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THEBIGGERPICTURE The growing demand for fast, contactless deliveries has been driving firms to exper-
iment with automated package-delivery vehicles that can avoid urban traffic and rapidly reach customers.
Widespread adoption of uncrewed aerial vehicles (UAVs) to replace a portion of first/last-mile truck pickups
and deliveries could reshape transportation energy by changing demand patterns and shifting fuel use from
fossil fuels to electricity. There is a need to optimize drones and systems to maximize energy productivity.
Here, we help stakeholders and researchers understand the energy use of package-delivery drones and
provide an openmodel based on 188 delivery-drone flights with a range of payloads, speeds, and altitudes.
We show the impact of the cruise speed and payload mass on the drone’s range, provide generalizable co-
efficients for others to estimate drone energy use, and show that the energy per package delivered by
drones can be up to 94% lower than conventional transportation modes.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
Uncrewed aerial vehicles (UAVs) for last-mile deliveries will affect the energy productivity of delivery and
require newmethods to understand energy consumption and greenhouse gas (GHG) emissions.We combine
empirical testing of 188 quadcopter flights across a range of speedswith a first-principles analysis to develop
a usable energy model and a machine-learning algorithm to assess energy across takeoff, cruise, and land-
ing. Our model shows that an electric quadcopter drone with a very small package (0.5 kg) would consume
approximately 0.08 MJ/km and result in 70 g of CO2e per package in the United States. We compare drone
delivery with other vehicles and show that energy per package delivered by drones (0.33MJ/package) can be
up to 94% lower than conventional transportation modes, with only electric cargo bicycles providing lower
GHGs/package. Our open model and coefficients can assist stakeholders in understanding and improving
the sustainability of small package delivery.
INTRODUCTION

Achieving large improvements in the energy productivity of

freight transportation is challenging, especially in the over-

whelmingly petroleum-powered transport sector where me-

dium and heavy trucks in the United States comprise 24% of

transportation energy use. This sector is responsible for 37%
This is an open access article und
of transportation-related greenhouse gas (GHG) emissions,

while light-duty vehicles comprise 57% of transportation GHG

emissions and 64% of transportation energy use. In addition,

transportation remains a large source of nitrogen oxides

(NOxs) and other air pollutants.1 However, the way that con-

sumers are obtaining goods in the United States is changing

rapidly.2
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Even before COVID-19, the growing demand3 for fast, con-

tactless deliveries has been driving firms to experiment with

automated package-delivery vehicles, such as uncrewed aerial

vehicles (UAVs), that can avoid traffic in urban centers.4,5 Initial

survey data of 483 customers in Portland, Oregon by Pani

et al.6 show that COVID-19 is contributing to an environment

where more than 60% of online customers are willing to pay ex-

tra to receive their packages using autonomous delivery robots.

Nevertheless, along with technology and policy challenges,

increased shipping costs is a limitation for the adoption of auton-

omous delivery vehicles.7

The appeal of delivery robots also reflects new physical

distancing demands to avoid the spread of coronavirus in prod-

uct deliveries,8 and as autonomous delivery technologies

advance, new companies emerge to compete for this market

niche.9 At the same time, alternative transport modes, such as

electric cargo bicycles, are becoming cost-effective alternatives

to delivery trucks for short-distance deliveries,10 drastically

reducing the CO2 emissions of last-mile delivery in dense metro-

politan areas.11 With the increased electrification of delivery ve-

hicles, the energy consumption and environmental impacts of

the transportation sector are expected to change drastically

over the coming years,12,13 and technology, policy, and demand

are primary drivers. Widespread adoption of UAVs to replace a

portion of first/last-mile truck pickups and deliveries could

reshape this sector by changing demand patterns and shifting

fuel demands from fossil fuels to electricity. Autonomous deliv-

ery robots are coming to the transportation sector, but how these

vehicles and systems could be designed to maximize energy

productivity is less clear.

So far, a few studies have estimated the energy consumption

of quadcopter vehicles, and the energy estimations vary consid-

erably among the different methods used.14 Some studies have

created models based on theoretical principles,15–23 while

others have developedmodels based on regressionmodels built

on small flight samples.17,21,24 Finally, a comparison of the

energy consumption and GHG emissions between package-

delivery UAVs and different transportation modes have been

estimated by a few studies,20,25–27 but alternative emerging de-

livery modes, such as electric cargo bicycles, are not included.

Our study builds a model based on a much larger empirical

test sample of a drone operating at altitudes between 25 and

100 m and with drone ground speeds that vary from 4 to

12 m/s in flights operating under wind conditions varying from

2 to 16 knots. We show that, within these limits, the ground

speed and the wind condition impact little on the average energy

consumption of the quadcopter drone and that the induced

power at a hover and no-wind condition can be used as a

good estimator of the average power experienced by the aircraft

throughout the flight.

The adoption of a multirotor UAV was motivated by the com-

mercial use of similar aircraft by last-mile delivery companies.

For example, the company SpeedBird Aero has used amultirotor

with a capacity of 2 kg to deliver food in Latin America.28 The

Irish drone startup Manna29 uses a quadcopter drone to carry

payloads varying between 2 and 4 kg.30 The DJI Matrice 100

(M100) used in this study is a smaller quadcopter drone and

was tested with a maximum payload of 0.5 kg. The M100 car-

rying a very small payload is likely smaller than purpose-built
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package-delivery drones for larger packages, which require

future work to understand specific energy characteristics. How-

ever, we believe that the results using the M100 can provide

important information to researchers and industry professionals

working with UAVs for last-mile deliveries for very small pack-

ages such as medical deliveries, critical parts, or other time-sen-

sitive payloads. Here, we help stakeholders and researchers un-

derstand the energy use of uncrewed aerial package-delivery

drones. We provide an energy model based on extensive empir-

ical data from 188 flights of a quadcopter drone M100, from

which we developed a high-resolution dataset of package-deliv-

ery-drone energy use.31 In addition, we develop an algorithm

that automatically identifies the flight regime across takeoff,

cruise, and landing. We show the impact of the cruise speed

and payload mass on the drone’s range and provide energy-

use coefficients. We use our energy model to compare the en-

ergy consumption and GHG emissions of the drone with delivery

trucks, delivery vans, and electric cargo bicycles on a distance

and package basis. We show how the drone’s emissions differ

regionally in the US according to the electricity mix. We perform

a sensitivity analysis on the energy consumption on a distance

basis (MJ/km) and show the minimum drone energy consump-

tion required to match different vehicles, which can help inform

drone designers for future efficient UAVs. Finally, we show the

delivery intensity required to match the GHG emissions of the

drone for each region of the US.

RESULTS

We conducted a first-principles analysis and developed a model

to estimate the energy required to power a quadcopter. Each of

the flight regimes (takeoff, cruise, and landing) were modeled

separately, so each energy model was treated as a model class

and three different optimal models from that class were selected,

one per regime. In order to fairly compare the model classes’

performance and avoid overfitting, we split the data into train

and test folds following a stratification strategy by flight ID

number. With 120 flights, the training fold was used to estimate

the parameters of each model, which were then applied to the

remaining 68 flights from the test fold in order to evaluate the per-

formance of the energy models on unseen data.

Energy model derived from flights
Our energy (E) model uses the induced power ðPi), which is the

power required to overcome gravity in a hover-no-wind situation,

as a parameter estimator of the average power observed

throughout the flight.

E =
�
b0
1Pi + b0

�
t; (Equation 1)

where t is the flight duration, and b0
1 and b0 are coefficients that

linearly correlate Pi and the average power throughout the flight.

The Pi, used in Equation 1, is calculated as

Pi =
ðmgÞ1:5ffiffiffiffiffiffiffiffiffi

2rA
p ; (Equation 2)

wherem is the total mass of the drone (including the payload), g

is the acceleration of gravity, r is the air density that we obtained



Table 1. Model coefficient ± bootstrap standard error

Coef. Takeoff Cruise Landing

b1 80.4 ± 2.6 68.9 ± 2.0 71.5 ± 1.7

b0 13.8 ± 18.9 16.8 ± 15.0 �24.3 ± 12.5

R2 0.84 0.85 0.90

Figure 1. Our data show that for the range of cruise speeds tested,

there is no practical variation in the drone’s average power con-

sumption (approximately 5% variation between themedian of flights

at 4 and 12 m/s)
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from the closest airport station (KAGC), andA is the total area un-

der the propellers. Our experiment focused on one type of quad-

copter drone; hence, A is constant here.

Combining Equation 2 and Equation 1,

E =

 
b1

m1:5ffiffiffi
r

p + b0

!
t; (Equation 3)

where b1 includes the constants A and g. The estimated coeffi-

cients and their standard errors are shown in Table 1.

The coefficients shown in Table 1were obtained by performing

a linear regression between Pi and the average power observed

throughout each of the 120 flights. The results were then applied

to the remaining flights, and the absolute relative error was 2.1%

on average, proving the accuracy of the energymodel in terms of

estimation of energy consumption.

With the energy model validated, we estimated the energy

consumption of a package delivered by a small quadcopter

drone. Our energy model suggests that within the speed range

tested, the average power consumption of a quadcopter does

not vary considerably with the speed during cruise, which has

also been observed with our dataset (Figure 1). The speed

does affect total flight time, and hence for the drone and range

of speeds we tested, total power consumption of each delivery

will be higher when flight speeds are lower.

Drone energy use and GHG emissions
The GHG emissions of a package delivery by drone will depend

on the total electricity needed for the delivery and the emissions

intensity of the regional electricity grid.20 Our analysis shows that

variations in the cruise speed have a large impact on the total en-

ergy consumption per trip and, consequently, the range of the

drone. Because the total time of flight is reduced as the speed

increases, a faster speed (with normal operating parameters)

for a quadcopter generally enables longer delivery distances

for the same amount of energy. We show the influence of speed,

payload, and delivery distance on total energy consumption in

Figure 2A.

We then calculated the GHG emissions per package delivered

based on the US regional non-baseload electricity GHG emis-

sions from the US Environmental Protection Agency,32 upstream

electricity generation emissions, and battery life cycle emissions.

In Figure 2B, we show the GHG emissions per package delivery

as a function of the delivery distance. We show the results for

the fastest speed evaluated, 12 m/s; however, the model en-

ables evaluation across the full range of speeds, altitudes, and

payloads.

We illustrate the impacts of the GHG intensity of a regional

electricity grid on drone package delivery GHGs in Figure 3. Us-

ing regional non-baseload emissions factors, we show that a

drone package delivery in the carbon-intensive central Midwest
would emit up to 93% more CO2e per km traveled (23.5 g

CO2e/km) compared with regions with cleaner grid mixes such

as New York, which would result in drone emissions of 12.1 g

CO2e/km.
Comparison between different transportation modes
We compared the energy consumption of quadcopter drones

against diesel and electric medium-duty trucks and small vans

and electric cargo bicycles.

The total energy consumption per distance of small quad-

copter drones is among the lowest across transportation

modes, as the vehicle is small, light, and has lower payload ca-

pacity (Figure 4A). Figure 4B shows the energy consumption

per package of drone-equivalent deliveries, i.e., assuming

that all packages delivered by the other modes are within the

payload and space capacity of a small quadcopter drone. On

an energy consumption per package basis, small quadcopter

drones and electric cargo bicycles are among the most en-

ergy-efficient modes for small package delivery. The number

of stops per kilometer and the number of packages delivered

per stop varies according to the transportation mode and deliv-

ery density (highly dense areas are more likely to have more

stops and packages delivered per kilometer).

Similarly, an analysis of the GHG emissions of the fuel of each

transportation mode shows that quadcopter drones and electric

cargo bicycles are among themost efficient vehicles in g of CO2e

per km (Figure 5A) and a competitive alternative in terms of GHG

emissions per package (Figure 5B). On the other hand, it is

important to note that small drones are considerably limited in

terms of weight and volume of the packages transported. There-

fore, an analysis of the energy consumption and GHG emissions

on a per metric ton-km basis in Figure S1 shows that small

drones are the most energy-intensive vehicles. Also, local

airspace regulations, such as not flying over people and/ormotor

vehicles,33 could impose longer delivery routes, were not

considered in this study, and could potentially increase the
Patterns 3, 100569, August 12, 2022 3
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Figure 2. Small drone total energy consumption and greenhouse gas emissions by distance

(A) Total energy consumption by distance of delivery varying payload mass and cruise speed. Total trip energy is higher at lower speeds for a fixed distance.

(B) CO2e emissions of delivering a payload of 0.5 kg at a cruise speed of 12m/s, the fastest speed evaluated, based on the delivery distance. The uncertainty area

corresponds to US regional grid emissions factors. The total energy and CO2e correspond to takeoff, cruise from the origin to destination, and landing loaded and

takeoff, cruise from destination to origin, and landing empty. As an energy limitation, the nominal capacity of an LiPO TB48D battery is 130 Wh. Results shown

here have an altitude during cruise of 100 m, takeoff speed of 2.5 m/s, and landing speed of 2 m/s.
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drone’s energy consumption and GHG emissions per package

delivered.34

We compared our results with values provided by the United

Parcel Service (UPS). In 2019, UPS reported the energy intensity

for US Domestic Package operations was 28 MJ/package, from

which ground vehicles represented approximately 9.5 MJ/pack-

age or 34% (airline fuel, facility heating fuel, and indirect energy

correspond to 60%, 3%, and 3%, respectively), with GHG emis-

sions (CO2e) intensity of 1 kg/package.35 It is important to note

that these values encompass the entire ground fleet rather

than only last-mile delivery.

Finally, assuming a base case where the drone delivers an

average of 0.25 packages per km (one-way delivery distance

of 2 km) and consumes 0.08 MJ/km, we calculated the minimum

number of packages per km required by each vehicle to match

the drone’s energy consumption and CO2e per package. Table 2

shows that a medium-duty diesel truck would require approxi-
4 Patterns 3, 100569, August 12, 2022
mately 34 packages per km to meet the drone’s performance,

which would correspond to having 200 packages delivered in a

route of less than 6 km. On the other hand, a small electric van

would require a delivery intensity of approximately five packages

per km, or a 39-km route to deliver 200 packages, which could

potentially be achieved in dense urban centers.

Moreover, Table 2 also shows the minimum energy consump-

tion required for the drone to match each vehicle’s energy con-

sumption per package. To have a similar energy consumption

per package delivered by a medium-duty diesel truck, a small

quadcopter drone would need to consume 1.31 MJ/km (approx-

imately 19 times more than our base-case estimate). Figure S2

provides a similar analysis considering that the GHG emissions

showing that a diesel truck would need to deliver between 10

and 19 packages per km depending on the region of operation.

Future work could estimate of the density of deliveries that would

support operations with similar delivery density on a per-area
Figure 3. GHG emissions per km from a
drone package delivery with a 0.5-kg payload

and 2-km one-way delivery distance (4-km

round trip), according to the sub-region’s

non-baseload electricity grid carbon

intensity



A B

Figure 4. Energy consumption per distance and per package delivered for different transportation modes

Error bars represent variations in (A) driving styles and vehicle characteristics and (B) number of packages delivered per distance.
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basis to understand which communities are likely to have energy

and GHG savings with drone deliveries.
DISCUSSION

A small quadcopter drone, with a payload of 0.5 kg operating at a

cruise speed of 12 m/s and a cruise altitude of 100 m, consumes

approximately 0.08 MJ/km and generates 70.1 g of CO2e per

package when charged on average non-baseload US electricity,

with a range of 48.5 g per package in New York (the cleanest US

electricity region) to 93.8 g per package in the most carbon-

intensive region in the central Midwest. Only electric cargo bicy-

cles had a lower carbon footprint per package, from 16.8 g per

package in New York, 23.4 g per package for the average US,

and 30.8 g per package in the central Midwest. As the electricity

grid gets cleaner over time, the carbon intensity of delivery with

electricity-powered vehicles, whether drone, cargo bicycle, van,

or truck, will continue to improve.

Our energy model has simple and accurate coefficients that

can provide stakeholders and researchers with a drone-en-

ergy-consumption estimation for speeds below 12 m/s for

similar small drones. However, at greater speeds or using drones

with more surface area or mass, a more comprehensive energy-

profile method could provide more accurate predictions.
A B

Figure 5. GHG emissions per distance and per package delivered for d
Error bars (A andB) represent uncertainties due to variations on fuel carbon intensi
The energy consumption of a very small, commercially avail-

able quadcopter drone with payload of 0.5 kg is comparable to

the most energy-efficient modes of last-mile delivery when the

total mass of delivery is not the main feature considered. For

example, in delivery situations where small and light items with

high added value, such as medical deliveries, critical packages,

and small electronics, very small drones might become a

competitive tool to reduce transportation emissions in large ur-

ban centers.36 In these scenarios, we found that drones can

reduce the energy consumption by 94% and 31% and GHG

emissions by 84% and 29% per package delivered by replacing

diesel trucks and electric vans, respectively. We also found that

electric cargo bicycles had similar or lower GHGs per package

than drones. We also found that the delivery intensity, i.e., the

number of packages delivered per km, and the fuel carbon inten-

sity are the main factors contributing to the drone’s comparative

energy and environmental performance.

Adding empirical tests to assess the impacts of varying the

area of the propeller, the drone geometry and delivery intensity

that were not included in this study could provide an important

contribution to this field in future work. It is also important to

note that the drone used to collect the data was not optimized

to minimize energy consumption, which could further improve

its efficiency. The drone used was designed for a very small

package, and future studies should include heavier payloads.
ifferent transportation modes
ty, battery life cycle emissions, and number of packages delivered per distance.
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Table 2. Delivery density of each mode to match the drone’s energy consumption per package, and the minimum drone energy

consumption to match the vehicle’s energy consumption per package

Vehicle

Delivery density required to match drone energy consumption

(package/km) (multiplier from base case)

Minimum energy consumption required

for the drone (MJ/km)

Medium-duty diesel truck 33.8 (16.13) 1.31

Small diesel van 15.0 (4.33) 0.35

Medium-duty electric truck 11.7 (5.63) 0.45

Small electric van 5.1 (1.53) 0.12

Electric cargo bicycle 0.3 (0.33) 0.03

Small quadcopter drone (base case) 0.25 0.07
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Given the potential for improved energy productivity of delivery

and reduced GHGs per package, very small package delivery

by drone and electric cargo bicycles can play an important role

in reducing the energy and climate impacts of package delivery.
EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information should be directed to and will be fulfilled by the lead con-

tact, Dr. Samaras (csamaras@cmu.edu).

Materials availability

This study did not generate new unique reagents.

Data and code availability

All drone data are available at Figshare: https://doi.org/10.1184/R1/12683453,

and all modeling codes are available at Zenodo: https://doi.org/10.5281/

zenodo.6726991.

We collected data on 188 flights to assess the power profile of a package-

delivery drone given a set of operational parameters (payload, altitude, and

speed during cruise). The data, available at Rodrigues et al.,37 and a data

descriptor31 provide the details of the experiment. In addition, we have devel-

oped an algorithm that separates the data into three different flight regimes:

takeoff, cruise, and landing, in order to better understand the energy con-

sumption profile during flight. We then perform a first-principles analysis to

develop an energy model to estimate the drone’s energy consumption. Finally,

we use the energy model to compare the drone with different transportation

models from an energy consumption and GHG emissions basis.
Empirical data collection from drone flight

We performed a series of flights to empirically measure the energy consump-

tion of a quadcopter UAV. An experimental protocol was created and followed

to ensure a reliable approach for data acquisition.31
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An M100 quadcopter was equipped with an anemometer, current and

voltage monitor, GPS, and accelerometer collecting data on wind speed and

direction, battery current and voltage demand, and position, orientation, veloc-

ity, and acceleration. The flightswere performed in a pre-established routewith

varying altitudes (25, 50, 75, and 100 m), speeds (4, 6, 8, 10, and 12 m/s), and

payload mass (no payload, 250 g, and 500 g). The sensors and computer box

attached to the drone weighed approximately 1,200 g. Each combination was

repeated at least three times, totaling 188 flights. The data provided by each

sensor were synchronized to a frequency of approximately 5 Hz using the

ApproximateTime38 message filter policy of Robot Operating System (ROS).

For a better understanding of the energy-consumption profile of each flight,

we created an algorithm to automatically divide the data into three different

flight regimes: takeoff, cruise, and landing (Figures S3–S6). The data available

in Rodrigues et al.37 were processed using this algorithm before the analysis

described in the next sections.
First-principles analysis

The energy required to power a UAV can be estimated using a first-principles

analysis based on helicopter aerodynamics.39 First, we defined the working

coordinate frames for a quadcopter drone (Figures S7–S9). Then, we assessed

the power required to maintain the drone at a steady hover condition. Finally,

we expanded the power analysis to include other power demands.

The main power demand of a drone is in the form of Pi. The Pi represents the

power required to overcome the force of gravity in order to keep the aircraft in

the air, and it can vary according to the flight maneuver.39 The most basic way

to estimate Pi is considering a hover condition without wind (Figure 6).

In that case, the thrust (T ) equals the only force acting on the drone: its

weight (W = mg),39 and Pi can be estimated as

Pi = Tvi ; (Equation 4)

where vi is the induced velocity.

During hover, vi can be simplified as
Figure 6. Drone flying at a hover and no-wind

condition
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Figure 7. Relationship of induced power to drone average power of

flights separated by flight regime

Payloads of 0 (left), 250 (center), and 500 g (right). R2 are 0.84, 0.85, and 0.90

for takeoff, cruise, and landing, respectively.
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vi =

ffiffiffiffiffiffiffiffiffi
T

2rA

s
; (Equation 5)

where r is the air density and A is the total area covered by all four propellers.

Combining Equations 5 and 4

Pi =
ðTÞ3=2ffiffiffiffiffiffiffiffiffi
2rA

p =
ðmgÞ1:5ffiffiffiffiffiffiffiffiffi

2rA
p ; (Equation 6)

where m is the total mass of the drone and g is the gravitational acceleration.

More details of the first-principles analysis and an expanded first-principles

energy model are available in the supplemental information (Figures S10

and S11).

Regression-based energy model

Our energy model inquires how effectively Pi can be used as an estimator for

the energy consumed during a package-delivery flight. In such a case, the

average power (P) throughout the flight is modeled as a linear regression of

the Pi

P = b0
1Pi +b0; (Equation 7)

where b1 and b0 are the slope and intercept of the linear regression,

respectively.

We can expand Equation 7 to account for the sum of the three flight regimes

(Figure 7) and combine the area of the propeller (A) and gravity acceleration (g)

from Equation 2 with coefficient b1. Thus, the total energy consumption (E) is

estimated as

E =
X

r ˛R;l˛L

 
b
ðr;lÞ
1

m1:5ffiffiffi
r

p
ðlÞ

+ b
ðr;lÞ
0

!
tðr;lÞ (Equation 8)

for R = ftakeoff ; cruise; landingg and L = floaded;unloadedg.
The step-by-step calculation used to compute b0, b1, andR2 can be found in

the supplemental information under the section linear regression.

Machine learning for comparison

Evaluating whether the model’s performance is good given the available mea-

surements cannot be inferred from its performance alone. Therefore, we

compare the predictive power of the energy model with a flexible nonlinear al-

gorithm,40 XGBoost, available in the programming environment R. This
boosted tree algorithm prioritizes predictive power against interpretability,

and it is appropriate for predictive performance given the available features.

If our energy model presents similar accuracy to XGBoost, it indicates that

the parametric and functional restrictions we have made for the energy model

development are suitable.

We fitted a gradient boosted tree algorithm, XGBoost.40 The algorithm was

separately trained for each flight regime with a quadratic loss function, and

for all regimes, we used 80% as a subsample ratio of both features and

observations for each tree. For hyperparameter tuning, we varied learning

rate, maximum tree depth, and regularization parameter g in a grid search

approach. 5-fold cross-validation (CV) was used for error estimation; for tuning

only, we compared the absolute relative error (ARE; Equation 9) instead of the

quadratic error. We fixed a regime and a set of hyperparameter values to be

tuned then varied the following hyperparameters: learning rate (0.01, 0.05,

0.1), maximum depth of each weak learner (3, 5, 8), and minimum loss reduc-

tion required to make another partition (0, 1, 5). Then, we ran XGBoost on the

training data using squared loss as the objective function. Our response vari-

able and features were the same used in the first-principles energy model.

We used the stochastic approach by subsampling 80% of the data at each

tree fitting. Our algorithm used up to 1,000 trees; however, if there was no sig-

nificant increase in performance after 50 trees, the algorithm stopped. Then,

we plotted the number of trees (up to 1,000) versus training error and estimated

test error via 5-fold cross validation.

After tuning, the model was trained with the optimal hyperparameters on the

entire training set, and AREs were computed for the flights on the test set. We

selected the hyperparameter combination to be used for each regime (number

of trees, learning rate, maximum depth, minimum loss reduction) by choosing

a low test error, low generalization error, and low standard errors. The selected

hyperparameter values are in Table S1.

Estimation of the standard errors for the coefficients

To obtain standard errors of the estimated coefficients, we used a nonpara-

metric bootstrap approach.41 1,000 bootstrap replications were used to re-

sample with replacement the 120 training flights, and the energy models for

the three flight regimes were refitted for each bootstrap sample. At the end,

the standard errors (SEs) of the coefficients were obtained from their sampling

distribution.

Model predictive power

To evaluate the model’s predictive power, the regime-specific fitted models

were then applied to the testing flights of the test set and were compared by

ARE, computed at flight resolution. That is, for each flight from the test set,

we computed their Emeasured integrating power over time and the Em
estimated as

the sum of the integral of the estimated power over time for the three flight re-

gimes via method m:

AREðmÞ =

����Emeasured � Em
estimated

Emeasured

���� (Equation 9)

for m˛ fEnergyModel;XGBoostg.
Figure S12 shows the AREs on the test set for the energy models developed

in this study.

Estimation of drone range

Our analysis also shows the impact of varying operational parameters (speed,

altitude, and payload) on the range of the drone. The two-way drone range (d)

can be calculated considering the cruise speed

E =
X 

b1

m1:5ffiffiffi
r

p + b0

!
t =

X
E takeoff +

X
E landing

+
X 

b1

m1:5ffiffiffi
r

p + b0

!
d

Vcr

:

(Equation 10)

Expanding for a two-way trip and solving for d

d =

h
Emax �

�
E l

takeoff +E u
takeoff +E l

landing +E u
landing

�i
Vcr

b1

�
m1:5ffiffi

r
p

l
+ m1:5ffiffi

r
p

u
�
+ 2b0

; (Equation 11)
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Table 3. Base-case energy consumption and GHG emissions for different vehicles

Vehicle class

Energy consumption

(MJ/km)

Fuel GHG

emissions (g/km)

Upstream GHG

emissions (g/km)

Battery GHG

emissions (g/km)

Energy consumption

(MJ/package)

GHG emission

(g/package)

Medium-duty diesel truck 11.00 762.8 168.7 – 5.24 443.6

Small diesel van 4.90 339.8 75.2 – 1.41 119.2

Medium-duty electric truck 3.80 674.3 83.7 24.5 1.81 372.6

Small electric van 1.65 293.0 36.4 14.1 0.47 98.7

Electric cargo bicycle 0.10 17.9 2.2 3.3 0.10 23.4

Small quadcopter drone 0.08 14.4 1.8 1.3 0.33 70.1
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where Emax is the energy available in the battery; Etakeoff and Elanding are the en-

ergy consumed during takeoff and landing for delivery (loaded = l) and return-

ing (unloaded = u), respectively; b1 and b0 the coefficients from Table 1 for

cruise; and Vcr is the average inertial cruise speed.

The energy during takeoff and landing can be calculated as

E =

 
b1

m1:5ffiffiffi
r

p + b0

!
h

V
; (Equation 12)

where h is the cruise altitude and V is the average speed during takeoff and

landing.

For instance, a small quadcopter operating at Vcr= 12 m/s, payload = 500 g,

h = 100 m, takeoff average speed (Vtk ) = 2.5 m/s, and landing average speed

Vld= 2.0 m/s has a range of approximately 4 km (2 km of one-way delivery

range), consuming approximately 74.5 Wh (per round-trip delivery).

Therefore, a quadcopter drone flying under these conditions would

consume approximately 0.067MJ/km, not considering charging and transmis-

sion losses. The energy consumption during takeoff and landing for this trip

corresponds to approximately 36% of the total energy consumption (26.8

Wh per trip). This share of energy could be reduced by 95% in a 5-m takeoff

(to 1.34 Wh per trip), which could be achieved, for instance, if the drone would

depart from the top of a building, provided sufficient space for safe operation.

This would reduce total trip energy by 34% (74.5–48.95 Wh) or increase the

range from 2 to 3 km (4–6 km two-way distance), consuming the same amount

of energy. Further analysis of system-wide energy benefits of building-to-

building drone travel is an important topic for future research.
Transport mode comparison

We develop a model comparing the small quadcopter drone with different

transportation modes in terms of energy consumption and CO2e emissions

and validate it against top-down sustainability reports from UPS in 2019.

The energy consumption of a medium-duty diesel truck is considered as

11 MJ/km43. Whereas a medium-duty electric truck has an energy consump-

tion of 1.4 kWh/mile,42 or 3.13 MJ/km, diesel vans operate at 18.4 MPG on

average,43 or 4.9 MJ/km (conversion factors: one gallon of diesel = 137,381

Btu,44 1 MJ = 947.817 Btu, one mile = 1.60934 km). On the other hand, electric

vans operate with an energy consumption of 0.38 kWh/km,45 or 1.36 MJ/km.

Finally, an electric cargo bicycle operates at 0.023 kWh/km,46 or 0.08 MJ/km

(conversion factors: 1 kWh = 3.6 MJ). In addition, variations in driving style can

vary energy consumption by 40%.47

Based on our energy model, a small quadcopter drone consumes

approximately 74 Wh in a 2-km delivery distance (4-km total distance), or

0.067 MJ/km, when delivering at maximum capacity (0.5-kg payload with

unloaded return) and a cruise speed of 12 m/s. Transmission losses of

6.5% and a charging efficiency of 88%32,48–50 were included with the en-

ergy consumption of the electric vehicles (Table 3). Table S1 summarizes

the nominal energy consumption and also provides the payload capacity

of each mode.

The electricity CO2e emissions were considered to be the 2020 American

non-baseload average of 177 g/MJ (638 g/kWh), with the lower bound be-

ing 111 g/MJ (399 g/kWh) from New England and the upper limit being 250

g/MJ (900 g/kWh), reflecting non-baseload emissions from the central Mid-

west.32 CO2e emissions for diesel combustion was considered as
8 Patterns 3, 100569, August 12, 2022
1.61 3 10�4 lb/Btu,51 or 69.35 g/MJ. Upstream GHG emissions for average

diesel and electricity generation are 15 g/MJ and 22 g/MJ53, respectively.

The battery life cycle emissions for the drone (assumed to be similar to Li-

iron phosphate) were calculated as 0.76 (base case), 0.23 (low case), and

1.52 g/km (high case). Similarly, the electric cargo bicycle has battery life

cycle emissions of 1.3 g/km, considering a Li-ion NMC811 battery. For

the electric van and electric medium-duty truck, we assumed a battery of

Li-ion NMC811, resulting in 14.1 g/km for the van and 24.5 g/km for the

truck.52 Energy and emissions associated with system changes beyond

the vehicle (such as in warehousing20) are not included and are important

areas for future work.

The energy consumption per package (Epack ) was calculated as

Epack =
Edist

Sfreq,Pfreq

; (Equation 13)

where Edist is the energy consumption per distance unit, Sfreq is the number of

stops to deliver packages per distance unit, and Pfreq is number of packages

delivered per stop on average.

Similarly, the GHG emissions per package (GHGpack ) is calculated as

GHGpack =
Edist,GHGenergy

Sfreq,Pfreq

; (Equation 14)

where GHGenergy is the mass of CO2e per energy unit.

For this study, we used the US National Renewable Energy Laboratory’s

Fleet DNA: Commercial Fleet Operating Data53 to estimate the number of

stops per km of delivery trucks and vans. Therefore, we assumed that trucks

and vans have an average of 0.7 and 1.74 stops/km, respectively. In addi-

tion, we assumed that trucks and vans would deliver an average of three

and two packages per stop, respectively. Similarly, we assumed that an

electric cargo bicycle and a small quadcopter drone would experience 1

and 0.25 stops/km, respectively, and deliver one package per stop on

average. We also varied these parameters in order to assess their sensitivity

in the final outcome. Table S2 provides additional details on the values

assumed for delivery intensity. Tables S3 and S4 provide life cycle GHG

emissions for vehicle per km and package, respectively, for each US Envi-

ronmental Protection Agency (EPA) sub-region. Table 3 summarizes the

values calculated per vehicle.
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