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I N T R O D U C T I O N

Human ether-á-go-go–related gene (hERG) potassium 
channels are members of the voltage-activated family of 
K+ channels, which contain six transmembrane domains 
and intracellular amino and carboxyl terminus domains 
(Warmke and Ganetzky, 1994). hERG subunits are the 
primary pore-forming units (Sanguinetti et al., 1995; 
Trudeau et al., 1995) of the rapid component of the 
delayed rectifier potassium current (IKr) in the heart 
(Noble and Tsien, 1969; Sanguinetti and Jurkiewicz, 
1990, 1991). The physiological role of IKr is to help re-
polarize cardiac action potentials (Noble and Tsien, 
1969; Sanguinetti and Jurkiewicz, 1990, 1991). Genetic 
mutations in two primary hERG1 subunits, hERG1a 
(Curran et al., 1995) and hERG1b (Sale et al., 2008), 
are linked to the long QT syndrome (LQTS), indicat
ing the importance of both primary subunit isoforms  
in heart disease. Evidence suggests that mammalian 
ERG1a and ERG1b co-associate to form cardiac IKr 
(Lees-Miller et al., 1997; London et al., 1997; Jones et al., 
2004; Sale et al., 2008) and also co-associate in the brain 
(Guasti et al., 2005). The two hERG isoforms are struc-
turally different, as hERG1a channel subunits have  
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a large intracellular N-terminal region (NTR; 390 
amino acids in length) that contains a Per-Arnt-Sim 
(PAS) regulatory domain (Morais Cabral et al., 1998). 
In contrast, hERG1b subunits have a much shorter NTR 
(59 amino acids) and lack a PAS domain (Lees-Miller 
et al., 1997; London et al., 1997).

PAS domains are basic helix-loop-helix motifs found 
in a wide variety of proteins and are instrumental in a 
range of biological functions that include sensing envi-
ronmental cues, regulating transcription, and mediat-
ing protein interactions (Jackson et al., 1986; Reddy  
et al., 1986; Hoffman et al., 1991; Nambu et al., 1991; 
Möglich et al., 2009). hERG PAS is a helix-loop-helix 
motif formed by amino acids 26–135 (Morais Cabral  
et al., 1998; Li et al., 2010; Muskett et al., 2011; Ng et al., 
2011) and is capped by a short adjacent region com-
posed of amino acids 1–26, of which residues 13–26 
form a helix and residues 1–13 are unordered (Li et al., 
2010; Muskett et al., 2011; Ng et al., 2011). Together, 
the PAS domain and the cap region (residues 1–135) 
are known as the “eag domain” (Morais Cabral et al., 
1998). An intact eag domain is required for the slow 
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Human ether-á-go-go–related gene (hERG) potassium channels are critical for cardiac action potential repolariza-
tion. Cardiac hERG channels comprise two primary isoforms: hERG1a, which has a regulatory N-terminal Per- 
Arnt-Sim (PAS) domain, and hERG1b, which does not. Isolated, PAS-containing hERG1a N-terminal regions 
(NTRs) directly regulate NTR-deleted hERG1a channels; however, it is unclear whether hERG1b isoforms contain 
sufficient machinery to support regulation by hERG1a NTRs. To test this, we constructed a series of PAS  
domain–containing hERG1a NTRs (encoding amino acids 1–181, 1–228, 1–319, and 1–365). The NTRs were also 
predicted to form from truncation mutations that were linked to type 2 long QT syndrome (LQTS), a cardiac ar-
rhythmia disorder associated with mutations in the hERG gene. All of the hERG1a NTRs markedly regulated het-
eromeric hERG1a/hERG1b channels and homomeric hERG1b channels by decreasing the magnitude of the 
current–voltage relationship and slowing the kinetics of channel closing (deactivation). In contrast, NTRs did not 
measurably regulate hERG1a channels. A short NTR (encoding amino acids 1–135) composed primarily of the 
PAS domain was sufficient to regulate hERG1b. These results suggest that isolated hERG1a NTRs directly interact 
with hERG1b subunits. Our results demonstrate that deactivation is faster in hERG1a/hERG1b channels compared to 
hERG1a channels because of fewer PAS domains, not because of an inhibitory effect of the unique hERG1b NTR. A 
decrease in outward current density of hERG1a/hERG1b channels by hERG1a NTRs may be a mechanism for LQTS.
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report that all hERG1a NTRs functionally regulated  
gating in heteromeric hERG1a/hERG1b potassium chan-
nels and homomeric hERG1b channels, but not hERG1a 
channels. All NTRs markedly slowed deactivation ki-
netics of hERG1a/hERG1b channels and hERG1b chan-
nels, and reduced the magnitude of the I-V relationship. 
An NTR composed of just the eag domain (amino acids 
1–135) was sufficient to regulate homomeric hERG1b 
channels. The NTRs effectively converted hERG1a/
hERG1b or hERG1b channels into channels with prop-
erties similar to wild-type hERG1a channels. A reduc-
tion in the peak outward current in hERG1a/hERG1b 
channels by eag (and PAS) domain–containing NTRs 
may be a mechanism for LQTS.

M AT E R I A L S  A N D  M E T H O D S

Molecular biology and cell culture
We used a clonal stable cell line generated from human embry-
onic kidney 293 (HEK293) cells and hERG1a and hERG1b plas-
mids, as described previously (Jones et al., 2004). Cells were 
cultured at 37°C, 5% CO2 in Dulbecco’s modified Eagle’s medium 
containing 10% fetal bovine serum, 1% penicillin-streptomycin, 
and 1% l-glutamine. hERG1a and hERG1b subunit expression 
was maintained by supplementing DMEM with 1 µl/ml Zeocin  
and 500 µg/ml Geneticin. All hERG NTR plasmids were gener-
ated with PCR-based mutagenesis and had in-frame c-myc and  
6x His epitope tags, or were genetically fused in-frame to en-
hanced cyan fluorescent protein (eCFP) at the C terminus. Clones 
for studies in mammalian cells were in the pcDNA3.1 vector, and 

time course of channel closing (deactivation) that is char-
acteristic of hERG1a channels (Spector et al., 1996; Morais 
Cabral et al., 1998; Wang et al., 1998). The eag domain 
regulates gating by interacting directly with intracel
lular regions of hERG1a (Morais Cabral et al., 1998;  
Gustina and Trudeau, 2009), including the C-terminal 
cyclic nucleotide–binding domain (Gustina and Trudeau, 
2011). Remarkably, the hERG eag domain retains its 
regulatory function when expressed as a fusion protein 
(Morais Cabral et al., 1998) or as a separate genetic 
fragment (Gustina and Trudeau, 2009). hERG1a chan-
nels with deletions of the eag domain exhibit approxi-
mately fivefold faster deactivation than wild-type channels 
(Spector et al., 1996; Morais Cabral et al., 1998; Wang  
et al., 1998). Likewise, naturally occurring hERG1b iso-
forms that lack eag domains have deactivation kinetics 
that are approximately fivefold faster than those of 
hERG1a (Lees-Miller et al., 1997; London et al., 1997).

Here, we asked whether hERG1b channels supported 
regulation by isolated hERG1a eag domains. To directly 
test this we constructed plasmids encoding a family of 
polypeptides that each contained the hERG1a eag do-
main plus additional regions of different lengths that 
corresponded to the proximal parts of the hERG1a 
NTR (Fig. 1, A and B). The lengths of the isolated poly-
peptides were also chosen because they were proposed 
to be formed from genetic mutations in the NTR that 
were linked to type 2 LQTS (Tester et al., 2005). Here, we 

Figure 1.  hERG1a NTRs form poly-
peptides. (A) Schematic of hERG1a 
channel subunit and hERG1b subunit. 
Arrows indicate positions of trunca-
tion mutants in the hERG1a NTR.  
(B) Schematic of hERG1a NTR poly-
peptides formed from truncation 
mutants. (C) Western blot of lysates 
from hERG1a/hERG1b stable cell line 
transfected with hERG1a NTR plas-
mids. (Top) Bands corresponding to 
hERG1a and hERG1b; (middle) bands 
corresponding to PDI, which is used 
as a loading control; and (bottom) 
bands corresponding to hERG1a NTR 
polypeptides as indicated. Lanes corre-
sponding to control (Kir2.1) and mock 
(transfection reagent) experiments 
were also included, as indicated.
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solution contained 137 mM NaCl, 4 KCl mM, 1.8 mM CaCl2, 
1 mM MgCl2, 10 mM glucose, and 10 mM HEPES, pH 7.4. A small 
endogenous K+ conductance in HEK293 cells was inhibited by 
5 mM TEA. Two-electrode voltage-clamp recordings were per-
formed as described previously (Gustina and Trudeau, 2009, 
2011). All data were recorded at 1 kHz, and whole cell data were 
filtered (10 kHz; Bessel). To help identify HEK293 cells trans-
fected with hERG1a NTR c-myc/6x His plasmids, cells were simul-
taneously transfected with 1 µg eCFP in preliminary experiments. 
We did not detect a measurable difference in the kinetics of 
hERG1a/hERG1b cells regulated by hERG1a 1–228-c-myc/6x His  
( deactivation [s] at 40 mV = 1.47 ± 0.18; n = 4) or hERG1a 
1–228-eCFP ( deactivation [s] = 1.58 ± 0.12; n = 6) at 40 mV, so 
to further facilitate identification of NTR-transfected cells, most 
experiments were performed with NTRs fused directly to eCFP at 
the C terminus. As a positive control, currents from untransfected 
stable hERG1a/hERG1b cells were recorded in parallel with cur-
rents from NTR-transfected stable hERG1a/hERG1b cells each 
time we split the stable cells. This was done to make sure that cur-
rents from hERG1a/hERG1b stable cells had characteristics of 

clones for studies in oocytes were in the pGH19 vector. Transfec-
tions into hERG1a/hERG1b stable cell lines were performed  
using 1–2 µg hERG cDNAs and TransIT-LT1 transfection reagent 
(Mirus) according to the manufacturer’s protocol. Cells were in-
cubated for 24–48 h before analysis by whole cell patch clamp and 
Western blot. Oocyte handling was performed as described previ-
ously (Gustina and Trudeau, 2009, 2011). As in previous studies 
with oocytes, hERG1a NTR plasmids were expressed at a 2:1 RNA 
ratio compared with hERG1a or hERG1b RNA (Gustina and 
Trudeau, 2009, 2011).

Electrophysiology
Whole cell patch-clamp recordings were performed from HEK293 
cells that stably expressed hERG1a and hERG1b (see Fig. 2). Re-
cordings were performed with a patch-clamp amplifier (EPC10; 
HEKA) and acquisition software (Patchmaster; HEKA). All re-
cordings were performed at room temperature (22–24°C). Re-
cording electrodes had initial resistances of 2–3 MΩ. The internal 
pipette solution contained 130 mM KCl, 1 mM MgCl2, 5 mM 
EGTA, 5 mM MgATP, and 10 mM HEPES, pH 7.2. The bath 

Figure 2.  hERG1a NTR polypeptides 
regulate steady-state properties of  
hERG1a/hERG1b channels. Whole cell  
patch-clamp recordings of (A) hERG1a, 
(B) hERG1a/hERG1b channels, (C)  
hERG1a/hERG1b plus hERG1a 1–181,  
(D) hERG1a/hERG1b plus hERG1a  
1–228, (E) hERG1a/hERG1b plus 
hERG1a 1–319, and (F) hERG1a/
hERG1b plus hERG1a 1–365. The volt-
age protocol (shown at the bottom) 
consisted of steps from 100 to 60 mV 
for 2-s durations in 20-mV increments, 
followed by a step to 50 mV for 2 s. 
The holding potential was 80 mV. 
(G) Plot of I-V relationship for each 
channel in A–F normalized to peak tail 
current at 50 mV. (H) G-V relation-
ship for channels in A–F. Bars in A–F, 
0.5 s; n ≥ 6.
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were determined with Bradford assay reagent (Thermo Fisher 
Scientific). Lysates (20 µg of protein) were incubated with  
an equal volume of Laemmli sample buffer for 30 min at room 
temperature. Samples were loaded onto 4–15% SDS-PAGE  
gel (Bio-Rad Laboratories) and transferred onto a nitrocellu-
lose membrane (Bio-Rad Laboratories). Membranes were blocked 
with 5% nonfat dry milk and 0.1% Tween 20 in Tris-buffered 
saline for 1 h. Membranes were separated into three sections: 
the first section (containing hERG1a or hERG1b) was incubated 
with a 1:20,000 dilution of goat anti–hERG-KA polyclonal  
antibody directed against the C terminus of hERG; the second  
section (containing protein disulfide isomerase [PDI]) was in-
cubated with a 1:20,000 dilution of mouse anti-PDI (Abcam); 
and the third section (containing hERG1a NTR plasmids) was 
incubated with a 1:5,000 dilution of anti–c-myc antibody  
(Covance). Membranes were incubated overnight in primary 
antibody and for 1 h in a horseradish peroxidase–linked sec-
ondary antibody. Membrane sections were probed using an 
ECL detection kit (Thermo Fisher Scientific) and imaged using 
a ChemiDoc XRS imaging system (Bio-Rad Laboratories).  
Images were analyzed using Quantity One Software (version 
4.5; Bio-Rad Laboratories).

hERG1a/hERG1b channels (i.e., less rectification and faster  
deactivation kinetics compared with hERG1a). Conductance– 
voltage relationships were fit using a Boltzmann function, where  
y = 1/{1 + exp[(V1/2  V)/k]}, and V is the membrane voltage, 
V 1/2 is the voltage at which half the channels are activated, and k 
is the slope. Current relaxations at negative potentials were fit with 
a single-exponential function (y = A1et/), where t is time and  is 
the time constant for deactivation. Each point was the mean ± SEM. 
One-way ANOVA was used to determine statistical significance. The 
number of cells per experiment is represented by n.

Western blot analysis
A stable cell line expressing hERG1a and hERG1b subunits was 
cultured in 60 × 15–mm cell culture dishes for 24 h and trans-
fected with hERG1a NTR plasmids. 48 h after transfection, cells 
were washed with phosphate-buffered saline followed by 1 mL 
of lysis buffer (150 mM NaCl, 25 mM Tris-HCl, pH 7.4, 20 mM 
NaEDTA, and 10 mM NaEGTA, pH to 7.4 with NaOH). Cells 
were lysed with denaturing lysis buffer (lysis buffer plus 5 mM 
glucose, 1.0% Triton X-100, and protease inhibitors [10 µg/ml 
each]) at 4°C for 30 min with rotation. Cell debris was removed by 
centrifugation at 15,000 g for 15 min at 4°C. Protein concentrations 

Figure 3.  hERG1a NTR polypeptides 
regulate deactivation time course of  
hERG1a/hERG1b channels. (A–F) Whole  
cell patch-clamp recording of currents 
from hERG1a/hERG1b and NTR poly-
peptides, as indicated. The voltage 
protocol was a step to 20 mV for 1 s, 
followed by a step to 40 mV for 5 s. 
The holding potential was 80 mV. 
(G) Box plot of deactivation time con-
stant () derived from single-exponential 
fits to current relaxations at 40 mV 
(after the pulse to 20 mV). Time courses 
of currents from A and C–F were signifi-
cantly different from those in B (P < 0.01; 
ANOVA). Bars in A–F, 1 s; n ≥ 6.
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and a band at 80 kD, representing immature hERG1b, 
in the stable cell line (Fig. 1 C). We did not detect a 
measurable change in the amount of total hERG1a or 
hERG1b protein, or a change in the ratio of mature to 
immature protein compared with control bands not  
expressed with NTRs. These results also suggest that 
hERG1a NTRs did not interfere with hERG1a or hERG1b 
channel synthesis or maturation.

Soluble hERG1a NTR polypeptides functionally regulated 
heteromeric hERG1a/hERG1b channels
To examine a functional role for hERG1a NTRs, we per-
formed whole cell patch-clamp recordings to measure 
ionic currents in an hERG1a/hERG1b stable cell line, 
as these currents closely recapitulate native IKr (London 
et al., 1997; Jones et al., 2004; Sale et al., 2008). We first 
recorded a family of currents from a stable cell line ex-
pressing heteromeric hERG1a/hERG1b channels as a 
positive control (Fig. 2). Compared with homomeric 
hERG1a channels (Fig. 2 A), hERG1a/hERG1b chan-
nels (Fig. 2 B) had a less rectifying I-V relationship 
(Fig. 2 G) but a similar G-V relationship (Fig. 2 H). 
hERG1a/hERG1b channels had a threefold faster time 
course of deactivation than that of hERG1a channels 
(Fig. 3, A, B, and G). We transfected the stable cell line 
with hERG1a NTR plasmids and performed whole cell 

Online supplemental material
Fig. S1 shows the regulatory effects of an NTR fragment com-
posed of the hERG1a eag domain (amino acids 1–135) on hERG1a/ 
hERG1b channels expressed in Xenopus laevis oocytes. The eag 
domain did not measurably change in the G-V relationship of 
hERG1a/hERG1b channels, but markedly slowed the time course 
of deactivation.

R E S U LT S

hERG1a NTRs formed polypeptides
To investigate the properties of hERG1a NTRs, we ex-
pressed plasmids encoding these regions in HEK293 
cells stably expressing hERG1a and hERG1b (Fig. 1 C). 
Cell lysates were analyzed with SDS-PAGE and immuno
blotted with an antibody directed to a c-myc epitope at 
the C terminus of hERG1a NTRs (see Materials and 
methods). We detected robust bands on Western blots 
(Fig. 1 C) corresponding to the predicted molecular 
weights for each of the hERG1a NTR polypeptides  
(1–181, 24 kD; 1–228, 29 kD; 1–319, 39 kD; 1–365, 44 kD). 
These results show that hERG1a NTRs were translated 
into polypeptides. Using an hERG1 antibody (hERG-KA) 
that recognized hERG1a and hERG1b, we detected a 
band at 150 kD, representing mature hERG1a, and at 
135 kD, representing immature hERG1a. We also de-
tected a band at 95 kD, representing mature hERG1b, 

Figure 4.  hERG1a/hERG1b currents 
generated by an action potential voltage 
clamp were reduced by hERG1a NTR  
polypeptides. (A) Currents elicited using 
an action potential voltage clamp (as 
indicated) from hERG1a, hERG1a/
hERG1b, and hERG1a/hERG1b plus 
1–365, as labeled. n ≥ 3 for each. For 
comparison, currents were normalized 
to the peak tail current at 50 mV after 
a pulse to 60 mV. Vertical scale bar is 
normalized units, and horizontal scale 
bar is time (0.1 s). (B) Box plot of mag-
nitude of peak current. (C) Box plot of 
time after the onset of the voltage pulse 
at which peak current occurred (*, P < 
0.05; ANOVA).
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(Fig. 4 A). The peak hERG1a/hERG1b current, nor-
malized to peak conductance (see Materials and 
methods), was larger than that of hERG1a (Fig. 4 B), 
and the time of the peak hERG1a/hERG1b current was 
earlier than that of hERG1a (Fig. 4 C), as reported pre-
viously at 34°C (Sale et al., 2008). Next, we chose to 
examine an hERG1a NTR (1–365), which had a repre-
sentative effect on hERG1a/hERG1b kinetics (see Figs. 2 
and 3). We found that 1–365 polypeptides reduced the 
peak current of hERG1a/hERG1b channels (Fig. 4,  
A and B) and increased the time at which the peak cur-
rent occurred (Fig. 4 C). Thus, the hERG1a NTR reg-
ulated the shape of the hERG1a/hERG1b current and 
changed it to more closely resemble the shape of 
hERG1a currents.

hERG1a NTR polypeptides regulated hERG1b currents
To distinguish whether NTRs differently regulated indi-
vidual hERG subunits, we took advantage of the finding 
that hERG1b channels have small but measurable cur-
rents when expressed in Xenopus oocytes (Lees-Miller 
et al., 1997; London et al., 1997). We first examined 
whether hERG1a NTRs regulated hERG1a homomeric 
channels by performing two-electrode voltage-clamp  

patch-clamp recordings (Fig. 2, C–F). We found that, 
for cells expressing hERG1a NTRs, the I-V relationship 
was more rectifying than that of hERG1a/hERG1b 
channels and indistinguishable from that of hERG1a 
channels (Fig. 2 G). NTRs did not have a measurable 
effect on the G-V relationship of hERG1a/hERG1b chan
nels (Fig. 2 H). We also found that the time course of 
deactivation of hERG1a/hERG1b currents in cells coex-
pressing hERG1a NTRs was markedly slower than that 
of hERG1a/hERG1b channels and more similar to that 
of hERG1a channels (Fig. 3, C–F and G). These results 
show that hERG1a NTRs changed the gating properties 
of hERG1a/hERG1b channels to more closely resemble 
those of hERG1a homomeric channels.

Action potential voltage-clamp recordings show  
that hERG1a NTR polypeptides reduced peak  
hERG1a/hERG1b currents
To determine the effect of hERG1a NTRs on peak hERG 
currents, we used a voltage pulse waveform that mim-
icked a ventricular action potential. As anticipated, in 
control experiments, the peak of the current for hERG1a 
and hERG1a/hERG1b channels occurred during the 
repolarization phase of the action potential clamp 

Figure 5.  hERG1a NTR polypep
tides did not regulate steady-state 
properties of hERG1a channels. 
Two-electrode voltage-clamp re-
cordings in response to voltage 
steps (shown at bottom) from 
Xenopus oocytes injected with 
(A) hERG1a, (B) hERG1a plus 
1–181, (C) hERG1a plus 1–228, 
(D) hERG1a plus 1–319, and (E) 
hERG1a plus 1–365. The voltage 
was stepped from 100 to 60 mV 
for 1 s in increments of 20 mV, 
followed by a step to 50 mV for 
750 msec. The holding potential 
was 80 mV. (F) Plot of I-V re-
lationship. (G) G-V relationship 
for channels in A–E. Bars in 
A–E, 0.2 s; n ≥ 3.
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Table I) was negatively shifted relative to either hERG1a 
or hERG1a/hERG1b channels (see Discussion). As antici-
pated, homomeric hERG1b channels had a very rapid time 
course of deactivation (Fig. 8, A and G). When hERG1b 
was coexpressed with hERG1a NTRs, the time course of 
deactivation was dramatically slowed (Fig. 8, B–G) and sim-
ilar to that of hERG1a homomeric channels (Fig. 8 G; also 
see Fig. 6 A). We interpret these results to mean that the 
hERG1a NTRs regulated hERG1b channels.

The hERG1a NTRs in this study were of different 
lengths, but they all had in common an N-terminal 
eag domain. We found that the eag domain was suffi-
cient for regulation of gating, as an NTR encoding 
just the eag domain markedly regulated hERG1b 
channels (Figs. 7, B, G, and H, and 8, B and G). We 
interpret this result to mean that the eag domain 
within each of the longer hERG1a NTRs was sufficient 
for regulation of deactivation gating in channels con-
taining hERG1b subunits.

recordings from oocytes (Fig. 5). We did not detect any 
measurable changes in the ionic currents (Fig. 5, A–E), 
the I-V relationship (Fig. 5 F), the G-V relationship  
(Fig. 5 G), or the time course of deactivation (Fig. 6) in 
hERG1a channels compared with hERG1a channels  
coexpressed with hERG1a NTRs. These results show that 
hERG1a NTRs did not measurably regulate wild-type 
hERG1a channels and suggest that hERG1a NTRs did 
not interact with hERG1a channels. This finding is con-
sistent with our previous finding that isolated hERG1a 
eag domains did not interact with wild-type hERG1a 
channels (Gustina and Trudeau, 2009).

We next tested whether hERG1a NTRs specifically 
regulated hERG1b channels. We expressed hERG1b 
channels (Fig. 7 A) and hERG1b channels with hERG1a 
NTRs (Fig. 7, B–F). We found that when hERG1b was 
coexpressed with hERG1a NTRs, the I-V relationship 
was more rectifying and mimicked that of hERG1a 
(Fig. 7 G), but the G-V relationship (Fig. 7 H and  

Figure 6.  hERG1a NTR poly-
peptides did not measurably  
regulate deactivation gating of  
hERG1a channels. (A–E) Record
ing of hERG1a with NTR poly
peptides, as indicated. (F) Box  
plot of deactivation time con
stant () derived from single-
exponential fits to current 
relaxations generated by a step 
to 60 mV for 3 s (after the 1-s 
pulse to 20 mV). Bars in A–E,  
1 s; n ≥ 3.
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peptide bond and that, consequently, NTRs cannot in-
teract with hERG1a (Fig. 9, E and F). As an alternative 
to this model, we considered if it was possible that the 
N-terminal eag domain of hERG1a channels interacted 
with hERG1b in heteromeric hERG1a/hERG1b chan-
nels, and that the hERG1a NTRs interacted with unoc-
cupied eag domain receptor sites in hERG1a subunits. 
Indeed, there is evidence for functional intersubunit inter-
actions in wild-type hERG1a channels between the eag  
domains and the C-terminal C-linker/cyclic nucleotide– 
binding domains (Gustina and Trudeau, 2011; Muskett 
et al., 2011). Either model of interaction is consistent 
with our finding that the hERG1a NTRs functionally 
converted hERG1a/hERG1b channels into hERG1a-
like channels.

Previously, it was proposed that the intermediate ki-
netics of heteromeric hERG1a/hERG1b channels could 

D I S C U S S I O N

Here, we showed that hERG1a NTRs functionally regu-
lated heteromeric hERG1a/hERG1b channels and ho-
momeric hERG1b channels. The eag domain within the 
NTRs was sufficient for the regulatory function. Be-
cause the hERG1b subunit has a short NTR that does 
not contain an eag domain, we propose that hERG1b 
has an eag domain receptor site that is unoccupied by 
eag domains (Fig. 9, A and C). We propose a model 
where the hERG1a NTRs directly regulate hERG1b 
subunits in heteromeric hERG1a/hERG1b channels 
(Fig. 9 B) or homomeric hERG1b channels (Fig. 9 D) 
by interacting with unoccupied eag domain receptor 
sites. Because hERG1a NTRs did not measurably change 
the gating in homomeric hERG1a channels, we propose 
that the eag domain receptor site is occupied in hERG1a 
channels by the eag domain that is connected via the 

Figure 7.  hERG1a NTR polypep-
tides regulate steady-state pro-
perites of homomeric hERG1b  
channels. Two-electrode voltage- 
clamp recordings in response to 
voltage steps (identical as in Fig. 5)  
from Xenopus oocytes injected 
with (A) hERG1b, (B) hERG1b  
plus 1–135, (C) hERG1b plus 
1–181, (D) hERG1b plus 1–228, 
(E) hERG1b plus 1–319, and 
(F) hERG1b plus 1–365. (G) I-V 
relationships from channels in 
A–F. (H) G-V relationship for 
channels in A–F. Voltage proto-
col is the same as in Fig. 5. Bars 
in A–F, 0.2 s; n ≥ 3.
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and effectively converted hERG1b subunit–containing 
channels into hERG1a-like channels. These results  
indicate that the most parsimonious explanation for  
why deactivation gating in hERG1a/hERG1b is faster 
than that of hERG1a channels but slower than that of 
hERG1b is not because of a specific inhibitory action of 
the unique hERG1b NTR on hERG1a eag domains, but 
rather because of a reduced number of eag domains in 
heteromeric hERG1a/hERG1b channels.

We found that hERG1a NTRs produced a left-shift in 
the G-V relationship of homomeric hERG1b channels 
expressed in oocytes. This was unanticipated because 
hERG1a NTRs did not produce a left-shift in the G-V of 
hERG1a/hERG1b channels expressed in HEK293 cells 
(Fig. 2 H) and because the midpoint of the G-V for 
hERG1a channels and hERG1b channels is similar 
(Fig. 7 H). What might be the basis of the NTR-induced 
left-shift in homomeric hERG1b channels? We ruled 
out technical differences between experiments with 
hERG1a/hERG1b channels in HEK293 cells (Fig. 2) 
and experiments with hERG1b in oocytes (Fig. 7) be-
cause in an additional experiment, an hERG NTR did 

be a result of either a simple reduction in the number 
of eag domains because of heteromerization with 
hERG1b subunits (because hERG1b lacks eag and PAS 
domains), or a result of the regulatory effect of the  
eag domains being selectively inhibited by the short 
unique hERG1b NTR (Phartiyal et al., 2007; Sale et al., 
2008). Our results address this issue by showing that 
hERG1a NTRs directly regulated heteromeric hERG1a/
hERG1b channels and homomeric hERG1b channels, 

Table     I

Steady-state activation

Channel V1/2 k n

hERG1a 27.2 ± 0.2 8.59 ± 0.15 4

hERG1b 26 ± 0.9 10.48 ± 0.8 3

hERG1b + 1–135 34.84 ± 0.54 8.91 ± 0.47 3

hERG1b + 1–181 49.48 ± 0.49 8.04 ± 0.35 3

hERG1b + 1–228 37.09 ± 1.43 10.13 ± 1.31 4

hERG1b + 1–319 41.69 ± 0.13 7.5 ± 0.14 5

hERG1b + 1–365 43.88 ± 0.32 8.02 ± 0.3 5

V1/2, voltage at half-maximal activation; k, slope; n, number of oocytes.

Figure 8.  hERG1a NTR poly-
peptides regulate deactivation 
time course of hERG1b chan-
nels. (A–F) Two-electrode volt-
age-clamp recording of hERG1b 
channels and hERG1b channels 
with hERG1a NTR polypeptides, 
as indicated. (G) Box plot of 
deactivation time constant () 
derived from single-exponential  
fits to current relaxations at  
60 mV (after the pulse to 20 mV). 
Time courses of currents from 
B–F were significantly differ-
ent from those in A (P < 0.01; 
ANOVA). Bars in A–F, 1 s. Volt-
age protocol is the same as in 
Fig. 6. n ≥ 3 for each.
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truncations in the C-terminal region of hERG channels 
resulted in dysregulation by 14–3-3 proteins (Choe  
et al., 2006) or functional channels with a reduced 
level of surface expression (Kupershmidt et al., 2002). 
A hERG1a frameshift mutation (1261) produced a 
polypeptide that encoded the entire NTR and the S1 
transmembrane domain and diminished hERG1a cur-
rents (Li et al., 1997) but had no effect on kinetics 
(Sanguinetti et al., 1996; Li et al., 1997). Smaller out-
ward hERG currents are proarrhythmic in computa-
tional (Clancy and Rudy, 2001), animal (Arnaout et al., 
2007; Brunner et al., 2008), and human stem cell mod-
els (Itzhaki et al., 2011) of type 2 LQTS. Furthermore, 
hERG1a currents are proarrhythmic in computational 
models, whereas hERG1a/hERG1b currents are not 
(Sale et al., 2008). Our results are most consistent 
with a mechanism where hERG1a NTRs dysregulate 
hERG1a/hERG1b channels, convert them into chan-
nels with hERG1a-like functional properties, and de-
crease outward repolarizing current. Alternatively, 
lessened protein stability or translation of hERG1a 
NTRs could account for disease. Indeed, hERG1a 
1–181 polypeptides had relatively lower density on  
a Western blot, indicating less protein expression com-
pared with the other NTRs, and this correlated with a 
less pronounced effect of hERG1a 1–181 on hERG1a/
hERG1b channel deactivation properties. We also con-
sidered that NTR expression could be down-regulated 
by nonsense-mediated RNA degradation (Gong et al., 
2007) but were unable to rule out an effect on RNA 
levels, as a control mini-gene (composed of exons 1–5 
and introns 1–4 of the hERG1a NTR) did not make a 
detectable protein.

not left-shift the G-V curve of hERG1a/hERG1b 
channels expressed in oocytes (Fig. S1). Perhaps for 
hERG1b channels that were regulated by NTRs, the 
unique combination of four hERG1b NTRs and (pre-
sumably) four hERG1a NTRs has a potentiating effect 
on steady-state activation. Future work will be required 
to sort out this mechanism.

We also observed that the left-shift in the hERG1b 
G-V relationship is greater for hERG1a 1–181 than for 
the other NTRs. We speculate that the region down-
stream of the PAS domain (3 to the PAS domain) con-
tained in hERG1a 1–181 has a potentiating effect on 
the G-V relationship and that the effect gets masked 
with the inclusion of longer sequences (for instance, 
hERG1a 1–365 potentiates much less) and/or the pep-
tide bond in wild-type hERG1a channels.

In each of the lanes on Western blots that contained 
hERG1a NTRs, we observed a prominent lower molecu-
lar weight band. These smaller bands were most likely 
degradation products of each NTR (rather than partial 
transcripts) because they were of different sizes, they 
were not detected in control or mock lanes and they 
were recognized by the anti–c-myc antibody, the epi
tope for which is at the C-terminal end of the NTRs. We 
do not think that the degradation products interfered 
with or contributed to the regulation of the currents 
because the eag domain portion of the NTR was suffi-
cient for regulation, and it is unlikely that the degrada-
tion products contained the eag domain.

Could regulation of hERG1a/hERG1b channels by 
hERG1a NTRs be a mechanism for type 2 LQTS? Ear-
lier studies reported other hERG1a truncation mutants 
that were associated with type 2 LQTS. For instance, 

Figure 9.  Schematic for reg-
ulation of hERG channels by 
hERG1a NTR polypeptides. 
Schematic of (A) hERG1a/ 
hERG1b, (B) hERG1a/hERG1b 
interaction with hERG1a NTR, 
(C) hERG1b, (D) hERG1b 
interaction with hERG1a  
NTR (E) hERG1a, and (F) lack  
of hERG1a interaction with 
hERG1a NTR.

http://www.jgp.org/cgi/content/full/jgp.201110683/DC1
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In summary, we have shown that isolated hERG1a 
NTRs changed the kinetics and steady-state properties 
of homomeric hERG1b and heteromeric hERG1a/
hERG1b channels to more closely resemble those of 
hERG1a homomeric channels. We found that the eag  
domain was sufficient to regulate hERG1a/hERG1b and 
hERG1b channels, indicating that hERG1b subunits had 
sufficient machinery to support regulation by hERG1a  
N-terminal eag domain–containing polypeptides.
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