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Seeing the wood for the trees: towards improved 
quantification of glial cells in central nervous system 
tissue

As evidenced by over 1100 ‘hits’ when the search string “or-
ganotypic brain slice culture” is used on Pubmed (accessed 
February 2018), the use of this three-dimensional (3D) tissue 
platform for mimicking the conditions of brain disease in vivo 
is increasingly popular (Jarjour et al., 2012; Humpel, 2015). 
While culture conditions and tissue age have been adjusted 
in order to provide optimum conditions for slice survival, ap-
proaches to quantification of cellular changes occurring under 
experimental conditions have not been developed to the same 
level of sophistication. Fluorescence immunocytochemistry 
has been the preferred technique used to identify and char-
acterise different cell types and demonstrate expression levels 
of proteins within cultured brain slices. However, given that 
slice thickness is known to affect antibody/reagent penetration, 
and that there is extensive diffraction of fluorescence emitted 
beneath the slice surface, it is important that an agreed pro-
tocol should be in place for quantifying accurately images of 
key features within slices. In this way it should be possible to 
minimise errors of interpretation, avoid exaggerated research 
claims and improve consensus amongst research groups. 
Accepting that there is no perfect technique for quantifying 
protein expression within slices and that published techniques 
will never portray with 100% accuracy the absolute numbers of 
cells or levels of protein expression within test tissue samples, 
the following paragraphs summarise our development of a 
work-flow that can be used to assist glial biologists to navigate 

a route to best possible quantification of protein expression, 
given the limitations of current in vitro and image analysis 
protocols.

The analysis of images from thick cultured slices is the last 
of a multi-stage process that normally begins with fixation in 
paraformaldehyde after which slices are typically then exposed 
to primary antibodies detecting proteins of interest. Primary 
antibody binding is then usually visualised using tagged sec-
ondary antibodies and fluorescence confocal microscopy. The 
quality of outputs from tissue staining will critically depend 
on the quality of the tools used, the way that they are applied 
and the condition of the starting tissue sample. For example, 
strategies such as antigen retrieval via pressure cookers or de-
tergents, may improve antibody penetration. The quantity of 
primary and secondary antibody applied to tissue should be 
optimised in order to decrease background staining. Crucial-
ly, extreme care during tissue handling during dissection and 
fixation, should ensure optimal starting material. Researchers 
can also draw on published protocols as well as guidelines rec-
ommended by antibody suppliers and in online fora. However, 
beyond this point, once image capture and analysis is required, 
best practice is far from clear. 

The challenge of correctly and accurately analysing complex 
images may be further exacerbated by problematic features 
such as non-stationary, correlated and non-Gaussian noise 
(a type of generalised statistical noise that has a non-normal 
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probability density function), ambient illumination (dark 
room illumination may vary between total and medium dark-
ness depending light from computer monitors, etc.), busyness 
of grey levels within the object and the background, inadequate 
or inappropriate contrast (contrast adjusts the shape of the 
intensity histogram of an image and adjustments may over- or 
under-saturate the intensity information and truncate infor-
mation) and inter-image variability arising from specimen and 
staining variability (Sezgin and Sankur, 2004). 

In an excellent review of biological imaging software tools, 
Eliceiri et al. (2012) described the use of ImageJ, Fiji, BioIm-
ageXD, Icy, CellProfiler, Vaa3D programmes to analyse tissue 
images. In our recent study, we report on the use of Brocher’s 
BioVoxxel plugin, available in Fiji, to evaluate systematically 
25 threshold-based segmentation algorithms for suitability in 
analysing fluorescent and chromogenic images of glial cells 
within cultured hippocampal slices and in thin brain tissue 
sections (Healy et al., 2018). Exploiting slices from a model 
of iron accumulation in rat hippocampus (Healy et al., 2016), 
six different projection algorithms were first compared to de-
termine which one best rendered 2D images from a series of 
z-stacked micrographs of fluorescently-stained cells. The max-
imum intensity projection algorithm was found to be the best 
at preserving sharpness and quality of detail, when compared 
to the standard deviation, mean, sum, minimum and median 
algorithms.

The accuracy of image segmentation and feature extraction, 
the process whereby each pixel is analysed to determine if it 
is part of the background or part of the object-of-interest, de-
pends critically on the application of the most appropriate bi-
narisation algorithm (Johnson and Walker, 2015). Researchers 
might feel that they are capable of making an objective assess-
ment, by eye, of the quality of image binarisation and to test 
this idea, we compared three manually-chosen thresholds to 
the Default algorithm (http://imagej.net/Auto, Threshold#De-
fault, March 2017), when applied to two different images each 
of astrocytes, microglia and oligodendrocytes (Healy et al., 
2018). For all glial cells, the auto Default algorithm was found 
to produce the best quality output binarisation. However, in 
the case of microglia, the output was considered sub-opti-
mal, leading us to complete a more thorough exploration of 
approaches to image segmentation. Instead of opting for the 
‘lowest common denominator’, researchers can exploit one of 
Fiji’s 16 global or 9 local algorithms, in order to yield the most 
accurate imaging data. Depending on underlying methodolo-
gy, the 16 global algorithms, which compute a single threshold 
using complete image information, are classed as histogram 
shape (Intermodes, Mean, Minimum), Cluster (Default, Iso-
data, MinError, Otsu), Entropy (Shanbhag, Li, Yen, Huang, 
RenyiEntropy, MaxEntroy), Attribute (Moments, Triangle), or 
miscellaneous (Percentile). The nine local algorithms, which 
compute various thresholds from different partitions of the 
image, are Bernsen, Contrast, Mean, Median, Midgrey, Ni-
black, Otsu, Sauvola and Phansalker. The reader is referred to 
Healy et al. (2018) for a detailed listing of references for each 
algorithm. 

Motivated by the desire to produce the most accurate data 
possible, a researcher may try to carry out a subjective assess-
ment of the suitability of the above algorithms for analysing 
experimental images. Indeed, our first attempt at doing this, 

for GFAP-stained astrocytes did allow us to immediately dis-
miss many algorithms e.g., the MinError, Triangle, Yen, Max 
Entropy, Minimum, RenyiEntropy and Intermodes algo-
rithms. However, distinguishing between others, all of which 
appeared to do the job equally well, was a challenge. In what 
we believe is the first reported instance of its use in the analy-
sis of images of glial cells, we exploited Fiji’s BioVoxxel plugin 
(Brocher, 2014), a semi-quantitative, colour-coded method, 
to evaluate the relative merit of the 25 thresholding algo-
rithms. The object-of-interest is coloured yellow-to-red, while 
background is blue-to-cyan (Figure 1). A single reference 
intensity value per image, chosen by the user, is used to clas-
sify each pixel as an object or non-object (i.e., background), 
giving 4 categories for each pixel: object-of-interest/cellular 
staining, (true positive; TP), background (true negative; TN), 
over-estimated (false positive; FP) and under-estimated (false 
negative; FN). A word of caution is necessary at this point, 
as the reference value chosen by the user has the potential 
to introduce bias. The potential for bias can be mitigated by 
using a battery of test images for evaluation, or by selecting 
and comparing multiple reference points from the same im-
age. Users must be able to justify a carefully chosen reference 
point on which subsequent evaluations can safely be based. 
Ideally, researchers would be able to access positive control 
tissue containing a cell population that has been genetically 
altered such that it emits a relevant strong fluorescent signal 
in situ. The corollary to this would be a negative-control sam-
ple, for example tissue that has been stained using secondary 
antibody only. Alternatively, areas of tissue section that are 
known to be negative for the protein of interest (e.g., in-
ter-cellular spaces). For further details of managing reference 
values, the reader is referred to Healy et al. (2018).

To evaluate the performance of each algorithm, the number 
of pixels assigned to each category is counted, and the fol-
lowing metrics are calculated: sensitivity, specificity, accuracy 
and relative quality. Incorporating a multiplication (100×) of 
the product of each of the following four calculations, sensi-
tivity is computed by dividing TP by (TP + FN), specificity, 
by dividing TN by (TN + FP), accuracy, by dividing (TP + 
TN) by (TP + FP + FN), and relative quality, by dividing TP 
by (TP + FP + FN) (Figure 1). 

On applying Brocher’s plugin to selected reference images 
of glial fibrillary acidic protein (GFAP)-stained astrocytes 
within cultured hippocampal slices, and using one-way anal-
ysis of variance (ANOVA) followed by post-hoc comparisons 
using Dunnett’s test for statistical analyses, the Percentile 
algorithm yielded the highest scores for sensitivity, speci-
ficity, accuracy and relative quality, although the Huang, Li 
and Mean algorithms performed almost equally well. These 
four algorithms performed significantly better than the other 
global and all of the local algorithms. To illustrate the po-
tential importance of identifying the best algorithms to use 
in the context of measuring astrocyte reactivity, we applied 
the Percentile, Mean, Otsu, Sauvola and Bernsen algorithms 
to images of GFAP-stained control and ferrocene-treated 
cultured hippocampal slices. Data generated using the Otsu 
algorithm suggested a significant (although small) increase in 
astrocyte reactivity, while the other four algorithms indicated 
no change (Healy et al., 2018).

Replicating the approach used to quantify changes in GFAP 
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Figure 1 Image analysis workflow. 
Z-stack images of immunofluores-
cently stained ex vivo brain slice 
cultures are acquired using a laser 
scanning confocal microscope. 
After post-processing (background 
subtraction and despeckling) the 
stacks are converted to maximum 
intensity projections and analysis 
of automatic threshold algorithms 
is then carried out using the Bio-
voxxel plug-in. Optimal projection 
and thresholding methods for each 
glial cell type are summarised in in 
the bottom pane and all steps are 
automated in a macro. TP: True 
positive; TN: true negative; FP: 
false positive; FNL false negative; 
OLs: oligodendrocytes.

staining, the performance of 25 algorithms in analysing im-
ages of IBA1-stained microglia was also assessed using the 
BioVoxxel plugin and the same statistical tools. This time the 
Li algorithm returned the highest score across all four metrics 
and the Huang, Mean, Triangle and Phansalker algorithms 
performed almost equally well and would be deemed accept-

able in this context. In contrast, the remaining 20 algorithms 
performed significantly less well.

When images generated using antibodies to nucleus-local-
ised Olig2 were similarly analysed, eight global (Otsu, Default, 
Huang, Isodata, Li, MaxEntropy, Moments, RenyiEntropy, 
Yen) and one local (Phansalker) thresholding algorthims 
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performed almost equally well, but the Otsu algorithm per-
formed the best across all four metrics.

Ionized calcium binding adapter molecule 1 (IBA1) or 
GFAP staining yield complex images of glia, since features 
present within the cell body and extended processes are iden-
tified. This makes the counting of individual cells a challenge. 
Such limitations are absent when nuclear stains such as the 
Olig2 stain for oligodendrocyte, are used. After identifying 
the Otsu algorithm as the optimum auto-thresholding al-
gorithm for fluorescent Olig2-stained cells in hippocampal 
slices, we were interested in determining how this algorithm 
compared to a design-based, unbiased, stereological approach 
(Schmitz and Hof, 2005). Using a cohort of images generated 
following treatment of cultured slices with vehicle or ferro-
cene, the relationship between the two counting methods 
was assessed by calculating a Pearson correlation coefficient. 
Results indicated a moderate positive correlation between the 
two methods (r = 0.55, n = 11, P = 0.01). Moreover, the rela-
tive loss of oligodendrocytes reported following application 
of the Otsu algorithm, was similar when stereology was used. 
However, in keeping with previous reports (Schmitz and Hof, 
2005; Howard and Reed, 2010), the stereological approach 
generated an oligodendrocyte count that was significantly 
lower (approximately 30% lower) than that produced using 
auto-thresholding.

Chromogenically-stained tissue represents an altogether 
different challenge when it comes to automatic quantifica-
tion of positive staining. There is considerably less contrast 
between object and background, when compared to fluo-
rescently-stained features. In an extension of the above-de-
scribed study of stained thick brain tissue slices, and in order 
to explore the potential utility of automated thresholding 
for use on chromogenically-stained thin tissue sections, we 
completed a preliminary image analysis of IBA1- and GFAP-
stained microglia and astrocytes in 3,3′-diaminobenzidine 
(DAB)/Haematoxylin-stained adult rat cerebellar tissue. The 
Default, Isodata and Moments algorithms performed best for 
microglia and astrocytes (Healy et al., 2018), none of which 
were amongst the best group of algorithms identified when 
images of fluorescently-stained microglia or astrocytes were 
analyzed.

In summary, the lack of detail regarding quantification 
and analysis of cells within stained organotypic tissue slices, 
prompted us to develop a new proposed workflow (Figure 1). 
We believe that this workflow could be useful to researchers 
aiming to efficiently quantify positive staining of glial cells, 
as it highlights different algorithms that were found by us 
to be optimal for each glial cell type. These algorithms could 
be used as a starting point by researchers developing proto-
cols within different labs. Beginning with image acquisition, 
protocol development moves on to generation of an au-
to-thresholded maximum-intensity projection before image 
binarisation using thresholding algorithms that have been 
validated using the colour-coded BioVoxxel plugin. Once 
optimal binarisation and thresholding algorithms have been 
established for the particular protein-of-interest, the work-
flow finishes with relevant quantification methodology, using 
software such as ImageJ (platform-independent freeware 
developed by the National Institutes of Health, USA). While 
automated thresholding and evaluated algorithms should 

prevent skewing of results due to subjective bias, researchers 
should be aware that there is not a ‘one-size-fits-all’ binari-
sation algorithm for glial cells. Indeed, algorithms that work 
for fluorescently-stained cells may not be suitable for tissue 
stained using chromogenic methods. Furthermore, automat-
ed cell counting may inflate cell number moderately, when 
compared to stereological methods. Nonetheless, we have 
presented what we believe is an improved approach to the 
quantification of stained tissue that could assist in raising the 
quality of research outcomes that are shared with the scientif-
ic community as a whole.
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