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Point mutation of Ffar1 abrogates fatty
acid-dependent insulin secretion, but protects
against HFD-induced glucose intolerance
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ABSTRACT

Objective: The fatty acid receptor 1 (FFAR1/GPR40) mediates fatty acid-dependent augmentation of glucose-induced insulin secretion (GIIS) in
pancreatic b-cells. Genetically engineered Ffar1-knockout/congenic mice univocally displayed impaired fatty acid-mediated insulin secretion, but
in vivo experiments delivered controversial results regarding the function of FFAR1 in glucose homeostasis and liver steatosis. This study presents
a new coisogenic mouse model carrying a point mutation in Ffar1 with functional consequence. These mice reflect the situations in humans in
which point mutations can lead to protein malfunction and disease development.
Methods: The Munich N-ethyl-N-nitrosourea (ENU) mutagenesis-derived F1 archive containing over 16,800 sperms and corresponding DNA
samples was screened for mutations in the coding region of Ffar1. Two missense mutations (R258W and T146S) in the extracellular domain of the
protein were chosen and homozygote mice were generated. The functional consequence of these mutations was examined in vitro in isolated
islets and in vivo in chow diet and high fat diet fed mice.
Results: Palmitate, 50 mM, and the FFAR1 agonist TUG-469, 3 mM, stimulated insulin secretion in islets of Ffar1T146S/T146S mutant mice and of
wild-type littermates, while in islets of Ffar1R258W/R258W mutant mice, these stimulatory effects were abolished. Insulin content and mRNA levels
of Ffar1, Glp1r, Ins2, Slc2a2, Ppara, and Ppard were not significantly different between wild-type and Ffar1R258W/R258W mouse islets. Palmitate
exposure, 600 mM, significantly increased Ppara mRNA levels in wild-type but not in Ffar1R258W/R258W mouse islets. On the contrary, Slc2a2
mRNA levels were significantly reduced in both wild-type and Ffar1R258W/R258W mouse islets after palmitate treatment. HFD feeding induced
glucose intolerance in wild-type mice. Ffar1R258W/R258W mutant mice remained glucose tolerant although their body weight gain, liver steatosis,
insulin resistance, and plasma insulin levels were not different from those of wild-type littermates. Worth mentioning, fasting plasma insulin levels
were lower in Ffar1R258W/R258W mice.
Conclusion: A point mutation in Ffar1 abrogates the stimulatory effect of palmitate on GIIS, an effect that does not necessarily translate to
HFD-induced glucose intolerance.
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1. INTRODUCTION

Free fatty acid receptor-1 (FFAR1, formerly GPR40) promotes long
chain fatty acid-mediated augmentation of glucose-induced insulin
secretion (GIIS) [1e3]. In humans and rodents, high expression of
FFAR1 is restricted to pancreatic and gastric endocrine cells, while
expression in other tissues, including brain, is much lower [1,2,4,5].
These features make FFAR1 an attractive drug target for the treatment
of insufficient insulin secretion, which is the ultimate cause for the
onset of hyperglycemia and type-2 diabetes mellitus [6,7]. Until today,
multiple agonists have been generated and tested for their efficacy to
treat hyperglycemia in humans [6]. Although FFAR1 agonists coun-
teract glucose intolerance in mice and humans, the beneficial effect of
these new therapeutic drugs is still a matter of debate [8,9]. Thus, the
promising drug TAK875 was discontinued after clinical phase III due to
its liver toxicity. Confirming this side effect, FFAR1-deficient mice are
protected against diet-induced liver steatosis [10]. This observation
prompted the investigation of FFAR1-antagonists as therapeutic tools
against fatty liver disease.
In addition, different FFAR1 agonists exert their effects through
different cellular pathways. Thus, fatty acids stimulate insulin
secretion mainly via Gq proteins, while TAK875 stimulation is
mediated by b-arrestin-2 [11]. An additional, but indirect, stimulatory
effect of FFAR1-agonists on insulin secretion is caused by the acti-
vation of FFAR1 expressed in intestinal endocrine cells which leads to
GLP-1 secretion [12].
Several transgenic and knockout/congenic mouse models have been
generated in order to assess the role of FFAR1 for proper insulin
secretion and maintenance of glucose homeostasis. The results ob-
tained with three different receptor knockout mouse models were not
consistent. The protection against high fat feeding-induced fatty liver
and glucose intolerance, as observed by Steneberg and colleagues,
could not be reproduced using other Ffar1 KO mouse models
[10,13,14]. Such differences may be explained by undesirable side
effects generated by insertion of exogenous DNA, deletion of non-
coding regions with specific functions, e.g. microRNA, and the addi-
tional role of the Ffar1 promoter for the expression of FFAR2 (GPR43)
and FFAR3 (GPR41) [15,16]. Congenic mice differ not only in the ab-
lated gene but also in a flanking segment on either side of the ablated
locus [17]. Furthermore, a complete deletion of a protein may generate
a compensatory up-regulation of other proteins. To circumvent such
problems, we searched for a coisogenic mouse model with a minimal
genetic alteration producing a maximal effect. Using site-directed
mutagenesis, several point mutations in Ffar1 with functional conse-
quences have been identified, including R258 [18,19]. We screened
the Munich ENU-mutagenesis-derived F1 sperm and corresponding
DNA archive for point mutations in Ffar1. The archive comprises more
than 16,800 samples from individual F1-mutagenized mice on the
C3HeB/FeJ genetic background [20,21]. Two mouse models carrying
point mutations in the coding region of Ffar1 are presented in this
study of which the R258W mutation prevents the stimulation of insulin
secretion by palmitate and the FFAR1 agonist TUG-469.
2. MATERIALS, ANIMALS AND METHODS

2.1. Materials
TUG-469, a specific FFAR1 agonist, was a kind gift of Trond Ulven,
Southern University of Denmark, Odense M, Denmark. All other ma-
terials, unless otherwise stated, were from SigmaeAldrich (Deisen-
hofen, Germany) and of analytical grade.
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2.2. Generation of mice
ENU mutagenesis was performed as described previously [22]. Briefly,
male C3HeB/FeJ mice were treated weekly by one 90 mg/kg ENU-
injection for three consecutive weeks. First generation F1 mice were
phenotyped, and male mice were cryo-archived by their sperm and
spleen-derived DNA samples. The DNA archive was screened for alleles
of interest using a LightScanner� device originally from Idaho Tech-
nology Inc. (distributed by Bioke, Leiden, Netherlands). In vitro fertil-
ization, fusing sperm of mutated F1 mice and mating with wild-type
C3HeB/FeJ mice were performed as described elsewhere [23]. During
maintenance the mutant mice were repeatedly backcrossed to wild-type
C3HeB/FeJ mice in order to eliminate unwanted ENU mutations. Mice
were kept under a 12 h light/dark cycle and had ad libitum access to
chow diet (CD) and water. High fat diet (HFD) containing 45% fat/kcal
from lard and soybean (Research Diets D12451; New Brunswick; NJ;
USA) was fed for 8 weeks starting at age of 4 weeks. Mouse holding and
handling were done according to the federal animal welfare guidelines
and the state ethics committee and approved by the governments of
Upper Bavaria and Baden-Württemberg.

2.3. Glucose and insulin tolerance tests
Blood glucose concentrations were measured after intra-peritoneal
injection of 2 g glucose/kg body weight (ipGTT) or of intra-peritoneal
injection of 1 unit/kg body weight insulin (ipITT) in mice fed CD or
HFD for 8 weeks. Before GTT, mice were fasted overnight. For
determination of plasma insulin levels blood samples were collected in
heparinized capillary from tail vein. Blood glucose was measured with
a glucometer. During oral glucose tolerance test (oGTT), 2 g glucose/kg
body weight was administered via gavage in overnight fasted animals.
The tests were performed with the same animals keeping an interval of
1 week between the tests. Plasma insulin and glucagon were
measured using ELISA kits (Mercodia, Sweden). Plasma leptin and
resistin were quantified using a ProcartaPlex� immunoassay (Lumi-
nex� xMAP technology, Invitrogen).

2.4. Isolation of islets and insulin secretion
Mouse islets were isolated via collagenase digestion (1 mg/ml colla-
genase, Serva, Heidelberg, Germany) and thereafter purified by
handpicking. Islets were cultured overnight in RPMI 1640 medium
containing 11 mM glucose supplemented with 10% FCS, 10 mM
HEPES, 2 mM L-glutamine, and 1 mM Na-pyruvate without antibiotics.
Thereafter, islets were washed twice and pre-incubated for 1 h at
37 �C with Krebs Ringer buffer (KRB) containing (in mM): 135 NaCl, 4.8
KCl, 1.2 MgSO4, 1.3 CaCl2, 1.2 KH2PO4, 5 NaHCO3, 2.8 glucose, 10
HEPES, and 5 g/l bovine serum albumin (fatty acid free, low endotoxin,
Sigma, Deisenhofen, Germany), pH 7.4. Subsequently, islets were
incubated in fresh KRB containing 0.5 g/l bovine serum albumin
supplemented with test substances as indicated for 1 h at 37 �C.
Palmitate was added from a stock solution of 50 mM in DMSO.
Secreted insulin and islet insulin content after insulin extraction in acid
ethanol (1.5% [vol/vol] HCl/75% [vol/vol] ethanol) were measured via
radioimmunoassay (Millipore, Biotrend Chemikalien GmbH, Germany).

2.5. Semiquantitative analysis of cellular mRNA levels
Islets were isolated and directly lysed in RNA lysis buffer (Machereye
Nagel, Düren, Germany, Figure 1C), or islets were cultured before lysis
in medium supplemented with 10% FCS � 600 mM palmitate.
Palmitate, from a stock solution of 100 mM in DMSO, was coupled to
FCS at a final concentration of 6 mM before addition to the culture
medium. 50e200 islets were collected for total RNA-isolation using
the commercial RNeasy kit (Qiagen, Hilden, Germany). Residual DNA
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1 14004179 c.69C>A Asn23Lys N23K missense polar > basic helical, TM domain 1

2 21027588 c.71T>A Leu24Stop L24* nonsense helical, TM domain 1

3 10093889 c.111A>C Arg37Arg R37R silent

4 21040433 c.194A>T Glu65Val E65V missense acidic > nonpolar helical, TM domain 2

5 21082700 c.252G>T Leu84Phe L84F missense nonpolar > nonpolar helical, TM domain 3

6 21050574 c.280G>A Gly94Arg G94R missense nonpolar > basic helical, TM domain 3

7 20064907 c.317T>C Leu106Pro L106P missense nonpolar > nonpolar border TM domain 3 to loop
C-II

8 20049658 c.317T>C Leu106Pro L106P missense nonpolar > nonpolar border TM domain 3 to loop
C-II

9 21033736 c.436A>T Thr146Ser T146S missense polar > polar border TM domain 4 to loop
E-II

10 10087466 c.772A>T Arg258Trp R258W missense basic > nonpolar border loop E-III to TM 
domain 7
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Figure 1: Generation of mice with mutations in Ffar1. (A) Mutations in Ffar1 induced by ENU in mice. Sperm of mice carrying the mutation 9 and 10 were chosen for in vitro
fertilization and generation of mutant mice. (B) Extracellular locations of the mutations 9 and 10 in FFAR1. Note that R258 is located in the agonist-binding domain of the receptor.
(C, D, E) Relative mRNA levels in freshly isolated islets from Ffar1R258W/R258W (black bars) and Ffar1 KO mice (gray bars) compared to their respective wild-type mice expressed as
means � SEM. The number of mice is given in the respective columns. Rps13 was used as housekeeping gene.
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was removed using on column DNAse treatment (Qiagen, Hilden,
Germany). Eluted RNA was transcribed into cDNA using Oligo(dT)12e
18 as primer (Roche Diagnostics GmbH, Mannheim, Germany).
PCR was performed using the LightCycler 480 Probes Master sys-
tem (Roche Diagnostics GmbH, Mannheim, Germany). Quantification
was performed by the 2�(DCT) method relative to the housekeeping
gene Rps13. Specific primers used were: for mFfar1 up: 50-CAT-
CACTCTGCCCCTGAAG-30 down: 50-AAGGCAAAGACTGGGCAGA-30,
probe #50; for mFfar2 up: 50-AAAGGAGCTGACAGGGGTTC-30 down:
50-GCAAGTTCAGGGGTTTCTTCT-30, probe #82; for mFfar3 up: 50-
GTGCACTCACAAGGACTCTCC-30 down: 50-AAATTCGGGGTTTATGA-
GAGG-30, probe #12; for mFfar4 up: 50-TTGGTGTTGAGCGTCGTG-30
down: 50-CCAGCAGTGAGACGACAAAG-30, probe #45; for mGpr119
up: 50-TTCACTTCAATCCTCCTCCTTC-30 down: 50-TGCATGTTCTT-
GAGAGAAGTCC-30, probe #72; for mGLP1-R up: 50-GGACAACTGGG-
1306 MOLECULAR METABOLISM 6 (2017) 1304e1312 � 2017 The Authors. Published by Elsevier GmbH.
TCAAGCATT-30, down: 50-CTTTTCTCCCCTCATGGACA-30, probe
#12; for mIns2 up: 50-GAAGTGGAGGACCCACAAGT-30, down: 50-
AGTGCCAAGGTCTGAAGGTC-30 probe #32; for mPpara up: 50-
CACGCATGTGAAGGCTGTAA-30, down: 50-CAGCTCCGATCACACT-
TGTC-30, probe #41; for mPpard up: 50-ATGGGGGACAGAACACAC-
30, down: 50-GGAGGAATTCTGGGAGAGGT-30, probe #11; for mRps13
up: 50-TGCTCCCACCTAATTGGAAA-30, down: 50-CTTGTGCACACAA-
CAGCATTT-30, probe #110; for mSlc2a2 up: 50-TCTGCTA-
CTGCTCTTCTGTCCA-30, down: 50-GGTGACATCCTCAGTTCCTCTTA-
30, probe #45.

2.6. Oil red staining and measurement of liver triglyceride content
For oil red staining, liver cryosections (20 mm thick) were fixed with
4% formalin in phosphate-buffered saline and dehydrated in 100%
propylene glycol. Staining was carried out with 0.5% oil red in
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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propylene glycol for 15 min and hematoxylin was used as counter-
staining. For the assessment of triglyceride concentrations, cry-
oconserved liver samples were homogenized in phosphate-buffered
saline containing 1% Triton-X100 (20 ml buffer/mg tissue) using a
TissueLyser (Qiagen, Hilden, Germany). Triglyceride content in the
lysates was measured by a fully automatic enzymatic method on an
ADVIA Chemistry XPT system (Siemens Healthcare GmbH, Erlangen,
Germany).

2.7. Statistical analysis
All data were examined using ANOVA with Tukey’s multiple compar-
isons test as post-hoc test. The level of significance was set to
p < 0.05.

3. RESULTS

3.1. Generation of mice with point mutations in Ffar1
Mutations of Ffar1 were selected from the F1 repository of ENU
mutated mice. Ten point mutations were detected in the coding region
of Ffar1 (Figure 1A). We chose two missense mutations (T146S and
R258W) in the extracellular domain of the receptor for generation of
mutant mice strains (Figure 1B). Of note, the amino acid R258 is
located in the agonist binding domain [19].
Heterozygous mutant mice of both lines developed normally under
chow diet and did not display any metabolic phenotype regarding body
weight gain, glucose and insulin tolerance as well as fasting and fed
plasma insulin concentrations (data not shown). Therefore, homozy-
gous mice (Ffar1R258W/R258W and Ffar1T146S/T146S) were generated for
further analysis.
The expression of Ffar1 and the adjacent genes Ffar2 and Ffar3 were
estimated by RT-PCR in freshly isolated islets from wild-type (C3HeB/
FeJ) and homozygote mutant mice and compared to the mRNA levels
of Ffar1(�/�) and respective wild-type (C57/BL6) mouse islets [10]. As
shown in Figure 1CeE, mRNA levels of Ffar1, Ffar3, and Gpr119 were
not significantly different between C3HeB/FeJ and FfarR258W/R258W

mutant mouse islets. In contrast, in Ffar1 deficient mice, Ffar3 mRNA
levels were significantly lower and Gpr119 mRNA higher than in the
respective wild-type mouse islets. The mRNA levels of Ffar2 and Ffar4
(GPR120) were 1000- and 50-times lower than Ffar1 mRNA levels,
respectively, and no differences were detected (data not shown).

3.2. R258W mutation of Ffar1 prevents FFAR1-dependent
stimulation of insulin secretion in isolated mouse islets
As suggested by the use of Ffar1 knockout mice, FFAR1 contributes to
palmitate-dependent augmentation of insulin secretion. Therefore, the
functional relevance of the mutations was analyzed in isolated islets
(Figure 2). FFAR1 was activated by a physiological agonist, palmitate,
and a synthetic agonist, TUG-469 [24]. The concentrations of palmi-
tate, 50 mM, and TUG-469, 3 mM, were adapted to the low concen-
tration of albumin (0.05%) since albumin interferes with agonist (TUG-
469)-receptor interaction [1].
In islets of wild-type littermates of both mutant mouse strains
(Ffar1R258W/R258W, Figure 2A and Ffar1T146S/T146S, Figure 2B), palmi-
tate, 50 mM, or TUG-469, 3 mM, significantly augmented insulin
secretion in the presence of 12 mM glucose. In mouse islets carrying
the R258W mutation the effects of palmitate and TUG-469 on insulin
secretion were abrogated (Figure 2A), while the mutation T146S had
no impact on fatty acid- or agonist-induced insulin secretion
(Figure 2B). Neither mutation (T146S; R258W) affected glucose-
stimulated insulin secretion or insulin content (46.8 � 7.9 and
53.4 � 8.2 ng insulin/islet of wild-type and Ffar1R258W/R258W mice,
MOLECULAR METABOLISM 6 (2017) 1304e1312 � 2017 The Authors. Published by Elsevier GmbH. This is an o
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respectively). These data reveal that mice with the R258W mutation
represent a model with dysfunctional FFAR1, while the T146S mutation
has no functional consequence. Therefore, further analyses were
performed with Ffar1R258W/R258W mice only.

3.3. R258W mutation of Ffar1 prevents palmitate-induced up-
regulation of peroxisome proliferator-activated receptor a (Ppara)
mRNA levels in isolated mouse islets
To further investigate the specificity of the R258W mutation in FFAR1,
palmitate-induced changes in gene expression were analyzed. Previ-
ous works reported the involvement of FFAR1 in activation of peroxi-
some proliferator-activated receptor a (Ppara) [10]. When isolated
islets were exposed to palmitate (600 mM, adapted to the albumin
concentration in culture medium) for 24 h, Ppara mRNA levels were
augmented in wild-type islets (Figure 2C). This effect was absent in
islets of Ffar1R258W/R258W mice, confirming that the mutation impairs
receptor function. The effect is specific for Ppara, in that Ppard mRNA
levels remained unchanged (Figure 2D). Interestingly, palmitate
significantly reduced mRNA levels of Slc2a2 (Glut-2 gene) in wild-type
and mutant islets, indicating that this effect is FFAR1-independent
(Figure 2E). Neither the R258W mutation nor palmitate altered the
mRNA levels of Ffar1, Glp1r, and Ins2 (Figure 2F,D, data not shown).
In freshly isolated, non-cultured, wild-type islets from CD and HFD fed
mice, Ffar1 mRNA levels were 5-fold lower after high fat feeding
(DCt*1000: 0.9 � 0.2, n ¼ 6 vs 4.5 � 1.2, n ¼ 5; HFD vs CD,
respectively) while Slc2a2 mRNA levels remained unchanged
(DCt*1000: 48.2 � 7.9, n ¼ 6 vs 57.7 � 2.1, n ¼ 6; HFD vs CD,
respectively). Ppara mRNA levels appearing at >35 cycles were 10-
times lower than Ffar1 mRNA levels, which made the quantification
unreliable.
These observations substantiate that the R258W mutation specifically
inhibits FFAR1 function.

3.4. Ffar1R258W/R258W mice are protected against HFD-induced
glucose intolerance in spite of insulin resistance and fatty liver
In regular CD fed wild-type and Ffar1R258W/R258W mutant mice, fasting
blood glucose and plasma insulin levels were identical (Figure 3A,B).
During ipGTT, the rise in blood glucose and plasma insulin was also not
significantly different between wild-type and mutant mice. As ex-
pected, after HFD wild-type male mice but, surprisingly, not
Ffar1R258W/R258W mutant mice, became glucose intolerant (Figure 3C).
Due to significantly lower fasting insulin levels of Ffar1R258W/R258W

mice, the increase in plasma insulin during ipGTT was 4-fold in mutant
mice compared to 2-fold in wild-type mice (Figure 3D). The Ffar1
mutation protected against HFD-induced glucose intolerance, although
wild-type and mutant mice developed a similar insulin resistance upon
high fat feeding (Figure 3E). During high fat feeding, the mice became
overweight regardless of their genotype (Figure 3F). Body weights of
12 weeks old wild-type mice were 26.5 � 0.4 g (n ¼ 4) and
34.1� 1.6 g (n¼ 5, p< 0.05) after CD and HFD feeding, respectively.
The corresponding weights of Ffar1R258W/R258W mutant mice were
27.0 � 0.5 g (n ¼ 3) and 35.0 � 2.0 g (n ¼ 4, p < 0.05).
In agreement, plasma leptin and resistin were significantly higher in
mice fed HFD compared to CD regardless of the genotype
(Figure 4A,B). Furthermore, liver steatosis was detectable after HFD in
both wild-type and mutant mice and the mean hepatic triglyceride
content was not significantly different (Figure 4CeE).
Finally, when HFD-fed mice were subjected to an oral glucose toler-
ance test, the glucose excursions were not significantly different be-
tween the genotypes (Figure 4F). Also, fasting plasma glucagon levels
were 2.8 � 0.3 pM and 3.8 � 0.7 pM in wild-type and mutant mice
pen access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 1307

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.molecularmetabolism.com


0

2

4

6

8

In
su

lin
 s

ec
re

tio
n

(%
 o

f c
on

te
nt

)

Glucose  (mM) 2.8  2.8        12   12        12    12        12   12         20    20
Palmitate (μM)    - - - - 50   50         - - - -
TUG-469 (μM) - - - - - - 3 3           - -

#

*
#

* **

A

B

§

0

2

4

6

8

10

In
su

lin
 s

ec
re

tio
n 

(%
 o

f c
on

te
nt

)

*

#
#

*
*

#

*
#

Glucose  (mM) 2.8  2.8        12   12        12    12        12    12         20    20
Palmitate (μM)    - - - - 50    50         - - - -
TUG-469 (μM) - - - - - - 3      3           - -

C D

E F

0

0.002

0.004

0.006

0.008

P
pa

ra
m

R
N

A 
(Δ

C
t*

10
0)

Con Pal

*
§

0

0.1

0.2

0.3

P
pa

rd
m

R
N

A
( Δ

C
t*

10
0)

Con Pal

0

0.2

0.4

0.6

0.8

S
lc

2a
2

m
R

N
A 

(Δ
C

t*
10

0)

Con Pal

*
*

0.00

0.05

0.10

0.15

0.20

Ff
ar

1
m

R
N

A 
(Δ

C
t*

10
0)

Con Pal
0

Figure 2: Mutation R258W but not T146S of FFAR1 abrogates palmitate- and TUG-469-induced stimulation of insulin secretion and the effect of palmitate on Ppara mRNA levels.
(A, B) Insulin secretion of isolated islets from (A) wild-type littermates (white bars) and Ffar1R258W/R258W mice (black bars) as well as (B) wild-type littermates (white bars) and
Ffar1T146S/T146S mice (gray bars) measured after 1 h static incubation with substances as indicated. Results are presented as means � SEM of n ¼ 3e5 independent experiments.
(CeF) Isolated islets from wild-type (white bars) and Ffar1R258W/R258W mice (black bars) were cultured under control condition or exposed to palmitate, 600 mM for 24 h. Relative
mRNA levels are expressed as means � SEM of n ¼ 3e4 independent experiments. Rps13 was used as housekeeping gene. * denotes significance vs respective 2.8 mM glucose
or Control (Con). # denotes significance vs. 12 mM glucose, x denotes significance between genotypes.
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fed CD, respectively. After HFD, plasma glucagon concentrations
dropped under the detection level.
In conclusion, the Ffar1R258W/R258W mutation generated a functional
phenotype, i.e. the repression of fatty acid-induced insulin
1308 MOLECULAR METABOLISM 6 (2017) 1304e1312 � 2017 The Authors. Published by Elsevier GmbH.
secretion along with minimal genetic modification. The unexpected
protection against HFD-induced impaired glucose tolerance sug-
gests an unmasking of a glucose lowering mechanism in the
mutant mouse.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 3: R258W mutation in FFAR1 protects against HFD-induced glucose intolerance. (A and C) Blood glucose and (B and D) plasma insulin concentrations during ipGTT of wild-
type (white symbols and bars) and Ffar1R258W/R258W littermates (black symbols and bars) after (A and B) CD and (C and D) HFD feeding expressed as means � SEM, n ¼ 4e6 (CD)
and 6e8 (HFD) male mice. * denotes significance vs respective 0 min time point. # denotes significance between HFD and CD of wild-type mice at the same time point; x
significance between genotypes at the same condition. (E) Blood glucose in wild-type (white symbols) and Ffar1R258W/R258W (black symbols) mice during ipITT after CD (triangles,
n ¼ 4e6) and HFD (circles, n ¼ 6e8). (F) Body weight gain during high fat feeding.
4. DISCUSSION

This study presents mice with a missense point mutation in R258 of
FFAR1 that has functional consequences. Firstly, in islets of
Ffar1R258W/R258W mice, both the physiological agonist palmitate and
the synthetic agonist TUG-469 were unable to augment GIIS. Secondly,
palmitate-mediated increase of Ppara mRNA levels was abrogated.
The findings that FFAR1 mediates FFA effects on insulin secretion and
Ppara mRNA are consistent with previous observations [1,3,10]. The
loss of function of FFAR1 in Ffar1R258W/R258W mouse islets was not
accompanied by a change of Ffar1 mRNA levels, indicative of a normal
expression of the non-functional receptor. Whether protein trafficking
to the plasma membrane remains unaltered needs further experi-
mental evidence. HEK-EM 293 cells that overexpress R258A-mutated
FFAR1 exhibit an unaltered receptor abundance at the plasma mem-
brane and an abrogation of FFAR1-agonist GW9508-induced Ca2þ-flux
when compared to cells expressing wild-type receptors [19]. In
contrast, in isolated islets of Ffar1(�/�) mice, Ffar1 mRNA was
MOLECULAR METABOLISM 6 (2017) 1304e1312 � 2017 The Authors. Published by Elsevier GmbH. This is an o
www.molecularmetabolism.com
undetectable. That the deletion affected the expression of adjacent
genes is suggested by concomitant reduction of Ffar3 mRNA levels.
The functional consequence of the reduction of Ffar3 and the increase
of Gpr119 mRNA levels is unknown. In respect to undesirable side
effects, the mutant mouse represents a more reliable model.
The functional impact of Ffar1R258W/R258W became visible only in ho-
mozygous mice, while heterozygous mice did not develop any
phenotype revealing a recessive character of the mutation (data not
shown). Furthermore, GIIS was unaffected. Comparably, in humans,
mutations (single nucleotide polymorphisms) in FFAR1 link to minor,
but significant metabolic changes [24].
The Ffar1R258W/R258W mouse model provided new insight into FFAR1-
dependent and -independent effects of palmitate. Thus, in contrast to
the FFAR1-mediated effect on Ppara mRNA, the palmitate-induced
reduction of Slc2a2 mRNA levels was independent of functional
FFAR1. An effect of palmitate on Glut-2 expression has been previ-
ously reported but the underlying signaling pathways remained un-
explored [25]. However, HFD did not alter Slc2a2 mRNA levels,
pen access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 1309
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suggesting that the in vitro observation may not translate to the
in vivo situation and, consequently, does not link to HFD-induced
glucose intolerance. Chronic stimulation of G-protein coupled re-
ceptors, including FFAR1, is known to induce a downregulation of
receptors and receptor function [26]. The exposure of wild-type islets
to palmitate for 24 h was not sufficient for a significant reduction of
Ffar1 mRNA levels. Nevertheless, after 8 weeks HFD feeding Ffar1
mRNA levels were reduced 5-fold indicating that chronic stimulation
may attenuate receptor function.
The improved glucose tolerance of Ffar1R258W/R258W mice on HFD was
unexpected. In combination with similar fasting blood glucose levels,
the significant lower fasting plasma insulin of mutant mice compared
to wild-type mice is indicative of improved insulin sensitivity. However,
peripheral insulin resistance assessed with ipITT was not different
between wild-type and mutant mice. The degree of liver steatosis was
also independent of the expression of a functional FFAR1. Indeed, any
change of liver steatosis and insulin resistance can only be attributed to
an indirect effect of FFAR1, since the receptor is not expressed in
rodent liver, muscle and adipose tissue (Refs. [1,27]; data not shown).
The lower basal plasma insulin levels of Ffar1R258W/R258W compared to
wild-type mice could be attributed to FFAR1 deficiency, because fatty
1310 MOLECULAR METABOLISM 6 (2017) 1304e1312 � 2017 The Authors. Published by Elsevier GmbH.
acids are increased after overnight fasting and blood glucose levels
were elevated, i.e. at 6 mM. In view of similar HFD-induced insulin
resistance and liver steatosis, the significantly higher glucose excur-
sions in wild-type mice during ipGTT cannot be explained by b-cell
dysfunction only. It is more likely that additional, insulin-independent
factors regulating blood glucose levels, e.g. via the regulation of he-
patic glucose production, account for differences in glucose tolerance
between wild-type and FFAR1 mutant mice.
An increased sympathetic tone and the hormone glucagon are the
main glucose mobilizing factors [28,29]. Single-cell transcriptome
analysis of human islet cells suggests the expression of Ffar1 not only
in b-cells but also in a-cells [30]. Moreover, analysis of rat a-cells
indicates that FFAR1 expression is under the control of PAX6 [31]. At
least in rodents, long chain fatty acids stimulate glucagon secretion at
low glucose, i.e. under hypoglycemic condition [32]. However, there
was no significant difference in plasma glucagon levels of CD-fed
mutant and wild-type mice under fasting conditions. In HFD-fed
mice, glucagon levels were much lower than in CD-fed mice and
unfortunately under the detection level. In view of stable glucagon
levels in humans during FFAR1-agonist administration and the lack of
FFAR1-dependent stimulation of glucagon secretion in isolated human
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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and rat islets at high glucose, it seems unlikely that FFAR1-dependent
glucagon secretion inducing hepatic glucose mobilization accounts for
higher glucose levels during a glucose load [33,34]. Recently, evidence
was presented that FFAR1 deficient mice display higher noradrenaline
levels in brain [35]. The effects of changes in sympathetic nervous
function during fat-rich feeding on glucose homeostasis in FFAR1-
deficient mice require further studies.
During ipGTT, plasma insulin concentrations increased to a similar
level in wild-type and Ffar1R258W/R258W mice, reflecting a b-cell
glucose-responsiveness independent of FFAR1 function. Indeed, dur-
ing ipGTT, plasma fatty acid concentrations decline and, therefore, it is
unlikely that FFAR1 contributes to insulin secretion during ipGTT [36].
Glucose homeostasis is further regulated by incretins, and FFAR1-
agonists increase incretin release in rodents [12,37,38]. In contrast
to the significantly different plasma glucose levels at 30 min after ip
glucose administration, 30 min after an oral glucose load, plasma
glucose levels were not significantly different between wild-type and
Ffar1R258W/R258W mice. GLP-1 secretion is stimulated by FFAR1 from
the vascular but not from the luminal site, making it unlikely that FFAR1
is activated and augments incretin secretion during an oral glucose
load when plasma fatty acids decline [36,38]. Plasma glucose ho-
meostasis is maintained via an interaction of many organs, which
generate a large variety of metabolic regulators. Only a detailed
analysis of the individual players and the reciprocal influences will give
an explanation why Ffar1R258W/R258W mice are protected against diet
induced glucose intolerance.
This study introduces a mouse model carrying the point mutation
R258W in Ffar1, which abolishes the stimulation of insulin secretion in
response to long chain fatty acids. The minimal genetic alteration
mirrors the human situation and has the advantage over conventional
knockout/congenic mouse models. It also circumvents side effects
generated by viral constructs, the removal of additional non-coding
regions within the deleted gene, and changes in proteineprotein in-
teractions such as receptor G-protein coupling due to complete
abrogation of a receptor protein.
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