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Abstract

During the development of neuroimaging, numerous analyses were performed to identify population differences, such as
studies on age, gender, and diseases. Researchers first normalized the brain image and then identified features that
represent key differences between groups. In these studies, the question of whether normalization (a pre-processing step
widely used in neuroimaging studies) reduces the diversity of brains was largely ignored. There are a few studies that
identify the differences between individuals after normalization. In the current study, we analyzed brain diversity on an
individual level, both qualitatively and quantitatively. The main idea was to utilize brain images for identity authentication.
First, the brain images were normalized and registered. Then, a pixel-level matching method was developed to compute the
identity difference between different images for matching. Finally, by analyzing the performance of the proposed brain
recognition strategy, the individual differences in brain images were evaluated. Experimental results on a 150-subject
database showed that the proposed approach could achieve a 100% identification ratio, which indicated distinct differences
between individuals after normalization. Thus, the results proved that after the normalization stage, brain images retain
their main distinguishing information and features. Based on this result, we suggest that diversity (individual differences)
should be considered when conducting group analysis, and that this approach may facilitate group pattern classification.
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Introduction

The brain is the center of the nervous system and the most

important and complex organ in the human body. In neurosci-

ence, one of the most difficult challenges has been to uncover the

functional mechanisms of the human brain. Since neuroimaging

became the predominant technique in behavioral and cognitive

neuroscience, significant advances have been made in the

understanding of the human brain. Neuroimaging covers many

fields, ranging from the detailed functional architecture of the

retinotopically mapped visual cortex to the role of the ventral

striatum in emotional learning [1].

Neuroimaging can generally be categorized into two groups: 1)

Structural imaging, which addresses the structure of the brain and

diagnoses exogenous diseases and injury [2]; and 2) Functional

imaging, which diagnoses metabolic diseases and lesions, such as

Alzheimer’s disease (AD) [3,4] and schizophrenia [5,6]. It first

measures some aspect of brain activity, healthy or pathological.

Then detect differences when comparing images from healthy

control subjects with those of patients. Brain imaging is also used

for neurological and cognitive research, such as age-specific

changes [7–12] and gender classification [13,14]. Tonks et al. [2]

found that children with acquired brain injury (ABI) were

identified as less resilient and more depressed and anxious than

controls. Costafreda et al. [15] used an automated analysis to

extract 3D hippocampal shape morphology, and then applied

machine-learning classifications to predict conversion from mild

cognitive impairment (MCI) to AD. Yang et al. [5] found reduced

gray matter volume in the hippocampus and parahippocampal

gyrus in murderers with schizophrenia. Giorgio et al. [9] found

widespread reductions in the gray matter (GM) volume from

middle age onwards and detected earlier reductions in the frontal

cortex. Robinson et al. [16] proposed a machine-learning-based

approach to recognize subjects based on their approximated

structural connectivity patterns and to classify subjects of different

ages. Tian et al. [17] found that compared with females, males

have a higher normalized clustering coefficient in the right

hemispheric network but a lower clustering coefficient in the left

hemispheric network, suggesting a gender-hemisphere interaction.

All the studies described above have been achievements in

behavioral and cognitive neuroscience. Such studies almost always

involve group analysis (or classification) that identifies population

differences by extracting features that represent the key difference

between groups [16]. Most of the studies are based on

normalization, which has been demonstrated to be useful in many

areas, both in research and in clinical settings [18]. For example,

in functional imaging studies, normalization of the images is useful

to put in line brain architecture from different subjects and

determine what happened generally over individuals [19]. The

questions in which we are interested are as follows: (1) Is each

brain distinct from every other brain? (2) Does normalization
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reduce the diversity of the brain? The brain coordinates move-

ments, thoughts, and feelings and makes each person distinct.

Thus, these issues are important for a deeper understanding of

brain research. However, to the best of our knowledge, there are

no studies on the diversity (identifying the differences between

individuals or identity authentication) of the human brain after

normalization. To further our understanding of the mechanisms of

brain function, it is desirable to study the diversity of the brain.

The present paper analyzes the diversity of the human brain

after normalization for the first time. Using the brain for identity

authentication (recognition, similar to face recognition [20],

fingerprint recognition [21], or iris recognition [22]), we identified

individual differences not only qualitatively but also quantitatively.

Our approach first normalized the brain images and produced

estimates of the intensity at each voxel. A pixel-to-pixel matching

technique was then applied to investigate individual differences in

the whole brain. The approach was applied to a database of 150

subjects to evaluate the diversity of the brain based on recognition

(identity authentication). The experimental results indicated the

individual differences of brain images. We found that the

individual differences in using the brain for recognition are as

meticulously distinct as those of other biometric features, which

confirmed the diversity of brains after normalization.

Materials and Methods

Ethics Statement
Approvals for public sharing were obtained from all of the

subjects [23,24].

Modality Selection
The first step of brain recognition is brain acquisition. There are

great developments in various neuroimaging techniques, such as

positron emission tomography (PET), computed tomography

(CT), electroencephalograph (EEG), magnetoencephalograph

(MEG), optical imaging (OI), and magnetic resonance imaging

(MRI). These technologies can generally be classified into two

categories: invasive techniques and non-invasive techniques.

Invasive techniques, such as OI, cannot be applied to healthy

humans, even though the technique has a very high spatial

resolution. Though MEG technique has a high temporal

resolution, it is very expensive. EEG has a high temporal

resolution, but it has a significantly lower spatial resolution.

Compared with PET, MRI has both high spatial and high

temporal resolution, and it does not require radioactive contrast

medium, making it non-invasive. Though CT does not rely on

radioactive contrast medium, it does use X-ray, which can be

harmful.

MRI is a non-invasive brain imaging technique that has been

utilized in brain research since the early 1990s [25]. MRI was first

introduced in the early 1980s. Since then, it has grown rapidly and

become one of the most important brain imaging techniques. The

increasing popularity of MRI is due to two characteristics. The

first characteristic is that it has no known harmful side effects

making it a very patient-friendly and widely-accepted technique.

Secondly, it produces images with very high anatomical resolution

and specificity especially for soft tissues. Due to its high resolution

and non-requirement of radioactive contrast medium, we chose

MRI as the modality for this study.

The features that are used for classifications are either structural

characteristics or functional properties of the brain [26]. For

structural neuroimaging studies, various approaches, including

a deformation field for registration [27], a map of cortical

thickness [28], and a map of gray matter membership [29], have

been employed for classification. For functional neuroimaging

studies, a brain activation map [30], a map of regional

homogeneity in resting fMRI [31], and brain networks [32] have

been used to distinguish patients with mental disorders. Compared

with functional brain measures, structural MRI images are more

stable and easy to use for individual analysis [29]. Thus, this study

adopted structural MRI images for analysis.

Imaging Protocol
The data set selected for this study was downloaded from the

Open Access Series of Imaging Studies (OASIS) website [33]. For

each subject, T1-weighted structural magnetization-prepared

rapid gradient echo (MP-RAGE) images were obtained with the

following parameters: TR= 9:7ms, TE= 4:0ms, slice

thickness = 1:25mm, slice number = 128, flip angle = 10
0
, and in-

plane resolution = 256|256(1mm|1mm). For each subject, 3~44
T1-weighted structural images were obtained on a 1.5 T Vision

scanner (Siemens, Erlangen, Germany) during a single image

session. Figure 1 shows an example of MR images from the

OASIS data set. Facial features were removed at the fMRIDC

(http://www.fmridc.org) using the Brain Extraction Tool.

Participants
The subjects were all right-handed and included both men and

women. Subsets of the subjects were recruited from the

Washington University community and the longitudinal pool at

the Washington University Alzheimer Disease Research Center

(ADRC). The rest of the subjects were the ADRC’s normal and

cognitively impaired subjects, who were recruited primarily

through media appeals and word of mouth. Approval for public

sharing of the anonymous data was obtained from all of the

subjects. For each subject, at least 3 T1-weighted images were

acquired per imaging session (visit). Most of the subjects were

scanned on several visits at different times.

The receiver operating curve (ROC) plots false acceptance rate

(FAR) versus false rejection rate (FRR) [34], and it is often used to

evaluate the performance of recognition systems. FRR is defined

as the percentage of genuine matching pairs with matching scores

below the threshold value, while FAR is defined as the percentage

of imposter matching pairs with scores above the threshold.

Genuine matching pair indicates that two matching brain images

were acquired from the same subject, while imposter matching

pair indicates that two matching brain images were scanned from

different individuals. In the OASIS data sets, there are many

subjects that were scanned on several separate visits (the visits are

separated by a time interval: for OAS1, this interval is approxi-

mately 90 days [23], whereas, for OAS2, it is longer than one year

[24]). This characteristic is very important for evaluating the

performance of identity authentication as the database can

generate genuine matching with the characteristic, which is why

the OASIS data sets are perfectly suited to this study.

Let v indicates the number of visits for one subject, and s

denotes the number of scans generated in each visit. Then the

combination number of selecting two visits is C2
v . And for each two

visits, the number of genuine matching pairs is s2. Thus the

number of genuine matching pairs for one subject is calculated as

ng~C2
v|s2: ð1Þ

Let N denotes the number of subjects who were scanned at v

visits, and the total number of genuine matching pairs is

Confirming the Diversity of the Brain
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Ng~N|ng: ð2Þ

For OAS1, there are only 20 (N~20) subjects who were

scanned for 2 (v~2) visits, and thus the genuine matching number

is very small. In contrast, all 150 (N~150) subjects in OAS2 were

scanned for 2~55 (v~2~55) visits; therefore, there are more genuine

matching pairs in OAS2 than in OAS1. Thus, we chose OAS2 as the

data set for this study. Another reason for choosing OAS2 is that

the interval between visits is longer than one year for OAS2,

whereas the interval for OAS1 is shorter than 90 days. A longer

interval yields a stronger ability of the data set to evaluate the

robustness and steadiness of the authentication system.

Normalization
Normalization is ubiquitous and important in many aspects of

image analysis [19]. For example, in neuroimaging, the re-

alignment of a time-series of scans from the same subject

(correcting for movement) is necessary for voxel-based analysis

of time-dependent changes [35]. To average signals from

functional brain images of different subjects, it is necessary to

register the images together [36]. This issue is the current interest

in the analysis of functional magnetic resonance imaging (fMRI)

time-series. Inter-subject averaging with change distribution

analysis or statistical parametric mapping also requires the images

to be transformed into a standard stereotactic space [35]. This

procedure is known as normalization. A fundamental advantage of

normalization is that activations can be reported according to a set

of meaningful Euclidian coordinates within a standard space [37].

Normalization is often performed by determining the corre-

spondence between images. At its simplest, image normalization

involves estimating a smooth, continuous mapping between the

points in one image and those in another. The relative shapes of

the images can then be determined from the parameters that

encode the mapping (spatial transformation) [38]. There are many

ways of modeling such mappings, and they can generally be

classified into two broad categories [39]:

N rigid-body Transformations that preserve the distance between

all points in the image are called rigid-body transformations.

These transformations consist of shift and rotation, which are

equivalent to a change from one Cartesian system of

coordinates to another one. Rigid-body transformation is

a specific case of affine transformation, which allows for

a global change of scale.

N nonrigid Transformations that map straight lines to curves are

referred to as nonrigid transformations. In contrast to rigid-

body transformations (in which the constraints are explicit), the

constraints for nonrigid warping are more arbitrary.

A rigid-body transformation may be perfectly valid for

realignment but not for spatial normalization of an arbitrary

brain into a standard stereotaxic space [37]. The objective of this

study is not to achieve a high accuracy of realignment, although

a more accurate realignment leads to better performance of the

brain matching and identity authentication. In contrast, in this

study, we mainly analyzed the diversity of brains after normali-

zation. Thus, we used nonrigid transformation, which can spatially

normalize an arbitrary brain into a standard stereotaxic space.

There are many different nonrigid transformation models. In

general, these models can be divided into two categories [38,40]:

N A small-deformation framework does not necessarily preserve

topology, although if the deformations are relatively small,

then the topology may still be preserved.

N A large-deformation framework generates deformations (dif-

feomorphisms) that have a number of elegant mathematical

properties, such as enforcing the preservation of topology.

DARTEL (diffeomorphic anatomical registration by exponen-

tiated Lie algebra), which is a large-deformation technique, has

been widely used for normalization since its first establishment.

DARTEL has the advantage, relative to the small-deformation

approach, that the resulting deformations are diffeomorphic and

easily invertible and can be rapidly computed [38]. DARTEL is

also more accurate than conventional SPM normalization [41].

When good-quality anatomical MRI scans are available, the

DARTEL approach is now generally recommended [42]. For the

Figure 1. An example of an MR image in the OASIS database. (a) A sagittal section, with the front (anterior) of the head at the right and the
top of the head shown at the top. This orientation shows an image as if the subject were being viewed from the right. (b) A coronal section, with the
top (superior) of the head displayed at the top and the left shown on the left. This orientation shows an image as if the subject were being viewed
from behind. (c) An axial section, with the front (anterior) of the head at the top and the left shown on the left. This orientation appears as if the
subject were being viewed from above.
doi:10.1371/journal.pone.0054328.g001
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above reasons, we chose DARTEL as the method of normaliza-

tion for this study.

The normalization was performed using SPM8 [43], and it

consisted of three steps. First, the new segment procedure was used

to segment the MRI images into six partitions, including gray

matter (GM), white matter (WM), cerebrospinal fluid (CSF), and

three other background partitions based on a modified mixed-

model cluster analysis technique. The new segment procedure is

generally more robust than using the ‘‘segment’’ button. Next,

a template was generated from the entire image data set using the

diffeomorphic anatomical registration by exponentiated Lie

algebra (DARTEL) technique [38]. Finally, the GM images were

spatially normalized to the template that was created in the second

step and then smoothed by an isotropic Gaussian filter with an

8mm full-width half-maximum (FWHM) kernel.

Matching
Matching methods can be mainly divided into three classes [34]:

(1) algorithms that use the image pixel values directly; (2)

algorithms that use low-level features, such as edges and corners;

and (3) algorithms that use high-level features. The drawback of

high-level matching methods is that high-level features first need to

be extracted and identified, which is a rather difficult task. Low-

level matching is often used in circumstances in which the object to

be recognized is well structured, such as fingerprints that have

minutiae [21] as their stable feature. However, normalized brain

images do not have such steady point features.

The human brain consists of white matter, gray matter and

cerebrospinal fluid. The gyrus is distributed among white matter

and gray matter. The gray intensity of each brain is different [44].

To recognize different persons, we can compare differences in

brain gray intensity. Thus, we treat brain matching as a problem

of pixel-level matching. Compared with the other two methods,

pixel-level matching methods have more potential information

from the images than methods that extract features for matching.

To compare two images, the first step is to align the images. In

this study, we have finished the alignment step in the normaliza-

tion stage (see section ‘‘Normalization’’). Let G denote the

normalized gray matter image of the input brain image I . In the

matching step, the difference between two aligned gray matter

images, G1 and G2 (normalized from the two MR images, denoted

as I1 and I2, respectively), is computed as below:

d~
X

x

abs(G1(x){G2(x)), ð3Þ

where x is all of the possible three-dimensional coordinates

corresponding to the gray matter images. We used the segmented

image; the each voxel shows the proportion/probability of it being

GM. This procedure makes the matching robust to noise, smear,

lesion, and other effects. A smaller d indicates a higher probability

that the two MR images come from the same subject. The final

score s is normalized from d by

s~{
100{0

dmax{dmin

|(d{dmin)z100, ð4Þ

in which dmax and dmin represent the maximum and minimum

value of all of the differences d , respectively. Equation (4)

normalized the scores to the interval [0, 100].

Experimental Protocol
The experiments were conducted on OAS2. We can generate

genuine matching using images obtained in the same session from

the same subject (denoted as ‘Same-Visit’); or using images from

the same subject but from different visits (denoted as ‘Different-

Visit’).

Results

Experimental Results
The distributions of normalized genuine and imposter matching

scores are shown in Figure 2. It can be observed from this figure

that two peaks exist in the distribution of matching scores. One

peak is located at a value near 75, corresponding to the imposter

matching scores. The other pronounced peak resides at a value of

95 and is associated with the genuine matching scores. This result

indicates that the proposed scheme is capable of differentiating

brains at a high rate of accuracy by selecting an appropriate value

of the threshold. Figure 2 shows that the performance of the

‘Same-Visit’ experiment is better than that of the ‘Different-Visit’

experiment, as the genuine scores of the ‘Same-Visit’ experiment

are higher and more concentrated than those of the ‘Different-

Visit’ experiment.

Figure 3 shows the receiver operating curves (ROC) plotting

FAR versus FRR of the ‘Same-Visit’ experiment and the

‘Different-Visit’ experiment. The results show that the perfor-

mance of the ‘Same-Visit’ experiment is much better than that of

the ‘Different-Visit’ experiment. The equal error rates (EER, the

point when FAR is equal to FRR) are 0.0% and 0.072% for the

‘Same-Visit’ and the ‘Different-Visit’ experiments, respectively.

This discrepancy illustrates that the matching pairs (genuine and

imposter) in the ‘Same-Visit’ experiment are more distinct.

Furthermore, it can be judged from Figure 2 that the matching

pairs (genuine and imposter) in the ‘Same-Visit’ experiment can be

absolutely separated by a well-defined threshold, such as 85.

Specifically, the maximum imposter matching score in the ‘Same-

Visit’ experiment is 83.46, while the minimum genuine matching

score is 86.03. Thus, the matching pairs (genuine and imposter) in

the ‘Same-Visit’ experiment can be absolutely separated by any

threshold value between 83.46 and 86.03, which is why we can

obtain an EER of 0.0% for the ‘Same-Visit’ experiment.

To further evaluate the diversity of brains after normalization,

we also conducted an identification experiment. An identification

system is a 1-to-N (N is the number of brains or subjects in the

database) matching system. When an input brain image is given,

the identification system compares the input image with all of the

brain images in the database and returns the image (or the ID of

the subject) with the highest matching score. If the returned brain

image and the input image are from the same brain (subject), it is

called right-identification. The identification ratio is defined as the ratio

of right-identification inputs to all input brain images. In this study,

we used the second scan in the first session (visit) of every subject to

establish the database and treated the second scan in the second

session (visit) of every subject as the inputs. We obtained an

exciting result: a 100% identification ratio was achieved in the testing

database.

Discussion

It is a consensus that human brains are different from each

other. In this study, we proposed to measure the individual

differences in the human brain for the first time. Using brain

images for identity authentication, we found that the individual

differences are extremely discriminative. The EER of the ‘Same-

Confirming the Diversity of the Brain
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Visit’ experiment is incredibly small, actually being equal to 0.0%.

This result indicated that each subject’s brain is clearly different

from all others. The proposed matching strategy is based on

normalization, which is a pre-processing stage that is widely

adopted in neuroimaging analysis. Thus, the experimental results

confirmed that the normalization stage retains almost all of the

information and features of brain images.

Normalization is the process of mapping a single subject’s brain

image into a standard space [37]. It is a widely used pre-processing

stage in neuroimaging. In functional imaging studies, normaliza-

tion of the images is useful for determining what happens

generically across individuals. One advantage of using normalized

images is that inter-subject analysis can be conducted according to

their Euclidean co-ordinates within a standard space. The other

advantage of normalization is that it increases the sensitivity in

detecting activations in brain imaging [19]. Normalization is

extremely widely used, and the studies of the performance of

normalization can be categorized into three kinds: permutation

Figure 2. The distributions of correct and incorrect matching scores. The vertical axis represents the distribution of matching scores as
a percentage. (a) The distribution of matching scores in the ‘Same-Visit’ experiment. (b) The distribution of matching scores in the ‘Different-Visit’
experiment.
doi:10.1371/journal.pone.0054328.g002

Figure 3. The ROCs of the matching experiments. The solid line (pink line) represents the ‘Same-Visit’ experiment, while the dashed line (black
line) represents the ‘Different-Visit’ experiment.
doi:10.1371/journal.pone.0054328.g003
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tests, one-way ANOVA tests, and indifference-zone ranking [41].

However there is no study or report on the individuality of the

brain after normalization by identity authentication, to the best of

our knowledge. This study confirmed the diversity of the brain by

employing brains for identity authentication. The result that the

identification ratio can reach 100% provides evidence that normal-

ization can preserve the diversity of the brain. Thus, normalization

is an appropriate pre-processing stage due to the advantages

mentioned above.

The reduction in performance of the ‘Different-Visit’ experi-

ment compared with the ‘Same-Visit’ experiment is primarily

caused by two reasons. First, noise stemming from the electronics

of the MR system makes the scanning different for each visit.

Second, the external environment is not exactly the same for each

session. These two variables result in several variations in the

biometric patterns of the brain images from the same subject

(‘‘intra-class variability’’). Thus, the genuine matching scores in the

‘Different-Visit’ experiment are lower than those in the ‘Same-

Visit’ experiment, which reduces the discriminative ability of

genuine matching from imposter matching in the ‘Different-Visit’

experiment. However, the performance of the ‘Different-Visit’

experiment is still very high compared with other biometric

technologies.

Table 1 shows the performance of common biometric

technologies. We selected state-of-the-art technologies, and the

scales of the corresponding databases are almost equivalent.

Table 1 shows that the EER of the ‘Different-Visit’ experiment is

as low as those of other biometric techniques, which illustrates that

brain recognition is robust as well as steady. One significant

advantage of the proposed brain recognition system is its ability to

achieve a 0.0% or near 0.0% EER, i.e., a clear separation of

genuine and imposter distributions. This study presents the first

exploration of utilizing the brain for authentication, and we

believe that the brain will be one of the members of biometric

technologies in the future.

To compare with DARTEL, we have conducted an experiment

using another well-known registration method. This segmentation

method was done using the SPM8 MATLAB software [42] and

the VBM8 toolbox (http://dbm.neuro.uni-jena.de). The EER are

0.3% and 2.1% for the ‘Same-Visit’ and the ‘Different-Visit’

experiments, respectively. Though this is roughly acceptable in

a preliminary biometric system, its performance is not as good as

DARTEL. It illustrates that different registration methods pre-

serve the diversity of brain to different level, and the matching

performance varies by different registration methods. A better

registration method results in a better matching performance.

Although our method performs well, several issues remain. First,

although the EER of ‘Same-Visit’ experiment equals to 0.0%, the

gap between maximum imposter matching score (83.46) and the

minimum genuine matching score (86.03) is very small. Second,

the identification ratio reaches 100%, but the database contains

only 150 subjects (1366 images), and a larger database should be

established to evaluate the performance of brain recognition in the

future. Third, though the recognition ratio is very high, the

acquirement of brain is still not very convenient for users and it is

also not as cheap as other biometric equipment.

To conclude, the approach used in this study analyzed the

individuality of brain after normalization. This paper proposed to

use the brain for identity authentication. Biometric recognition

technologies are generally based on the diversity of biological (e.g.,

face, fingerprint, and iris) traits [45]. Compared with these

biometric technologies, the proposed brain recognition technique

achieved similar recognition ability. Thus, the result confirmed the

diversity of the brain after normalization. The proposed approach

used the whole brain for matching, and a more detailed study

analyzing the diversity of different regions within the brain will be

left for future work.
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