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ABSTRACT

Kink turns (k-turns) are important structural motifs
that create a sharp axial bend in RNA. Most conform
to a consensus in which a three-nucleotide bulge is
followed by consecutive G�A and A�G base pairs,
and when these G�A pairs are modified in vitro
this generally leads to a failure to adopt the k-turn
conformation. Kt-23 in the 30S ribosomal subunit of
Thermus thermophilus is a rare exception in which
the bulge-distal A�G pair is replaced by a non-
Watson–Crick A�U pair. In the context of the
ribosome, Kt-23 adopts a completely conventional
k-turn geometry. We show here that this sequence
is induced to fold into a k-turn structure in an
isolated RNA duplex by Mg2+ or Na+ ions.
Therefore, the Kt-23 is intrinsically stable despite
lacking the key A�G pair; its formation requires
neither tertiary interactions nor protein binding.
Moreover, the Kt-23 k-turn is stabilized by the
same critical hydrogen-bonding interactions within
the core of the structure that are found in more con-
ventional sequences such as the near-consensus
Kt-7. T. thermophilus Kt-23 has two further non-
Watson–Crick base pairs within the non-canonical
helix, three and four nucleotides from the bulge,
and we find that the nature of these pairs influences
the ability of the RNA to adopt k-turn conformation,
although the base pair adjacent to the A�U pair is
more important than the other.

INTRODUCTION

Kink turns (k-turns) are commonly found structural
elements in the architecture of RNA–protein complexes
and large RNA species. The k-turn motif introduces a
sharp kink into the axis of the helix, thereby exerting an
important influence on the long-range structure of RNA.
k-turns were first identified in both subunits of the
ribosome (1). They have also been found in the nucleolar

RNA species that guide RNA modification (2–5), U4
snRNA (6,7) and in untranslated regions of mRNA
(8,9), including within riboswitches (10–12). Therefore,
k-turns seem to be involved in almost every aspect of
RNA function, including the translation and modification
of RNA, spliceosome assembly and the control of gene
expression.
The great majority of k-turn motifs conform to a con-

sensus secondary structure comprising a three-nucleotide
bulge flanked by regular base pairing on its 50 side
(the C helix) and two consecutive A�G pairs on its 30

side (the NC helix) (Figure 1). The k-turn Kt-7 in the
23S rRNA of the Haloarcula marismortui ribosome is
close to this consensus (1); its structure is very similar to
those of a number of other k-turns (2,6,10). The kinking
juxtaposes the two minor grooves, with an included angle
between the axes of �60�, and the conformation appears
to be stabilized by interactions between the stacked
adenosines of the A�G pairs and the C stem, and by
stacking of the 50 and central bases of the bulge on the
ends of the C and NC helices, respectively.
k-turn motifs do not form a stably kinked structure in

the absence of metal ions (13,14), or the binding of
proteins of the L7Ae family (15). The kinked conforma-
tion can be stabilized by the addition of either divalent or
monovalent metal ions (13) and folding can be treated as a
two-state process. Thus, it is likely that electrostatic
interactions must be screened to allow the folded structure
to achieve stability. This suggests a dynamic character for
k-turn structures, where they sample both the kinked and
a more extended geometry. Computer modelling studies
have suggested that k-turns undergo hinge-like motions
on a fast timescale (16–18). We have made a detailed
study of the hydrogen-bonding interactions that are
important in stabilizing the kinked conformation of Kt-7
in the presence of Mg2+ ions (19,20). These include critical
hydrogen bonds between the 20O of the L1 ribose and N1
of the adenine nucleobase in the 1n position, and between
the 20O of the L3 ribose and the proS non-bridging O of
the phosphate group linking L1 and L2 (19).
We have also studied the importance of the two A�G

pairs adjacent to the bulge of the archetypal k-turn (20).
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Both are trans sugar edge (G)/Hoogsteen edge (A) pairs,
linked by potential hydrogen bonds G:N2 to A:N7 and
A:N6 to G:N3. The 1b�1n pair is strongly buckled, while
the bases of the 2n�2b pair are much closer to coplanarity.
These are conserved in the great majority of k-turns (21),
and sequence substitution of any of the four nucleotides
within Kt-7 (13), or disruption of hydrogen bonding (20),
completely prevents ion-induced folding. On this basis, it
would appear that the two A�G pairs are an indispensible
feature of the k-turn motif. It is therefore surprising that
within the 16S RNA of the T. thermophilus ribosome
k-turn Kt-23 lacks the A�G pair at the 2b�2n position
(1) (Figure 1), being replaced by a reverse Hoogsteen
A�U pair (22). This is also true in Kt-23 of E. coli (23);
the two Kt-23 structures are closely similar. We have
previously shown that the introduction of the equivalent
G2nU substitution in Kt-7 completely prevented detect-
able ion-induced folding by that sequence (13). Yet Kt-23
adopts a normal k-turn geometry in the ribosome
(Figure 2A), with an inter-axial angle of 60� between the
C and NC helices. Despite the absence of the A�G pair at
the 2b�2n position, the 1n and 2b adenine nucleobases
of Kt-23 become located in virtually identical positions
if H. marismortui Kt-7 and T. thermophilus Kt-23 are
superimposed by their backbones (Figure 2B), and are
thus able to participate fully in the A-minor interaction
(24) with the C helix. The L1 and L2 nucleobases cap the
C and NC helices, respectively, and the key hydrogen
bonds involving 20-hydroxyl groups (19) are present in
the Kt-23 structures (22,23). The corresponding Kt-23
sequences of human, mouse and Bacillus subtilis preserve
the A�U pair at the 2b�2n position, while it is replaced by
conventional A�G pairs in Drosophila melanogaster and
Mycoplasma genitalium (Figure 1).
Thus, Kt-23 breaks what appeared to be a cardinal

rule for k-turn stability, yet it adopts a normal k-turn

conformation within the ribosome. This provides a chal-
lenge to our understanding of the k-turn structure, and
raises two questions. First, can metal ions induce Kt-23
to adopt the conventional k-turn structure in an isolated
RNA duplex, unaided by any potential tertiary
interactions or RNA–protein interactions that might sta-
bilize the structure within the context of the 30S ribosomal
subunit? In this work, we find that T. thermophilus Kt-23
readily adopts the kinked geometry of the k-turn in iso-
lation, with preservation of the key hydrogen-bonding
interaction in the core of the structure. The second
question is, therefore, what features of the complete
Kt-23 sequence allow it to fold normally, despite the
presence of U at position 2n, when G2nU substitution
completely prevented Kt-7 from adopting k-turn
geometry in the presence of Mg2+ ions in vitro (13)?

The key difference is unlikely to reside in the unpaired
loop. These nucleotides are poorly conserved and gener-
ally only make stacking interactions. We therefore turned
our attention to the NC helix beyond the 2b�2n position
distal to the bulge. The four base–base interactions of
the NC helix of T. thermophilus Kt-23 are shown in
Figure 2C. Many, though not all, k-turn sequences
include a non-Watson–Crick pair at the 3b�3n position;
in T. thermophilus Kt-23, this is a U�G pair with a single
hydrogen bond from G3n:N2 to U3b:O4. Unusually, the
4b�4n position is also non-Watson–Crick, a cis A�A pair
hydrogen bonded from A4b:N6 to A4n:N1. The C10–C10

distance of the A�U pair in Kt-23 at 2b�2n is longer than
that of an A�G pair (Table 1), and the width of the NC
helix could be a factor in stabilizing the k-turn geometry.
We have therefore examined the effect of functional group
substitutions designed to probe the effect of the stability
of the 3b�3n and 4b�4n positions on the ability of
T. thermophilus Kt-23 to undergo ion-induced folding.

MATERIALS AND METHODS

RNA synthesis and construction of k-turn species

The majority of oligonucleotides were synthesized using
t-BDMS phosphoramidite chemistry (27), as described
in Wilson et al. (28), with nucleobase and 20-deoxyribo
substitution as required. Fluorescein and Cy3-conjugated
oligonucleotides were attached at 50-termini as phosphor-
amidites during synthesis as required. Oligoribonu-
cleotides were deprotected in 25% ethanol/ammonia
solution at 55�C for 2 h, and evaporated to dryness.
Oligoribonucleotides were redissolved in 300ml 1M
tetrabutylammonium fluoride (Aldrich) in tetrahydro-
furan to remove t-BDMS protecting groups, and
agitated at 20�C for 16 h prior to desalting by G25
Sephadex (NAP columns, Pharmacia) and ethanol precip-
itation. All oligonucleotides were purified by gel electro-
phoresis in polyacrylamide, and recovered from gel
fragments by electroelution or diffusion in buffer followed
by ethanol precipitation. Fluorescently labelled RNA was
subjected to further purification by reversed phase HPLC
on a C18 column (ACE10, Advanced Chromatography
Technologies) using an acetonitrile gradient with an
aqueous phase of 100mM triethylammonium acetate pH
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Figure 1. Comparison of ribosomal k-turn sequences. The sequence of
Kt-7 is shown since it closely approximates the consensus k-turn
sequence, with the nucleotides numbered according to the scheme
used throughout (19), together with Kt-23 of T. thermophilus 16S
rRNA. The designation of base pairs 3b�3n and 4b�4n is ambiguous
since these are only connected by a single hydrogen bond (refer to
Figure 2C) (22). Kt-23 sequences are compared for a variety of
organisms, with important differences shaded. The sequence informa-
tion was taken from the Gutell comparative RNA data base (31). Base
pairing of non-Watson–Crick pairs is designated using the convention
of Leontis and Westhof (32).
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Figure 2. The molecular structure of Kt-23. (A) Parallel-eye stereoscopic view of the structure of Kt-23 taken from the crystal structure of the
T. thermophilus 30S ribosomal subunit. The view is from the side of the strand not containing the three-nucleotide loop. The NC helix is coloured
green, the C helix grey and the nucleotides of the loop purple. Hydrogen bonds forming the base pairs of the NC helix are shown as broken lines. All
images of the Kt-23 structure were made using PDB file 1J5E (22). (B) Superposition of the crystallographic structures of Kt-7 and T. thermophilus
Kt-23. The two structures were superimposed by their backbone atoms (O50, C50, C40, C30, O30, P and the non-bridging phosphate O). The structures
are in parallel-eye stereoscopic view, with ribbons to indicate the position of the backbones. Kt-23 is drawn in red and Kt-7 in blue. The structure of
Kt-7 was taken from the H. marismortui 50S ribosomal subunit, PDB file 1FFK (30). (C) Base pairing in the NC helix of T. thermophilus Kt-23.
Parallel-eye stereoscopic view of the NC helix of Kt-23, with hydrogen bonds forming the base pairs of the NC helix are shown as broken lines.
The structures of the four non-Watson–Crick base pairs are drawn out.
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7.0. Oligonucleotides required for electrophoretic analysis
were radioactively 50-32P-labelled using T4 polynucleotide
kinase and [g-32P] ATP (Amersham).
Duplex species were prepared by mixing equimolar

quantities of the appropriate oligoribonucleotides and
annealing them in 50mM Tris–HCl (pH 7.5), 25mM
NaCl by slow cooling from 90 to 4�C. They were
purified by electrophoresis in 12% polyacrylamide under
non-denaturing conditions, and recovered by either
electroelution or diffusion into buffer, followed by
ethanol precipitation.

Analysis of k-turn folding by comparative gel
electrophoresis

Radioactively [50-32P]-labelled RNA species were electro-
phoresed in 13 % polyacrylamide (29:1, acrylamide:bis)
gels in 90mM Tris–borate (pH 8.3), 2mM Mg2+.
Electrophoresis was performed at 120V at room temper-
ature for up to 68 h, with recirculation of the buffer at >1
l h�1. Gels were dried onto Whatman 3MM paper,
exposed to storage phosphor plates and imaged using a
Fuji BAS-1500 phosphorimager.
The sequences used for the electrophoretic experiments

were (written 50 to 30) as follows.

(i) Kt-7 upper strand: CGCAAGCGACAGGAACCT
CGCCAGUCAGUGGCGAAGAACCAUGUCAG
GGGACTGTCAAGTTGAACAGG

(ii) Kt-7 lower strand: CCTGTTCAACTTGACAGT
CCCCUGACAUGGGGAGCCACUGACUGGCG
AGGTTCCTGTCGCTTGCG

(iii) Kt-23 upper strand: CGCAAGCGACAGGAACCT
CGCCAGUCAGAUGCGCAGAUACCGGGAGA
GGGACTGTCAAGTTGAACAGG

(iv) Kt-23 lower strand: CCTGTTCAACTTGACAGT
CCCUCUCCCGGAGUAGCAUCUGACUGGCG
AGGTTCCTGTCGCTTGCG

The DNA sections of these oligonucleotides are shown
underlined. Modified nucleotides were introduced into the
RNA sections as required.

Study of Mg2+-induced folding by fluorescence
resonance energy transfer

Absorption spectra were measured in 90mM Tris–
borate (pH 8.3) in 120 ml volumes using a Cary 1E
spectrophotometer. Spectra were deconvoluted using

a corresponding RNA species labelled only with Cy3,
and fluorophore absorption ratios calculated using a
MATLAB program. Fluorescence spectra were recorded
in 90mM Tris–borate (pH 8.3) at 4�C using an SLM-
Aminco 8100 fluorimeter. Spectra were corrected for
lamp fluctuations and instrumental variations, and polar-
ization artefacts were avoided by setting excitation and
emission polarizers crossed at 54.7�. Values of fluores-
cence resonance energy transfer (FRET) efficiency
(EFRET) were measured using the acceptor normalization
method (29) implemented in MATLAB. EFRET as a
function of metal ion concentration was analyzed on the
basis of a model in which the fraction of folded molecules
corresponds to a simple two-state model for ion-induced
folding, i.e.

EFRET¼ E0þ�EFRET:KA M½ �n= 1þKA M½ �nð Þ 1

where E0 is the FRET efficiency of the RNA in the
absence of added metal ions, DEFRET is the increase in
FRET efficiency at saturating metal ion concentration,
[M] is the prevailing Mg2+ or Na+ ion concentration,
KA is the apparent association constant for metal ion
binding and n is a Hill coefficient. Data were fitted to
this equation by non-linear regression. The metal ion con-
centration at which the transition is half complete is given
by [M]1/2= (1/KA)

1/n.
The sequences used in the FRET analyses were

(written 50 to 30) as follows.

(i) Kt-23 upper strand: Fluorescein-CCAGUCAGAUG
CGCAGAUACCGGGAGAGG

(ii) Kt-23 lower strand: Cy3-CCUCUCCCGGAGUAG
CAUCUGACUGG

Single nucleotide substitutions were introduced as
required.

RESULTS

Analysis of the ion-induced folding of Kt-23 into k-turn
conformation

We can readily detect the formation of the k-turn in RNA
by virtue of the markedly increased kinking of the heli-
cal axis with folding. In this study, we have explored the
ion-induced folding of Kt-23 and variants using two
approaches, as in our previous studies of k-turns
(13,19,20). In comparative gel electrophoresis, we place
the Kt-23-containing RNA into the centre of a 65 bp
duplex, of which the outer 20 bp on each side are DNA
for synthetic convenience. When the RNA adopts the
k-turn geometry, the axial kinking results is a marked
retardation of electrophoretic mobility in a polyacry-
lamide gel. The mobilities can be compared with
duplexes of the same length containing oligoadenine
bulges of different length, that exhibit progressively
greater kinking and hence retardation (25,26). The
second method is FRET. This employs a 26 bp RNA
duplex that includes a central Kt-23 sequence, with
fluorescein and Cy3 fluorophores attached to the
50-termini. Formation of the k-turn geometry significantly

Table 1. Comparison of C10–C10 distances for the base pairs of the

NC helix in Kt-23 of T. thermophilus (T. th) and E. coli (E. co), Kt-7

and the U4 snRNA k-turn

Kt-23 (T. th) Kt-23 (E. co) Kt-7 U4

1b�1n G�A 9.3 Å G�A 9.3 Å G�A 9.2 Å G�A 9.6 Å
2b�2n A�U 9.9 Å A�U 9.6 Å A�G 9.4 Å A�G 9.0 Å
3b�3n U�G 11.0 Å G�G 11.4 Å A�G 10.0 Å G–C 10.8 Å
4b�4n A�A 12.3 Å A–U 10.8 Å G-C 10.4 Å G–C 10.9 Å

These were measured from the PDB coordinate files 1J5E (Kt-23, T. th)
(22), 2AVY (Kt-23, E. co) (23), 1FFK (Kt-7) (30) and 1E7K (U4) (6).
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reduces the separation between the fluorophores, and thus
leads to an increase in the efficiency of FRET. All the
experimental work described here has been directed at
T. thermophilus Kt-23 and its derivatives.

Kt-23 is induced to fold into the kinked geometry by the
presence of metal ions

Using comparative gel electrophoresis, we have previously
shown that Kt-7, whose sequence is close to the k-turn
consensus, exhibits a mobility similar to a corresponding
duplex with a 7-nt bulge. Electrophoresis of Kt-7 and Kt-
23 side by side in the presence of 2mM Mg2+ ions shows
them to have closely similar mobility, suggesting that they
fold to similar extents under these conditions (Figure 3).
Ion-induced kinking of Kt-23 can also be observed by
FRET (Figure 4), with a change in FRET efficiency
(�EFRET) of 0.25 in both Mg2+ and Na+ ions. The
data are well fitted by a two-state folding model. Mg2+-
induced folding is consistent with non-cooperative ion
binding (Hill coefficient n=1.2), while that for Na+-
induced folding indicates more cooperative binding of
the monovalent ions (n=1.7) although this is not well
defined by the data. The half magnesium concentration

([Mg2+]1/2) obtained by fitting to the two-state folding
model (Table 2) is 35 mM, approximately half the
value for Kt-7 (19), indicating that the k-turn geometry
of Kt-23 is a little more stable than that of Kt-7 (i.e.
it requires a lower concentration of Mg2+ ions to allow
folding into the kinked geometry). However, the [Na+]1/2
values for Kt-23 and Kt-7 are closely similar. Both the
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electrophoretic and FRET results show that the Kt-23
sequence folds into the k-turn geometry with similar
stability as Kt-7, despite not having the A�G pair at the
2b�2n position. Evidently, Kt-23 can adopt the k-turn
geometry without requiring assistance from either
protein binding or tertiary interactions.

Conversion of the A�U pair at the 2b�2n position
of Kt-23 to A�G allows normal k-turn folding to occur

The context of the A�U pair at the 2b�2n position in
Kt-23 allows stable formation of the k-turn despite the
absence of the normal A�G pair. This raises the
question of whether an A�G pair would in fact be
tolerated at that position in the Kt-23 k-turn. We there-
fore made a U2nG change in order to create the conven-
tional A�G pair at this position. Comparative gel
electrophoresis shows that the U2nG species has closely
similar mobility to that of Kt-7 in the presence of 2mM
Mg2+ ions (Figure 3). The change in FRET efficiency for
the U2nG species was similar to Kt-23, with [Mg2+]1/2
=97 mM and [Na+]1/2=26mM (Figure 4). Thus, Kt-23
U2nG folds into the k-turn geometry in a closely similar
manner to Kt-7, indicating that the sequence context can
tolerate an A�G pair at the 2b�2n position. Indeed, an
A�G pair is present at the 2b�2n position of Kt-23 from
M. genitalium and D. melanogaster.

Other changes at the 2b�2n position of Kt-23 prevent
ion-induced folding

In marked contrast to Kt-23 U2nG, the substitution
U2nC completely prevented folding into the k-turn

geometry. No retardation was observed in comparative
gel electrophoresis (Figure 3), and no change of FRET
efficiency was induced by either Mg2+ or Na+ ions
(Figure 4, Table 2). This substitution would prevent for-
mation of one of the two hydrogen bonds stabilizing the
trans Hoogsteen/Watson–Crick A�U pair, removing the
U:N3H imino proton donated to A:N7.

The nature of the base pair at the 3b�3n position of
Kt-23 is very important

The ability of the T. thermophilus Kt-23 sequence to
adopt the k-turn geometry in the presence of Mg2+ ions,
unaided by protein binding, despite the presence of the
A�U pair at the 2b�2n position raises an interesting
question. Since the introduction of an A�U pair at the
corresponding position of Kt-7 completely prevents ion-
induced folding (13), what is different about the sequence
of Kt-23 that tolerates this change? This is likely to be the
sequence context. In both the cases, the 1b�1b pair is
G�A, and this cannot be changed in either Kt-7 (13,20)
or Kt-23 (Figure 3; Table 2). On the kink-distal side of the
2b�2n pair in H. marismortui Kt-7, there is a further A�G
pair at the 3b�3n position, followed by Watson–Crick
pairing. By contrast, in T. thermophilus Kt-23 there is a
U�G pair at 3b�3n and an A�A pair at 4b�4n. However,
in the E. coli K-23 these base pairs are Hoogsteen/sugar
edge G�G and Watson–Crick A–U, respectively.

The U�G pair at the 3b�3n position of T. thermophilus
Kt-23 is a Hoogsteen/sugar edge pair that forms a single
hydrogen bond donated from G3n:N2 to U3b:O4. It
significantly widens the helix, with a C10–C10 distance of
11.1 Å, compared to 10.0 Å in Kt-7 (Table 1). G3nA sub-
stitution removes the 2-NH2 thus preventing formation of
the hydrogen bond. This substitution almost completely
prevented folding into the k-turn geometry as judged by
both comparative gel electrophoresis (Figure 3) and
FRET (Figure 4; Table 2). This could result from forma-
tion of a Watson–Crick U–A base pair, but selective
removal of the 2-NH2 from the guanine (inosine substitu-
tion, i.e. G3nI) also led to extremely impaired in k-turn
folding (Table 2).

The nature of the base pair at the 4b�4n position
of Kt-23 is less important

The 4b�4n base pair is usually Watson–Crick in the
majority of k-turns. The cis Watson–Crick/Watson–
Crick A�A pair in T. thermophilus Kt-23 again widens
the helix, with a C10–C10 distance of 12.3 Å compared to
10.4 Å in Kt-7 (Table 1). The adenine bases are connected
by a single hydrogen bond donated from A4b:N6
to A4n:N1. Restoration of a potential Watson–Crick
pair by an A4nU substitution significantly impaired
folding, with a major loss of electrophoretic retardation
(Figure 3), and �EFRET=0.10 with a [Mg2+]1/2=
290 mM (Table 2). Disruption of the A�A pair by A4nG
substitution (creating a potential A�G pair) was less dis-
ruptive, with �EFRET=0.23 with a [Mg2+]1/2=140 mM.
In general, it appears that changing the 4b�4n base
pair impairs the folding of Kt-23 less than substitutions

Table 2. Summary of FRET data for folding of Kt-23 and variant

k-turns induced by Mg2+ and Na+ ions

[Mg2+]1/2 (mM) �EFRET [Na+]1/2 (mM) �EFRET

Kt-23 35 0.25 32 0.25
Kt-7a 78 0.33 30 0.33

G1b U NF

U2n G 97 0.27 26 0.22
U2n C NF

G3n A 770 0.034
G3n inosine 560 0.095

A4n U 290 0.10 240 0.12
A4n G 140 0.23 68 0.16

GL1 20H NF
AL3 20H NF

GL1 inosine NF

C-2n 20H 240 0.29
U3b 20H 130 0.30
G-1n 20H 200 0.12

�EFRET was measured as a function of ionic concentration and the
data fitted to a two-state model in which folding occurs as a result
of ion binding (Equation 1).
NF, no folding detected.
aData for Kt-7 are taken from Liu & Lilley (19). The absolute value of
�EFRET is not comparable between Kt-7 and Kt-23 since differences in
the exact structure adopted in the helical arms could alter the relative
placement of the fluorophores.
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at the 3b�3n pair. In the E. coli Kt-23, this position has a
regular A–U base pair.

Critical contacts arising from the bulge loop are very
important in Kt-23

The two most conserved hydrogen bonds in crystallo-
graphic structures of k-turn RNA involve 20-hydroxyl
groups of the bulge (19). These are formed between the
L1 ribose 20OH and the N1 of the adenine at the invariant
1n position, and between the L3 ribose O20 and the proS O
of the L1/L2 phosphate. Both are present in the Kt-23
crystal structures (22,23) (Figure 5A), with distances of
2.7 (2.6) Å and 3.0 (2.7) Å, respectively (E. coli values in
parenthesis), and with near-tetrahedral geometries in both
the cases. Removal of the O20 (by deoxyribose substitu-
tion) at either L1 or L3 led to almost complete loss of

electrophoretic retardation (Figure 3), and no k-turn
folding detectable by FRET (Table 2). We conclude that
both interactions are critical to the stability of the k-turn
geometry of Kt-23 in the presence of metal ions.

A possible L1–1n base–base interaction

In T. thermophilus Kt-23, the nucleobase of A1n makes
another hydrogen bond. A1n:N3 accepts a proton from
GL1:N2H, with a length of 3.3 Å and a near-tetrahedral
angle of 114� (Figure 5A) (22). This plainly cannot be a
universal interaction, because the L1 nucleotide is not con-
strained to be guanine in other Kt-23 sequences, and even
when L1 is guanine the distance is often long. For
example, this interaction is also present in the E. coli
Kt-23, but the putative bond length is 3.5 Å (23). We
examined the importance of this in Kt-23 by replacing

A2bA2b

G-1nG-1n

C-2nC-2n

U3bU3b

NCNC

C C

L3L3

L1L1

L2L2

C

A

B

C

NCNC

L3L3

Gb1Gb1

A1n

G-1n G-1n

L1 L1

A1n

Figure 5. Hydrogen bonding in the Kt-23 k-turn. Parallel-eye stereoscopic views of the structure of Kt-23 taken from the crystal structure of the
T. thermophilus 30S ribosomal subunit, with key hydrogen bonds indicated by broken lines. (A) Hydrogen bonding in the core of the k-turn. The
A1n nucleotide is highlighted in yellow. This is held by four hydrogen bonds; in addition to the two bonds with G1b that form the trans sugar edge/
Hoogsteen edge base pair, there is the critical, conserved A1n:N1–GL1:O20H interaction, and the A1n:N3–GL1:N2H hydrogen bond. The hydrogen
bond between AL3:O20H and the L1/L2 phosphate proS O is also visible in this image. (B) Hydrogen bonding between the C and NC helices. Two
hydrogen bonds are shown. One is from G-1n:O20H to A2b:N1, and between U3b:O20 and C-2n:O20H.
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the guanine by inosine (GL1I), selectively removing the
exocyclic amine that is the putative donor. The modified
RNA exhibited no ion-induced folding detectable by
FRET (Table 2), consistent with an important role for
this interaction. This hydrogen bond plus the L1:20O to
A1n:N1 bond together hold the nucleobase of adenine 1n
by both ring nitrogen atoms. Perhaps its tight positioning
becomes important in Kt-23 in order to hold A2b
(on which it is stacked) in place in the absence of the
A�G pair at 2b�2n.

A base–backbone interaction in Kt-23 involving A2b

Inspection of the structures of both T. thermophilus and
E. coli Kt-23 in the crystal suggested a further hydrogen
bonding interaction from the 20-hydroxyl of G-1n
and A2b:N1 (Figure 5B). This has a length of 2.6 Å and
almost perfect tetrahedral geometry (110�) in both
structures. Removal of the 20-hydroxyl group of G-1n
led to impaired folding, with �EFRET=0.12 (Table 2).
Formation of this hydrogen bond would help to fix the
position of the adenine nucleobase at 2b; this again could
assume greater important in the absence of the usual A�G
pair at 2b�2n.

Possible inter-helical hydrogen bonding in Kt-23

In studies of other k-turns, we have noted that there
is hydrogen bonding between the C and NC stems
observed in crystal structures, mainly involving
20-hydroxyl groups (19). However these are variable
from one structure to another. In one class (exemplified
by Kt-7), there is bonding between O20 of �2n and 3b, and
in the other class (a bigger group, that includes the box
C/D k-turn) there is a hydrogen bond formed between
O20 of �1n and 2b. However, removal of selected
20-hydroxyl groups has suggested that none of these
interactions is important to the stability of the k-turn
(19). In the Kt-23 crystal structures, there is a hydrogen
bond between U3b:O20 and C-2n:O20 with a distance of
2.7 Å (T. thermophilus) or 3.1 Å (E. coli) and excellent
tetrahedral geometry (Figure 5B). We investigated
the importance of this interaction to the stability of the
k-turn by removing the 20-hydroxyl from U3b. The
resulting RNA folded well, with a �EFRET=0.3, and a
slightly elevated requirement for Mg2+ ions ([Mg2+]1/2
=130 mM) (Table 2). Removal of the 20-hydroxyl at
C-2n led to relatively unperturbed folding, with
�EFRET=0.29 and [Mg2+]1/2=240mM. As with other
k-turns (19), it appears that the interhelical hydrogen
bonding outside the core region is not very important
for the stability of the kinked geometry of Kt-23. In
general, these hydrogen bonds form adventitiously, but
contribute little stabilization to k-turn conformation.

DISCUSSION

Since Kt-23 breaks the seemingly critical requirement for
an A�G pair at the 2b�2n position in both T. thermophilus
and E. coli, it might have been thought that it would be
unable to adopt the k-turn conformation unaided. While
both Kt-23 sequences clearly adopt normal k-turn

structure in the context of the 30S ribosomal subunits,
we suspected that either long-range tertiary interactions,
protein-RNA interactions or both might provide sufficient
stabilization to overcome an inherent instability. Our
results show that that is not the case; T. thermophilus
Kt-23 can adopt the k-turn structure in a simple RNA
duplex in the absence of any proteins and with no possi-
bility for tertiary structure. Stable k-turn formation only
requires charge neutralization by either divalent or
monovalent metal ions. Indeed, folding of Kt-23 occurs
at a lower ion concentration compared to Kt-7 with
its near canonical k-turn sequence, indicating than the
Kt-23 is if anything more stable as a k-turn than is
Kt-7. This is supported by a consistently greater electro-
phoretic retardation of Kt-23 compared to Kt-7, although
the effect is small.

This surprising result shows that the sequence require-
ments for k-turn stability are more complex than we
previously supposed. It leaves a question outstanding.
Why can Kt-23 adopt the k-turn conformation despite
possessing an A�U pair at the 2b�2n position, when con-
version of the 2b�2n position in Kt-7 to A�U prevents any
detectable ion-induced folding? Clearly, some aspect of
the sequence environment of Kt-23 permits the RNA to
form a stable k-turn despite the A�U pair at the 2b�2n
position, although this does not prevent folding from
occurring when an A�G pair is restored at this site.
Kt-23 makes the previously identified key hydrogen-
bonding interactions within the core of the k-turn
involving the 20-hydroxyl groups of the loop nucleotides
L1 and L2 (19). A2b also makes an important interaction
with the ribose of G-1n, with a hydrogen bond from G-
1n:20OH to A2b:N1. The A�U pair does not make any
additional direct contacts with its neighbours in the NC
helix, so perhaps the overall geometry of the NC helix
is better able to accommodate this pair. We have shown
that the nature of both the 3b�3n and 4b�4n pairs can
influence the stability of the k-turn conformation of
T. thermophilus Kt-23. The trans Hoogsteen/Watson–
Crick edge A�U pair is significantly wider than the usual
A�G pair (Table 1), and it is possible that the additional
width of the Hoogsteen/sugar edge U�G pair at the 3b�3n
position is an important factor. The Hoogsteen/sugar edge
G�G pair at the corresponding position in E. coli Kt-23
is also significantly wider, at 11.4 Å. Our results suggest
that the nature of the base pair at the 3b�3n position
is more important than that at the 4b�4n position, and
that changes that should destabilize this base pair
markedly impair folding into the k-turn geometry.
Normal k-turn sequences with an A�G pair at the 2b�2n
position appear less sensitive to the sequence on the bulge-
distal side; in the U4 snRNA k-turn there are conventional
Watson–Crick G–C base pairs at both 3b�3n and 4b�4n
positions (6).

Kt-23 reveals a surprising tolerance to departure from
the consensus sequence. It folds into a near perfect k-turn
geometry that places the critical 1n and 2b adenine bases
into the required positions. The key hydrogen-bonding
interactions in the core of the k-turn are preserved. The
nucleobase at position 2 is exposed on the splayed-out
major groove face of the k-turn, and most generally it is
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this face that interacts with L7Ae (2) and related (6)
proteins. L7Ae can induce k-turn folding upon binding
to Kt-7 and other k-turns (15), and so it is possible that
the folding of k-turns (such as Kt-23) that differ in this
region might be induced by different proteins. We are in
the process of investigating this possibility.
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