analysis
N = 12 761

Model training set (80%)
n = 10 209

Model validation set (10%)
n = 1276

Model test set (10%)
n = 1276

Patients excluded:

- Less than 3 creatinine measurements after 1 Jan 2002; n = 7255
- Baseline estimated glomerular filtration ratea ≤ 60 mL/min/1.73 m2; n = 299
- Aged <18 years at baselineb; n = 19
- Less than 3 months of follow-up; n = 9

Figure 1.  Study population. a Calculated using the Chronic Kidney Disease Epidemiology Collaboration equation. b Baseline is defined as the first creatinine measurement 
after 1 January 2002. Abbreviation: SHCS, Swiss HIV Cohort Study.
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Table 1.  Main Characteristics of the Study Population

Characteristic All (N = 12 761)
Individuals Without CKDa  
 (n = 11 569)

Individuals With CKDa  
(n = 1192)

Age, y, median (IQR)

  Baseline 39 (33–46) 48 (33–45) 38 (40–57)

  End of follow-up 49 (41–56) 56 (41–55) 49 (50–65)

Sex       

  Male 9156 (72) 8319 (72) 837 (70)

  Female 3605 (28) 3250 (28) 355 (30)

Race/ethnicity       

  White 9964 (78) 8851 (77) 1113 (93)

  Black 1825 (14) 1783 (15) 42 (4)

  Hispanic 444 (3) 433 (4) 11 (1)

  Asian 482 (4) 458 (4) 24 (2)

  Other/unknown 46 (0.4) 44 (0.4) 2 (0.2)

IDU prior to HIV diagnosis       

  Yes 2287 (18) 2047 (18) 240 (20)

  No 10 408 (82) 9465 (82) 943 (79)

  Unknown 66 (0.005) 57 (0.005) 9 (0.008)

Ever smoked       

  Yes 7906 (62) 7158 (62) 748 (63)

  No 4815 (38) 4372 (38) 443 (37)

  Unknown 40 (0.3) 39 (0.3) 1 (0.1)

Hypertension       

  Yes 729 (5.7) 575 (5.7) 154 (12.9)

  No 11 963 (94) 10 928 (94) 1035 (86.8)

  Unknown 69 (0.5) 66 (0.5) 3 (0.3)

eGFRb, mL/min/1.73 m2, median (IQR)       

  Baseline 103 (90–114) 105 (92–115) 84 (73–96)

  End of study 90 (75–104) 93 (80–106) 55 (50–58)

CD4 count, cells/µL, median (IQR)       

  Baseline 407 (252–597) 410 (255–600) 366 (228–561)

  End of study 615 (426–830) 621 (437–839) 536 (362–759)

Viral load, copies/mL, median (IQR)       

  Baseline 883 (0–35 173) 1040 (0–36 000) 174 (0–23 459)

  End of study 0 (0–0) 0 (0–0) 0 (0–0)

Hepatitis B       

  Positive 510 (4) 464 (4) 46 (4)

  Negative 8208 (64) 7563 (65) 645 (54)

  Unknown 4043 (32) 3542 (30) 501 (42)

Hepatitis C       

  Positive 1407 (11) 1272 (11) 135 (11)

  Negative 10 022 (79) 9142 (79) 880 (74)

  Unknown 1332 (10) 1155 (10) 177 (15)

Ever exposed to TDF       

  Baseline 2259 (18) 2100 (18) 159 (13)

  End of study 9800 (77) 8814 (76) 986 (83)

Ever exposed to ATV/r       

  Baseline 481 (4) 441 (4) 40 (3)

  End of study 3629 (28) 3135 (27) 494 (41)

Ever exposed to LPV/r       

  Baseline 1783 (14) 1577 (14) 206 (17)

  End of study 4043 (32) 3604 (31) 439 (37)

Data are presented as No. (%) unless otherwise indicated. All values are presented at baseline if not stated otherwise. Baseline is defined as the first creatinine measurement after 1 January 
2002. Some potential risk factors are not presented, as these variables were not recorded during the entire study period.

Abbreviations: ATV/r, ritonavir-boosted atazanavir; CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate; HIV, human immunodeficiency virus, IDU, intravenous drug use; 
IQR, interquartile range; LPV/r, ritonavir-boosted lopinavir; TDF, tenofovir disoproxil fumarate.
a Within the observation period.
b Calculated using the Chronic Kidney Disease Epidemiology Collaboration equation.
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For illustrative purposes, we describe in Figure 3 the variable 
importance of the highest-scoring predictors for the gradient 
boosting model (prediction horizon, 180 days). Overall, the eGFR 
information was the most important marker for CKD prediction 
within 180 days. Across prediction horizons, we describe the gra-
dient boosting models’ output and individual key predictors for 3 
complex cases (Table 3); information on predicted outcome prob-
abilities and the individual variable importance can be obtained 
for all applied machine learning algorithms to increase the inter-
pretability/transparency of machine learning models and to po-
tentially personalize prevention and treatment decisions.

The preparation and structuring of our datasets for machine 
learning training required 1 month of full-time work. The RNN-
based model selection procedure was computing-intensive 
and required 20–30 hours on a high-performance computing 
cluster. The corresponding computing time for model selection 
among the remaining nonlinear approaches was in the order 
of 1 to 2 hours each. The final model training was fast for all 
machine learning methods except for the RNN-based methods, 
which required approximately 30 minutes. Obtaining indi-
vidual predictions with a trained model was fast (a couple of 
minutes at most) for all machine learning methods.

DISCUSSION

In this large cohort study, we have developed pragmatic machine 
learning models to predict CKD onset and derive CKD devel-
opment probabilities at the point of care in single individuals 

living with HIV. The respective machine learning models had 
a rather high predictive performance despite using prediction 
horizons of 3–12  months, which may decrease the precision 
(ie, positive predictive value) for CKD predictions. We meas-
ured our machine learning models’ predictive power by a set 
of well-established metrics to improve the comparability across 
models and studies. In contrast to previous studies, we have in-
cluded a multitude of static and dynamic factors in our predic-
tion models (data-driven machine learning modeling), which 
resulted mostly in improved performances for CKD prediction 
compared to manually built regression models based on a few 
predictor variables (Table  2) [13, 23]. Our proof-of-concept 
study provides a reality-check of the feasibility of machine 
learning prediction studies nested within large epidemiological 
cohorts.

To the best of our knowledge, this is the first study in which 
different machine learning models have been developed and 
internally validated in PLWH for individualized CKD predic-
tion. Previous studies have developed standard regression-
based models and scores (eg, by use of Poisson regression) for 
long-term CKD prediction, which had a good discrimination 
in external validation [5, 13, 23, 24]. For instance, as part of 
the Data Collection on Adverse Events of Anti-HIV Drugs 
study, a full and short risk score were developed to predict CKD 
over 5  years (but not for shorter prediction horizons)—with 
the short risk score demonstrating a relatively good predictive 
performance in external validation (ROC-AUC, 0.85) [13, 24]: 
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Figure 2.  Overall glomerular filtration rates (GFRs; mL/minute/1.73 m2) in people living with human immunodeficiency virus (N = 12 761). This figure refers to the GFR at the 
last visit of the visit sequences in the considered observation period that is used to make predictions for 90 days, 180 days, 270 days, and 365 days ahead. The middle line and 
box indicate the median and interquartile range (IQR), respectively. Whiskers cover the 1.5 IQR. Abbreviations: CKD, chronic kidney disease; GFR, glomerular filtration rate.
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Table 2.  Performance of Models to Predict Chronic Kidney Disease Across Different Prediction Horizons (n = 1276 Individuals; Test Set)

Algorithm Visits Used Imputation Method F-score Precision Recall ROC-AUC PR-AUC

Prediction 90 d in advance

  Data-driven machine learning models (full models)

    Multilayer perceptron Last 2 visitsa Zero imputation 0.782 0.703 0.879 0.979 0.829

Median forward 0.847 0.858 0.836 0.990 0.890

    Gradient boosting Last 2 visitsa Zero imputation 0.874 0.852 0.897 0.994 0.933

Median forward 0.890 0.875 0.905 0.996 0.956

    Random forest Last 2 visitsa Zero imputation 0.583 0.942 0.422 0.995 0.943

Median forward 0.836 0.918 0.767 0.994 0.931

    Elastic net Last 2 visitsa Zero imputation 0.774 0.649 0.957 0.984 0.861

Median forward 0.846 0.800 0.897 0.992 0.904

Bidirectional recurrent neural  
network

Full sequence; all previous 
visits 

Zero imputation 0.818 0.786 0.853 0.984 0.874

Median forward 0.856 0.819 0.897 0.989 0.916

Bidirectional attention recurrent 
neural network

Full sequence; all previous 
visits 

Zero imputation  0.803 0.797 0.810 0.981 0.867

Median forward 0.852 0.812 0.897 0.986 0.901

Manually built logistic regression 
model (short model) 

Last 2 visitsa None 0.807 0.689 0.974 0.990 0.881

Prediction 180 d in advance

  Data-driven machine learning models (full models)

    Multilayer perceptron Last 2 visitsa Zero imputation 0.719 0.716 0.722 0.960 0.777

Median forward 0.718 0.798 0.652 0.963 0.803

    Gradient boosting Last 2 visitsa Zero imputation 0.656 0.859 0.530 0.969 0.833

Median forward 0.789 0.815 0.765 0.970 0.860

    Random forest Last 2 visitsa Zero imputation 0.115 > 0.999 0.061 0.955 0.803

Median forward 0.677 0.844 0.565 0.968 0.814

    Elastic net Last 2 visitsa Zero imputation 0.698 0.629 0.783 0.952 0.768

Median forward 0.767 0.777 0.757 0.959 0.787

Bidirectional recurrent neural 
network

Full sequence; all previous 
visits 

Zero imputation 0.722 0.732 0.713 0.965 0.759

Median forward 0.718 0.706 0.730 0.956 0.730

Bidirectional attention recurrent 
neural network

Full sequence; all previous 
visits 

Zero imputation  0.694 0.720 0.670 0.963 0.755

Median forward 0.721 0.712 0.730 0.945 0.792

Manually built logistic regression 
model (short model) 

Last 2 visitsa None 0.559 0.405 0.904 0.934 0.646

Prediction 270 d in advance

  Data-driven machine learning models (full models)

    Multilayer perceptron Last 2 visitsa Zero imputation 0.678 0.634 0.728 0.948 0.666

Median forward 0.660 0.753 0.588 0.952 0.735

    Gradient boosting Last 2 visitsa Zero imputation 0.290 0.833 0.175 0.944 0.702

Median forward 0.689 0.745 0.640 0.957 0.728

    Random forest Last 2 visitsa Zero imputation 0.068 > 0.999 0.035 0.928 0.661

Median forward 0.578 0.788 0.456 0.955 0.739

    Elastic net Last 2 visitsa Zero imputation 0.647 0.566 0.754 0.942 0.702

Median forward 0.650 0.756 0.570 0.943 0.716

Bidirectional recurrent neural 
network

Full sequence; all previous 
visits 

Zero imputation 0.605 0.581 0.632 0.938 0.649

Median forward 0.661 0.632 0.693 0.940 0.737

Bidirectional attention recurrent 
neural network

Full sequence; all previous 
visits 

Zero imputation 0.664 0.630 0.702 0.931 0.678

Median forward 0.664 0.699 0.632 0.934 0.693

Manually built logistic regression 
model (short model) 

Last 2 visitsa None 0.453 0.310 0.842 0.893 0.504

Prediction 365 d in advance

  Data-driven machine learning models (full models)

    Multilayer perceptron Last 2 visitsa Zero imputation 0.641 0.691 0.598 0.950 0.699

Median forward 0.628 0.776 0.527 0.950 0.722

    Gradient boosting Last 2 visitsa Zero imputation 0.220 0.933 0.125 0.945 0.700

Median forward 0.619 0.663 0.580 0.941 0.710

    Random forest Last 2 visitsa Zero imputation 0.018 > 0.999 0.009 0.941 0.705

Median forward 0.527 0.800 0.393 0.952 0.725
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These widely used full and short risk scores were developed in 
PLWH who were not previously exposed to a potentially neph-
rotoxic antiretroviral agent and included 9 and 6 predictor 
variables, respectively. In contrast to these 2 CKD risk scores, 
we used a set of machine learning algorithms and short-term 
prediction horizons—accounting for individuals with any anti-
retroviral treatment status and incorporating a variety of static 
and time-changing variables. These various short-term predic-
tion horizons may be useful to differentiate acute and chronic 
kidney disease and to evaluate the dynamics and plausibility of 
machine learning predictions in single individuals over time. 
For individual CKD predictions, we achieved moderate to ex-
cellent discrimination with the given machine learning models. 
Therefore, our models can be investigated as part of a subse-
quent implementation study to assess the clinical utility and 

validity of the present machine learning models, and also for 
complex cases (Table 3).

Of interest, as illustrated in the variable importance plot 
of the gradient-boosting model (Figure  3), we observed a 
number of predictors that are well-established risk factors 
for CKD (eg, treatment with tenofovir disoproxil fumarate–
containing regimens [25]) as well as proxy variables and 
markers, which may not have a direct effect on CKD devel-
opment (eg, alkaline phosphatase). This observation high-
lights that predictive machine learning models may help to 
build novel causal hypotheses, which can be validated in sub-
sequent causal studies. However, machine learning predic-
tions and corresponding variable importance plots should 
not be used per se for causal inference, as it requires expert 
guidance and causal concepts.

Table 3.  How Would You Decide? Predicted and Observed Chronic Kidney Disease Outcomes Among 3 Complex Cases Across Prediction Horizons 
(Gradient-Boosting Model Estimates for Illustrative Purposes)

Individual

Predicted Outcome   
(CKD Probability) Observed Outcome

Brief Interpretation and Key Predictor for Single Individuals

Prediction Horizon, d Prediction Horizon, d

90 180 270 365 90 180 270 365

1 No CKD  
(0.34)

CKD  
(0.99)

CKD  
(0.51)

No CKD  
(0.01)

CKD CKD CKD CKD Platelet counts and various hematological parameters were strong 
predictors for CKD in this individual; however, this did not pre-
vent false-negative predictions at 90 d and 365 d. There were 
dozens of moderate predictors of unclear clinical relevance: 
These factors have cancelled out at 365 d, as some were pre-
ventive and others suggested an incremental CKD risk. This 
example highlights that a clinician should review every machine 
learning prediction. 

2 No CKD  
(0.18)

No CKD  
(0.00)

No CKD  
(0.00)

No CKD  
(0.00)

No CKD No CKD No CKD No CKD Absent cardiovascular risk factors (eg, smoking) were strong pre-
dictors against CKD development. However, there were dozens 
of moderate predictors (potential preventive factors and risk 
factors) of unclear clinical relevance. The low CKD probability 
score across prediction horizons, together with a careful review 
of medical records, may be an indication for clinicians that CKD 
development is unlikely. 

3 No CKD  
(0.28)

CKD  
(0.71)

No CKD  
(0.00)

No CKD  
(0.02)

No CKD No CKD No CKD No CKD Cardiovascular risk factors (eg, high systolic blood pressure) and 
alcohol binge drinking increased the predicted CKD probability 
substantially—resulting in a false-positive prediction at 180 d; 
however, high preceding eGFR values were strong predictors 
against CKD across prediction horizons. 

Abbreviations: CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate.

Algorithm Visits Used Imputation Method F-score Precision Recall ROC-AUC PR-AUC

    Elastic net Last 2 visitsa Zero imputation 0.588 0.626 0.554 0.938 0.673

Median forward 0.512 0.808 0.375 0.935 0.681

Bidirectional recurrent neural 
network 

Full sequence; all previous 
visits 

Zero imputation 0.606 0.656 0.562 0.945 0.631

Median forward 0.678 0.661 0.696 0.935 0.694

Bidirectional attention recurrent 
neural network

Full sequence; all previous 
visits 

Zero imputation 0.600 0.643 0.562 0.928 0.632

Median forward 0.633 0.554 0.738 0.926 0.692

Manually built logistic regression 
model (short model) 

Last 2 visitsa None 0.423 0.286 0.812 0.883 0.468

Abbreviations: PR-AUC; area under the precision-recall curve; ROC-AUC, area under the receiver operating characteristic curve.
a And summary statistics from earlier visits during the target observation period, as detailed in the Methods.

Table 2.  Continued
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While developing machine learning models for CKD 
prediction, we faced 2 main challenges. First, the prepara-
tion and structuring of the datasets for machine learning 
training was time-consuming, as real-world HIV cohort 
data include a multitude of static and dynamic data, which 
are often measured irregularly. Nonetheless, we believe that 
our data representation can be valuable for future machine 
learning investigations relying on HIV cohort databases. 
Second, the machine learning model training and selection 
was computing-intensive and required a high-performance 
computing cluster.

Our study has some limitations. First, our machine learning 
prediction models for CKD may not be generalizable to other 
healthcare settings and populations: Specifically, the coding 
practices and parameters may differ between HIV cohorts, 
which may complicate the application of the same machine 
learning prediction models across HIV cohorts. Therefore, we 
did not intend to externally validate our machine learning pre-
diction models as part of this proof-of-concept study. Second, 
as we used short prediction horizons, target leakage (ie, models 
include information that is not yet available at the time of pre-
diction) can result in biased and often too optimistic predictive 

performances. To safeguard against target leakage, we included 
only variables that were known at the prediction day [26]. 
However, we cannot exclude the possibility that a few param-
eters in our machine learning models (eg, laboratory values) 
would be reported to the treating physician and/or clinical 
decision support tool some minutes or hours after a potential 
CKD prediction. Third, follow-up studies should consider in-
cluding proteinuria in the CKD outcome definition to capture 
CKD at earlier stages. With the present models, we are unable to 
predict proteinuria. Fourth, a higher eGFR threshold > 60 mL/
minute/1.73 m2 could have been chosen for patient selection 
to prevent immediate switches from the at-risk status to the 
CKD status; however, this would have excluded a substan-
tial proportion of individuals in the SHCS who are at highest 
risk of eGFR deterioration. Last, our machine learning model 
training did not include genetic data (or other -omics data), 
which might have further improved the machine learning CKD 
predictions but which are often unavailable for a majority of  
individuals [27].
In summary, in PLWH, we observed state-of-the-art perform-
ances in forecasting individual CKD onsets with different ma-
chine learning algorithms. The underlying machine learning 

GFR median

GFR 2

No anal cancer max

GFR 1

No anal cancer 2

Tenofovir disoproxil fumarate 2

Urine creatinine max

Creatinine 2

Hemoglobin 1

Hemoglobin 2

Platelet count SD

Birth year

No anal cancer 1

Platelet count 1

GFR SD 2

CD4 cell count SD

Alkaline phosphatase max

Serum glucose max

Hip maximum circumference SD

High-density lipoproteins max

Mean (|SHAP value|) (average impact on model output magnitude)
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Figure 3.  Variable importance plot of the gradient-boosting model; 180 days prediction horizon. This hypothesis-generating plot is for illustrative purposes only. Suffix “2” signifies 
that information from the latest visit was used, whereas suffix “1” signifies that information from the preceding (penultimate) visit was used, both specified with respect to the visit 
sequence in the considered observation period. The different statistics (median, standard deviation for numerical and maximum for the nominal variables) were computed for all the 
remaining visits in the target observed hospital visit sequence. The Shapley additive explanation values describe for each variable and individual the change in the expected model 
prediction when conditioning on that variable. Abbreviations: GFR, glomerular filtration rate; max, maximum; SD, standard deviation; SHAP, Shapley additive explanation.
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methods may help to advance personalized predictions of 
comorbidities in various populations.
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