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Abstract: Recent studies showed that KGN cells, derived from a human granulosa cell tumor (GCT),
express NADPH oxidase 4 (NOX4), an important source of H2O2. Transient receptor potential
melastatin 2 (TRPM2) channel is a Ca2+ permeable cation channel that can be activated by H2O2

and plays an important role in cellular functions. It is also able to promote susceptibility to cell
death. We studied expression and functionality of TRPM2 in KGN cells and examined GCT tissue
microarrays (TMAs) to explore in vivo relevance. We employed live cell, calcium and mitochondrial
imaging, viability assays, fluorescence activated cell sorting (FACS) analysis, Western blotting and
immunohistochemistry. We confirmed that KGN cells produce H2O2 and found that they express
functional TRPM2. H2O2 increased intracellular Ca2+ levels and N-(p-Amylcinnamoyl)anthranilic
acid (ACA), a TRPM2 inhibitor, blocked this action. H2O2 caused mitochondrial fragmentation and
apoptotic cell death, which could be attenuated by a scavenger (Trolox). Immunohistochemistry
showed parallel expression of NOX4 and TRPM2 in all 73 tumor samples examined. The results
suggest that GCTs can be endowed with a system that may convey susceptibility to cell death. If so,
induction of oxidative stress may be beneficial in GCT therapy. Our results also imply a therapeutic
potential for TRPM2 as a drug target in GCTs.
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1. Introduction

In a recent study, we described expression of NADPH oxidase 4 (NOX4) [1] in vivo in human
granulosa cells (GCs) of ovarian follicles and in vitro in granulosa-lutein cells derived from in vitro
fertilization patients. Activity of this enzyme is linked to the generation of H2O2 [2], which is a diffusible
reactive oxygen species (ROS) and has been postulated to be an important signaling molecule within
the follicle (e.g., [3]). Although precise modes of action remain to be identified, involvement in GC
proliferation has been suggested by studies employing the granulosa cell tumor (GCT) line KGN [4]
and a specific NOX4 blocker [2].

These results are in line with the changing view of ROS. They are no longer regarded as destructive
correlates of oxidative stress only, but their importance in the regulation of cellular functions and in the
maintenance of the essential redox homeostasis is being more and more recognized [5–7]. Yet, ROS in
higher concentrations are indeed often associated with cell death [8–10].
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Cellular actions of H2O2 are linked to transient receptor potential melastatin 2 (TRPM2) channel,
a cation channel permeable for Ca2+ that is activated by oxidative stress and therefore considered
to be a cellular redox sensor [11,12]. Studies in recent years have provided evidence of a role of
TRPM2-mediated Ca2+ influx in physiological and pathophysiological functions, such as insulin release
by pancreatic β-cells, pro-inflammatory cytokine production in immune cells, endothelial permeability
and cell death [11]. Cell death is the most outstanding and common consequence of TRPM2 channel
activation, and has been described in several publications (e.g., [8,13,14]). The exact mechanism of
TRPM2 activation by H2O2 is still a subject of ongoing research; however, there are well described
inhibitors such as N-(p-Amylcinnamoyl)anthranilic acid (ACA) that are widely being used in studies
on TRPM2 [15–17].

Information about TRPM2 in ovarian cells is sparse. However, data mining of recently published
single-cell RNA sequencing data has revealed that this channel is expressed in human GCs in situ [18].
To our knowledge, TRPM2 expression in GCT has not been explored yet.

In the present study we examined KGN, a model for GCT [4,19]. KGN cells express NOX4
and generate H2O2 [2]. We found that they also express TRPM2, which can be activated by
H2O2 and facilitate an influx of Ca2+, followed by mitochondrial fragmentation and cell death.
Immunohistochemical analysis of tissue microarrays (TMAs) revealed that both NOX4 and TRPM2
were expressed by all GCT samples we examined. Our findings suggest that induction of oxidative
stress in GCT may result in cell death. Furthermore, the results implicate a therapeutic potential of
TRPM2 as a possible drug target.

2. Materials and Methods

2.1. KGN Cell Culture

Procedures have recently been described [2]. The patented KGN cell line was obtained from RIKEN
BioResource Center [4] with permission by T. Yanase. KGN cells were cultured in Dulbecco’s Modified
Eagle’s Medium (DMEM)/Ham’s F12 medium (Life Technologies, Paisley, UK) supplemented with
penicillin (100 U/mL), streptomycin (100 µg/mL) (Biochrom, Berlin, Germany) and 10% fetal calf serum
(FCS) (Capricorn Scientific, Ebsdorfergrund, Germany) at 37 ◦C and with 5% CO2. For stimulation
experiments, 20 µM Trolox (Santa Cruz Biotechnology, Dallas, TX, USA) or 100 µM/1 mM H2O2

(Sigma-Aldrich, St. Louis, MO, USA) was diluted in DMEM/Ham’s F12 medium (Life Technologies;
colorless medium without phenol red was used for live cell fluorescence imaging to reduce background
autofluorescence).

2.2. Reverse Transcription PCR

RNeasy Plus Micro Kit (Qiagen, Hilden, Germany) was used to isolate RNA. Concentration and
purity were measured as described [2]. Superscript II (Invitrogen, Carlsbad, CA, USA) and random
15-mer primers (metabion international, Munich, Germany) were used for reverse transcription (RT).
Oligonucleotide primers for amplification of NOX4 were described previously [2]. For TRPM2,
we used primers with the following sequences: 5′–AGGCTGAACTCTAACCTGCAC–3′ (forward)
and 5′–GGAGGAGGGTCTTGTGGTTC–3′ (reverse) (yielding a 103 bp fragment). Negative controls
were performed by replacing cDNA with RNA (-RT) or water (H2O). Amplicon identity was verified
by agarose gel electrophoresis, consecutive cDNA extraction with Wizard SV Gel and PCR Clean-up
System (Promega, Madison, WI, USA) and sequence analysis (GATC, Konstanz, Germany).

2.3. Western Blotting

Protein isolation and Western blotting were performed as previously described [20]. KGN cells
were lysed using RIPA buffer plus protease and phosphatase inhibitors (Thermo Fisher Scientific,
Waltham, USA). A total of 7 µg (NOX4) or 20 µg (cleaved caspase 3, clCASP3) protein per lane was
loaded on a 10% (NOX4) or 12% (clCASP3) SDS gel and run (NOX4: 20 min at 100 V + 70 min at 120 V;
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clCASP3: 20 min at 75 V + 40 min at 150 V). After blotting (NOX4: 55 min at 100 V; clCASP3: 60 min at
100 V) and blocking with 5% non-fat dry milk (Roth, Karlsruhe, Germany) in Tris-buffered saline with
Tween 20 (5 mM Tris, 100 mM NaCl, 0.05% Tween 20, pH 7.5), rabbit anti-NOX4 polyclonal antiserum
(1:1000, #7927, ProSci, Fort Collins, CO, USA) or rabbit anti-clCASP3 monoclonal antibody (1:1000,
#9664, Cell Signaling Technology, Danvers, MA, USA) were administered to detect these proteins.
As a loading control, mouse anti-β-actin monoclonal antibody (1:10000, #A5441, Sigma-Aldrich)
was used. HRP-conjugated goat anti-rabbit and goat anti-mouse secondary antibodies (Jackson
ImmunoResearch Europe, Cambridgeshire, UK) were used to visualize specific binding. Band intensities
were determined using the FIJI software [21].

2.4. Immunohistochemistry

Immunohistochemistry was performed using TMAs assembled from anonymized archival
material. All patients were treated surgically at the same institution (Department of Gynaecology,
University of Munich, Germany) and diagnosed at the Institute for Pathology, LMU, Munich, Germany.
The diagnoses were confirmed by an experienced gynaecopathologist (D.M.). Tissue biopsies (n = 73)
were taken from representative regions of larger paraffin-embedded tumor samples and arrayed
into a new recipient paraffin block using MTA-1 (Manual Tissue Arrayer) from Beecher Instruments,
Sun Prairie, WI, USA. Staining procedures were conducted as previously described [22]. In brief,
sections were deparaffinized, antigens were unmasked and endogenous peroxidase activity was
blocked, followed by incubation in 10% goat serum, diluted in PBS, to prevent unspecific binding.
Polyclonal rabbit antisera raised against human NOX4 (1:500, #7927, ProSci, Fort Collins, CO, USA) or
against human TRPM2 (1:100, #HPA035260, Sigma-Aldrich) were used to identify these proteins in the
TMAs. Specific binding was detected by biotinylated goat anti-rabbit secondary antibody and Vectastain
Elite ABC kit (Vector Laboratories, Burlingame, CA, USA). For negative controls, incubation with
normal rabbit serum instead of the primary antiserum was performed. Sections were counterstained
with haematoxylin and visualized using a Zeiss Axioplan microscope with the Achroplan 63x/0.80
objective (Carl Zeiss Microscopy, Jena, Germany) and a Jenoptik camera (Progres Gryphax Arktur;
Jenoptik, Jena, Germany).

2.5. Measurement of H2O2

The generation of H2O2 was measured using an Amplex Red Hydrogen Peroxide/Peroxidase
Assay Kit (Life Technologies, Eugene, OR, USA) as described previously [2,23]. In brief, KGN cells were
seeded in black 96-well plates (1.5 × 104 cells/well, n = 6) and cultured overnight. Amplex Red reagent
(10-acetyl-3,7-dihydroxyphenoxazine) was used in a final concentration of 5.0 µM and fluorescence
levels were measured at 544 nm excitation/590 nm emission in a fluorometer (FLUOstar Omega,
BMG LABTECH, Ortenberg, Germany) for 115 min at 37 ◦C. Data points were normalized according
to the starting point value. To compare H2O2 concentrations in the supernatant, 3 × 105 cells were
seeded on a 60-mm (diameter) cell culture dish the day before stimulation. After 72 h of stimulation
with 20 µM Trolox or serum-free medium only, supernatants were collected, centrifuged and measured
with the Amplex Red Kit according to the manufacturer’s instructions (n = 3).

2.6. Cell Viability Assay, Confluence Measurement and Cell Counting

Cell viability was estimated by measuring cellular ATP content (the indicator for metabolically
active cells) using CellTiter-Glo Luminescent Cell Viability Assay (Promega, Madison, WI, USA)
as described previously [2,24]. KGN cells were seeded on a white 96-well microtiter plate
(5.0 × 103 cells/well, n = 12) one day prior to stimulation, then exposed to 20 µM Trolox or serum-free
medium for 72 h. After removal of the supernatant and washing with PBS, wells were filled with a 1:1
mixture of CellTiter-Glo reagent and DMEM/Ham’s F12 without phenol red (100 µl/well), mixed on
a plate shaker and incubated for 10 min at room temperature. Luminescence was measured by
a luminometer (FLUOstar Omega; BMG LABTECH). Confluence was analyzed with the JuLIBr Live
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cell movie analyzer (NanoEnTek, Waltham, MA, USA) for a period of 72 h. For determination
of cell numbers, KGN cells were counted using the CASY Cell Counter (OLS OMNI Life Science,
Bremen, Germany).

2.7. Fluorescence-Activated Cell Sorting (FACS) Analysis

FITC-conjugated annexin V (ALX-209-256-T100, Enzo Life Sciences, Farmingdale, NY, USA) and
SYTOX Red Dead Cell Stain (S34859, Invitrogen) were used to examine the occurrence of apoptosis.
KGN cells were incubated in colorless DMEM/Ham’s F12 medium for 24 h with or without 100 µM
H2O2, or for 72 h with or without 20 µM Trolox. They were trypsinized, washed with PBS and
incubated with annexin V-FITC (2.5 µg/mL) according to the manufacturer’s instructions. SYTOX Red
Dead Cell Stain—a nucleic acid stain labeling cells with damaged membranes—was added (1:2000),
and cells were analyzed using the BD FACSCanto (Becton, Dickinson and Company, Franklin Lakes,
NJ, USA). Annexin V-FITC signal was obtained using a 488 nm excitation laser and a 530/30 bandpass
(BP) filter. For the SYTOX Red signal, a 633-nm laser and a 660/20 BP filter were used, with 20,000 events
recorded for each treatment. Signals were analyzed using BD FACSDiva Software (version 8.0.1,
Becton, Dickinson and Company). Cells show single staining with annexin V in an early stage of
apoptosis (intact membrane), while they are double-positive for annexin V and nucleic acid stains in
late apoptosis (cf. [25,26]). The apoptotic/late apoptotic (L/A) fraction of the analyzed cells comprise
early and late stage apoptosis.

2.8. Calcium Imaging

For all calcium imaging experiments, KGN cells were incubated with 5 µM Fluoforte Reagent
(Enzo Life Sciences)—a fluorescent dye detecting intracellular Ca2+—in DMEM/Ham’s F12 without
phenol red for 30 min at 37 ◦C and 5% CO2 in ibidi dishes optimized for microscopy (µ-dish 35 mm,
ibidi, Gräfelfing, Germany). After washing with colorless medium, fluorescence was monitored every
5 s using a wide-field microscope (microscope: Axio Observer.Z1; light-source: Colibri.2; camera:
Axiocam 506 mono; objective: Plan-Apochromat 20x/0.8 Ph2 M27; software: ZEN 2.6; Carl Zeiss
Microscopy) with a 450–490 nm BP excitation and 500–550 nm BP emission filter (F46-002; AHF
analysentechnik, Tübingen, Deutschland). A continuous flow of medium with or without stimulant
was generated by a peristaltic pump (Instech Laboratories, Plymouth Meeting, PA, USA) linked to
needles that were placed under the surface of the medium, close to the observed cells. H2O2 was utilized
in a higher concentration (1 mM) to address diluting effects. For the blocking experiments, KGN cells
were incubated with either ACA (20 µM, Sigma-Aldrich) or DMSO (solvent control) for 4 h prior to
and during measurements. Stimulation with 0.05%� trypsin (Biochrom, Berlin, Germany) served as
a positive control (cf. [27,28]). FIJI software was used to obtain fluorescence intensities of the regions
of interest (ROIs) and to optimize the images and videos provided in the Supplementary Materials.
Background fluorescence was subtracted from the raw data and results were normalized to the starting
point values. Images and videos showed fluorescence intensity based on a pseudo-color scale from
black/red (low Ca2+) to yellow/white (high Ca2+).

2.9. Mitochondrial Imaging

KGN cells were incubated with 100 nM MitoTracker Green FM (Molecular Probes,
Eugene, OR, USA) for 30 min at 37 ◦C and 5% CO2 in microscopy-optimized cell culture dishes
(µ-dish 35 mm, ibidi). The staining solution was prepared in DMEM/Ham’s F12 without phenol red.
To examine changes of the mitochondrial structure, cells were treated with 100 µM H2O2 after staining
and washing. Fluorescence was recorded with a wide-field microscope (microscope: Axio Observer.Z1;
light-source: Colibri.2; camera: Axiocam 506 mono; objective: Plan-Apochromat 63x/1.40 Oil Ph 3
M27; software: ZEN 2.6; Carl Zeiss Microscopy). A 450–490 nm BP (excitation) and a 500–550 nm BP
(emission) were used (F46-002; AHF analysentechnik). In a second approach, stimulation with H2O2
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for 4 h in colorless medium prior to staining and imaging was performed to rule out phototoxicity due
to multiple imaging as a reason for mitochondrial fragmentation.

To evaluate the effect of H2O2 (100 µM) on mitochondria, 239 control cells and 122 treated cells in
two dishes each for both groups were analyzed after 4 h of treatment. Examples for KGN cells with
elongatedor fragmented mitochondrial networks are given in the corresponding figure.

2.10. Statistics

GraphPad Prism 6.0 Software (GraphPad Software, San Diego, CA, USA) was used to
perform unpaired t-tests (two-tailed) for comparisons of H2O2, ATP and cell counts. Control and
Trolox-treatments were performed in parallel (n = 3), derived samples were run next to each other on
the gels and results (band intensities) of clCASP3 Western blots were analyzed using paired t-test.

3. Results

3.1. KGN Cells Express H2O2 Generating NOX4

Expression of NOX4, an enzyme known to generate H2O2, was detected by Western blot (68 kDa)
and RT-PCR (160 bp) (Figure 1A). The Amplex Red Hydrogen Peroxide Assay (n = 6) provided evidence
for basal H2O2 production and release by untreated KGN cells, resulting in increasing levels in the
supernatant over time (Figure 1B).
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Figure 1. H2O2 production and release by cultured KGN cells and effects of exogenous H2O2. (A) 
NOX4 RT-PCR analysis and Western blot of cultured KGN cells show single bands of 160 bp and 68 
kDa, respectively. Controls using RNA (-RT) or H2O instead of cDNA (H2O) were negative. (B) 
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Figure 1. H2O2 production and release by cultured KGN cells and effects of exogenous H2O2. (A) NOX4
RT-PCR analysis and Western blot of cultured KGN cells show single bands of 160 bp and 68 kDa,
respectively. Controls using RNA (-RT) or H2O instead of cDNA (H2O) were negative. (B) Hydrogen
peroxide assay of untreated KGN cells showed increasing H2O2 levels in the supernatant over a time
period of 2 h (n = 6). Signal intensities were normalized to start point values. Bars indicate SEM.
(C) Exogenously added H2O2 reduced cell viability in a dose dependent manner. Cell counts after
treatment of KGN cells with different concentrations of H2O2 for 24 h (n = 2–5 for each concentration)
are shown with an interpolated sigmoidal standard curve (r2 = 0.9361). Bars indicate SEM. (D) Images
of KGN cells treated with H2O2 (1 mM) for 24 h compared to untreated control cells. Scale bars indicate
200 µm.

3.2. Exogenous H2O2 Kills KGN Cells in a Dose Dependent Manner

To examine effects of H2O2, KGN cells were exposed to H2O2 at different concentrations for 24 h
(n = 2 to 5 for each concentration). We observed a dose dependent reduction of cell viability (cell
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counting, live cell imaging). Cell numbers decreased with a calculated EC50 of 89.7 µM (72.16–111.5 µM;
interpolated sigmoidal standard curve: f (x) = 23800 + 272929−23800

1+10(1.953−x)(−1.507) ; r2 = 0.9361) (Figure 1C).
Figure 1D shows a live cell image of KGN cells treated with H2O2 (1 mM) for 24 h compared to controls,
revealing the damaging effects of exogenous H2O2.

3.3. Trolox Promotes Survival of KGN Cells in Serum-Free Medium

Culturing KGN cells in serum-free medium for 72 h led to a drop in confluence after an initial
2.6 ± 0.2 fold increase for the first 40 h (mean). This decrease was prevented by the addition of Trolox
(20 µM), a water-soluble derivate of vitamin E. Trolox is well known for its antioxidative activity [29,30]
and kept KGN cells prospering until the end of the measurement. Pictures taken by a live cell imaging
system show the difference between treated and control cells. While KGN cells looked healthy within
the first part of the observation under both conditions, they detached after 72 h under control conditions,
but were further propagated with Trolox (Figure 2A). The H2O2 concentration in the supernatant of
KGN cells after 72 h in serum-free medium was significantly (n = 3, p < 0.0001, t-test) reduced by Trolox
(Figure 2B). Cell counts (n = 4, p < 0.0001, t-test) (Figure 2C) and viability assay (n = 12, p < 0.0001,
t-test) (Figure 2D) after 72 h gave further evidence for the positive effects of Trolox on KGN cell survival
in serum-free medium.
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Figure 2. Antioxidant Trolox antagonized the effects of endogenous H2O2. (A) Changes in confluence
of KGN cells over the course of 72 h for cells treated with Trolox (20 µM) compared to serum-free
medium only (n = 3). Results were normalized to the respective start value. Images at different time
points are shown below. Scale bars indicate 200 µm. (B) H2O2 in the supernatant after treatment with
Trolox (20 µM) for 72 h, measured by a hydrogen peroxide assay, was significantly lower compared to
ontrols (n = 3, **** p < 0.0001). Means and SEM, as well as individual results are given. (C) Cell counts
relative to the average untreated controls significantly increased (n = 4, **** p < 0.0001). Means and SEM,
as well as individual results are shown. (D) ATP viability assay-generated luminescence signaling was
significantly higher in Trolox-treated cells (n = 12, **** p < 0.0001) after 72 h of treatment. Means and
SEM, as well as individual results (circles), are presented.
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3.4. Effects of Cultivation in Serum-Free Medium and Exogenous H2O2 on Markers of Apoptosis and Necrosis

FACS analysis of KGN cells co-stained with FITC-conjugated annexin V and the nucleic acid stain
SYTOX Red Dead Cell Stain revealed an 11.4-fold increase in the apoptotic/late apoptotic (L/A) fraction,
while the necrotic fraction (N) only doubled in cells treated with H2O2 (100 µM) for 24 h compared to
the serum-free medium control (Figure 3A,B). Culturing KGN cells in serum-free medium resulted in
a 4.1-fold higher L/A cell fraction after 72 h compared to 24 h, whereas the N fraction reduced by 23%
(Figure 3A,C).
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3.5. Treatment with Trolox Reduces Markers of Apoptosis

Addition of Trolox (20 µM) to the serum-free medium reduced the L/A fraction after 72 h
in serum-free medium by 37.9% (Figure 3C,D), but not the N fraction, which actually increased.
Western blot analysis confirmed the effect on apoptosis by showing a significant reduction in clCASP3
(n = 3, p = 0.0225, paired t-test) (Figure 3E,F).

3.6. KGN Cells Express Functional TRPM2

Expression of TRPM2 channel, a H2O2-responsive Ca2+-permeable cation channel, was detected
by RT-PCR (Figure 4A) and sequencing. To examine functionality of TRPM2, changes in intracellular
Ca2+ levels were imaged. Stimulation with H2O2 (1 mM) caused a transient increase in Ca2+ levels
in three independent measurements, which occurred with a delay of more than 1 min and quickly
disappeared after terminating the stimulation. Repeated stimulation was possible (Figure 4B,C).
The Ca2+ increase was blocked by treatment with the TRPM2 inhibitor ACA (20 µM) [15–17] applied
for 4 h prior to and during the measurement. Cellular response to the positive control (trypsin) was not
affected (Figure 4D). The H2O2-derived signal was obtained in the control experiments with the solvent
(Figure 4E). Videos are provided in the Supplementary Materials (Videos S1–S3). Blocking experiments
and according controls were repeated in four independent measurements each.
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Figure 4. KGN cells express functional TRPM2. (A) TRPM2 RT-PCR shows a band at 103 bp.
Controls with RNA (-RT) or H2O instead of cDNA (H2O) were negative. (B) Addition of H2O2 (1
mM) increased the fluorescence signal of the four individual KGN cells shown, which were loaded
with the Ca2+-sensitive dye Fluoforte. Background signals were subtracted and fluorescence is shown
relative to the respective start value of each region of interest (ROI). (C) Fluorescence images, taken
before (a) and after (b) the first stimulation with H2O2. (D) Treatment with the inhibitor (ACA; 20
µM), 4 h prior to and during the measurement, blocked the Ca2+ increase upon stimulation with H2O2,
but not with 0.05%� trypsin (T). Images (c–f) represent the indicated time points. (E) The H2O2-derived
Ca2+ increase was obtained in the DMSO control and thus ruled out solvent effects. Images (g–j)
represent the indicated time points. The pseudo-color scale shown in (c) applies for all live cell images.
Colored frames mark the cells represented in the corresponding graphs. Scale bars indicate 50 µm.

3.7. Exogeneous H2O2 Causes Mitochondrial Fragmentation

Monitoring mitochondria of KGN cells during treatment with H2O2 (100 µM) revealed
fragmentation over time (Figure 5A). Stimulation for 4 h prior to staining and imaging was performed
to rule out phototoxicity due to multiple imaging during time series as a reason for fragmentation.
Mitochondria were fragmented in this approach (Figure 5B), and comparison of H2O2-treated cells
to the control cells revealed a vast difference in the portion of KGN cells presenting mitochondrial
fragmentation. One out of 239 (0.4%) untreated and 50 out of 122 (41.0%) treated cells showed
fragmentation (Figure 5C).
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Figure 5. H2O2 causes mitochondrial fragmentation. (A) MitoTracker Green FM-based live cell
fluorescence images show mitochondria of KGN cells treated with H2O2 (100 µM) at different time
points, compared to medium-only controls. (B) KGN cells stained and imaged after 4 h of treatment
with H2O2 (100 µM) or medium only. *1 indicates a cell presenting an elongated mitochondrial
network, *2 indicates an example of a fragmented mitochondrion. (C) Portion of cells with fragmented
mitochondria after 4 h, as determined by counting 239 control and 122 treated KGN cells. Mitochondrial
fragmentation was markedly increased in H2O2-treated cells. Scale bars (A,B) indicate 10 µm.

3.8. Primary GCT Express NOX4 and TRPM2

As the KGN cell line serves as a well-established in vitro model for GCTs, we analyzed NOX4 and
TRPM2 expression in 73 GCT samples using TMAs. Immunohistochemical analysis revealed that all of
the tumors expressed both NOX4 and TRPM2 (Figure 6). Both proteins were detected in GCT cells and
showed a generally homogenous distribution, but intensities varied between different tumors.
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Figure 6. Granulosa cell tumors (GCTs) express NOX4 and TRPM2. Immunohistochemical staining of
NOX4 and TRPM2 in one of the 73 tumor samples analyzed. NOX4 and TRPM2 were detected in GCT
cells, normal rabbit serum control was negative. Scale bars indicate 20 µm.
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4. Discussion

Our results show that H2O2 from both exogenous and endogenous sources is able to induce cell
death in KGN cells. The majority of endogenous H2O2 is most likely generated by NOX4, as previously
shown [2]. NOX4 expression in KGN cells was confirmed by RT-PCR and Western blot. Trolox, a typical
ROS scavenging antioxidant [29,30], reduced endogenously produced H2O2 in the supernatant and
rescued the cells, as shown by confluence measurements, cell counting and ATP cell viability assay.

There is ample evidence implying that H2O2 activates the ROS-gated cation channel TRPM2,
and that the consecutive Ca2+ influx may cause cell death (e.g., [8–10]). Single cell RNA sequencing
data in a recent publication [18] revealed expression of TRPM2 in GCs of human follicles in situ.
We showed that TRPM2 is expressed in the GCT-derived tumor cell line KGN and calcium imaging
suggested its functionality. Intracellular Ca2+ levels increased upon H2O2 stimulation and disappeared
after termination of the treatment. The observed delay of more than 1 min provided an additional
indication of TRPM2 involvement, since its activation by H2O2 is reported to be slow and take up to
minutes [11].

To provide further evidence for the functionality of TRPM2 in KGN cells, we utilized ACA to
inhibit TRPM2 in the calcium imaging experiment. ACA completely blocked the Ca2+ influx upon H2O2

stimulation, pinpointing TRPM2 as the channel responsible for the signal observed in untreated cells.
As we found in our experiments, extracellular application of ACA was reported previously to completely
block the H2O2-induced increase of intracellular Ca2+ in TPRM2-expressing cells at a concentration of
20 µM [15]. Yet, ACA is also a phospholipase A2 (PLA2) blocker. Although the inhibitory action on
TRPM2 was reported to be independent of effects on PLA2 [15], detrimental consequences of PLA2

inhibition cannot be ruled out, especially in long-term treatments. We therefore did not perform
additional experiments.

In accordance with previous studies reporting apoptosis upon H2O2 stimulation in primary
GCs [31] and other cells [8–10], we detected a distinct induction of apoptosis/late apoptosis by H2O2 in
KGN cells. Although annexin V and nucleic acid stain double-stained cells are often referred to as
late apoptotic [25,26], necrotic cells might be double-positive as well [32]. Given that changes in the
necrotic cell fraction do not match the changes in the annexin V signals, our results provide evidence
that exogenous H2O2 induces apoptosis, although other cell death forms might be involved as well.

Fetal calf serum (FCS) was reported to feature a total anti-oxidant capacity (TAC) equaling
360 ± 40 µM Trolox [33], which implicates a minor role of endogenously produced H2O2 in media
supplemented with FCS. Even 10% of FCS, as usual in our culture medium, exceeds the TAC of 20 µM
Trolox. For different experiments we therefore used serum-free medium. Under these conditions,
H2O2 produced by cells may reach concentrations that might be high enough to activate TRPM2,
especially in their immediate surroundings, although the overall concentration within the supernatant
remains relatively low compared to the concentration used for exogenous stimulation with H2O2.
In accordance, results of the FACS analysis and the clCASP3 Western blot revealed an induction of
apoptosis by long-term cultivation in serum-free medium. Reduction of markers for apoptosis by the
ROS scavenger Trolox and the differences in H2O2 levels in the supernatants suggest that endogenous
H2O2 might play an important role in the induction of apoptosis. These results are in line with the
ability of another antioxidant, N-acetyl-L-cysteine, to reduce H2O2-induced apoptotic cell death in
human melanocytes [8].

In their review on mitochondrial dynamics and apoptosis, Suen et al. [34] discussed the role of
mitochondrial fragmentation and pointed out that while there are many different conditions wherein
this can be observed, it is always involved in apoptosis and appears before caspase activation. To further
examine the mechanism underlying the H2O2 effects on KGN cells, we performed live cell imaging of
mitochondria labeled with MitoTracker Green FM. We observed rapid and massive fragmentation
of these organelles upon H2O2 stimulation. This may reflect another manifestation of an activated
apoptosis machinery and be a consequence of Ca2+-dependent phosphorylation of dynamin-related
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protein 1 (Drp1) [35], a critical player in mitochondrial fragmentation [36]. The exact mechanisms in
KGN cells and the question of whether other forms of cell death are involved remain to be studied.

To explore in vivo the relevance of our cellular results, we studied the expression of NOX4,
a typical source for endogenous H2O2 [1,2], and TRPM2, a possible target for H2O2 [11,12], in primary
GCT. Immunohistochemical analysis of TMAs revealed that both NOX4 and TRPM2 were expressed in
all 73 tumors analyzed in this study. We noticed that signal intensities varied between the different
GCTs. However, as we studied archival material, we reasoned that variations in sample preparations
or storage could not be ruled out. Therefore, we did not attempt to further evaluate these differences.

Investigations of other tumor’s entities indicated that NOX4-derived ROS may limit tumor
progression (liver carcinoma [37]) and that TRPM2 overexpression may enhance induction of cell death
by H2O2 (neuroblastoma [14]). TRPM2 confers susceptibility of different tumors to H2O2-mediated
neutrophil cytotoxicity, thereby limiting metastasis [38]. Interestingly, inflammatory neutrophil
infiltration is mediated by TRPM2 activation, resulting in chemokine production by monocytes [39].

In line with these observations, our immunohistochemical analysis of 73 GCTs and the results of
experiments with KGN cells implicate that GCTs can be endowed with a relevant system that may
convey susceptibility to cell death. Our in vitro-studies provide evidence that induction of oxidative
stress may be beneficial in GCT therapy and that there is a therapeutic potential for TRPM2 as a drug
target. Whether the new insights of our study are indeed of relevance in vivo remains to be shown.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3921/8/11/518/s1:
Video S1. Increasing intracellular Ca2+ levels upon stimulation with H2O2. Fluorescence images of the experiment
represented in Figure 4B,C were compiled to a time-lapse video. The movie shows reversible increases in
intracellular Ca2+ levels after addition of 1 mM H2O2 to KGN cells. Video S2. Time-lapse movie of the experiment
represented in Figure 4D. This video shows levels of intracellular Ca2+ in cells treated with the TRPM2 blocker
ACA. Ca2+ levels do not increase upon stimulation with 1 mM H2O2; yet, they increase upon stimulation with
trypsin. Video S3. Obtained H2O2 effect in the solvent control. Time-lapse video of the experiment represented in
Figure 4E. The movie shows that the Ca2+ response upon stimulation with H2O2 is obtained in the DMSO control.
The second increase in Ca2+ derives from stimulation with trypsin.
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