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A B S T R A C T   

Background and aim: Melasma (ML), naevus fusco-caeruleus zygomaticus (NZ), freckles (FC), cafe- 
au-lait spots (CS), nevus of ota (NO), and lentigo simplex (LS), are common skin diseases causing 
hyperpigmentation. Deep learning algorithms learn the inherent laws and representation levels of 
sample data and can analyze the internal details of the image and classify it objectively to be used 
for image diagnosis. However, deep learning algorithms that can assist clinicians in diagnosing 
skin hyperpigmentation conditions are lacking. 
Methods: The optimal deep-learning image recognition algorithm was explored for the auxiliary 
diagnosis of hyperpigmented skin disease. Pretrained models, such as VGG-19, GoogLeNet, 
InceptionV3, ResNet50V2, ResNet101V2, ResNet152V2, InceptionResNetV2, DesseNet201, 
MobileNet, and NASNetMobile were used to classify images of six common hyperpigmented skin 
diseases. The best deep learning algorithm for developing an online clinical diagnosis system was 
selected by using accuracy and area under curve (AUC) as evaluation indicators. 
Results: In this research, the parameters of the above-mentioned ten deep learning algorithms 
were 18333510, 5979702, 21815078, 23577094, 42638854, 58343942, 54345958, 18333510, 
3235014, and 4276058, respectively, and their training time was 380, 162, 199, 188, 315, 511, 
471, 697, 101, and 144 min respectively. The respective accuracies of the training set were 
85.94%, 99.72%, 99.61%, 99.52%, 99.52%, 98.84%, 99.61%, 99.13%, 99.52%, and 99.61%. The 
accuracy rates of the test set data were 73.28%, 57.40%, 70.04%, 71.48%, 68.23%, 71.11%, 
71.84%, 73.28%, 70.39%, and 43.68%, respectively. Finally, the areas of AUC curves were 0.93, 
0.86, 0.93, 0.91, 0.91, 0.92, 0.93, 0.92, 0.93, and 0.82, respectively. 
Conclusions: The experimental parameters, training time, accuracy, and AUC of the above models 
suggest that MobileNet provides a good clinical application prospect in the auxiliary diagnosis of 
hyperpigmented skin.   

* Corresponding author. 
** Corresponding author. 

E-mail addresses: ouyanghuidan@jxau.edu.cn (H. Ouyang), zengqinghai@csu.edu.cn (Q. Zeng).   
1 These authors contributed equally. 

Contents lists available at ScienceDirect 

Heliyon 

journal homepage: www.cell.com/heliyon 

https://doi.org/10.1016/j.heliyon.2023.e20186 
Received 10 December 2022; Received in revised form 11 September 2023; Accepted 13 September 2023   

mailto:ouyanghuidan@jxau.edu.cn
mailto:zengqinghai@csu.edu.cn
www.sciencedirect.com/science/journal/24058440
https://www.cell.com/heliyon
https://doi.org/10.1016/j.heliyon.2023.e20186
https://doi.org/10.1016/j.heliyon.2023.e20186
http://crossmark.crossref.org/dialog/?doi=10.1016/j.heliyon.2023.e20186&domain=pdf
https://doi.org/10.1016/j.heliyon.2023.e20186
http://creativecommons.org/licenses/by-nc-nd/4.0/


Heliyon 9 (2023) e20186

2

1. Introduction 

Melasma (ML) [1], naevus fusco-caeruleus zygomaticus (NZ) [2], freckles (FC) [3], cafe-au-lait spots (CS) [4], nevus of ota (NO) 
[5], and lentigo simplex (LS) [6] are common hyperpigmented skin diseases on the face that seriously affect the aesthetics and social 
activities of patients [7]. Medical doctors diagnose a disease mainly by integrating clinical symptoms, medical images, and laboratory 
test results [8]. However, as a result of incomplete extraction of critical information from medical data and the uncertainty of objective 
factors, doctors may misjudge a disease, thereby affecting the treatment of patients. 

In the era of artificial intelligence and medical advancements, scholars are using cutting-edge deep learning algorithms to intel-
ligently classify skin diseases through feature extraction, analysis, and training [9–13]. In 2017, Andre Esteva et al. used deep learning 
algorithms to classify skin diseases, achieving an accuracy of about 55.4% in nine classifications and 72.1% in three classifications, 
beyond the accuracy levels achieved by dermatologists [14]. Moreover, Philipp Tschandl used deep learning algorithms to classify 
different skin lesions, demonstrating once again the excellent performance of deep learning algorithms compared to expert doctors at 
diagnosing skin diseases [15]. Jianpeng Zhang et al. proposed a collaborative deep learning algorithm to classify medical images, and 
their algorithm innovation has dramatically improved the accuracy. The datasets, however, are limited to ImageCLEE and ISIC, other 
types of skin diseases have not been classified and explored, with the types of datasets being relatively few [16]. Yuan Liu et al. 
proposed a deep learning system to distinguish 26 skin diseases and assist in auxiliary diagnosis by the doctors [17]. Qianjin Lu et al., 
developed a mobile lupus erythematosus classification assistance platform based on a deep learning algorithm, enabling clinical 
dermatologists to diagnose patients online [18]. 

While several deep learning-based approaches have been applied for automated diagnosis of skin diseases, none has used the 
network architectures (ResNet50V2, InceptionResNetV2, VGG-19, DenseNet201, GoogLeNet, InceptionV3, MobileNet, NASNetMo-
bile, ResNet101V2, and ResNet152V2) to classify the six hyperpigmented skin diseases (ML, NZ, FC, CS, NO, and LS) that have been 
handled in this work. We have thus explored the optimal deep network architecture for the auxiliary diagnosis of the diseases. 

2. Methods 

2.1. Collection of skin lesion pictures 

Pictures of six common hyperpigmented skin diseases from the Department of Dermatology at the Third Xiangya Hospital of 
Central South University. Each disease was diagnosed by two specialized dermatologists. In some controversial cases, reflectance 
confocal microscopy (RCM) was used as an auxiliary diagnosis. Below are the characteristics of each skin disorder’s lesions: In ML, 
brown or dark brown lesions occur symmetrically in the zygomatic and temporal regions, and are irregularly distributed or butterfly- 
shaped. Generally, symmetrically distributed, NZ affects the bilateral zygomatic, temporal, and lower eyelids. NZ is usually round or 
oval, gray-brown, or dark-gray, isolated macules that are not confluent. FC typically appears as multiple rice-grain-sized yellow-brown 
or brown, isolated, and unfused spots. CS are well-defined, uniformly pigmented, light brown macules of varying sizes, being either 
single or multiple. NO forms bluish-black or bluish-gray patches of uniform color; it is commonly found on the temporal, zygomatic, 
upper, and lower eyelids and cheeks. LS are mostly unilaterally distributed as flakes, ranging in size from the tip of a needle to that of a 
grain of rice, with uniform color. This study was approved by the Ethics Committee of the Third Xiangya Hospital of Central South 
University (NO.2022-S303). Patient information was kept strictly confidential. 

2.2. Sample selection 

In this study, 1366 images of skin lesions were included, with 233, 255, 346, 212, 214, and 112, respectively, for ML, NZ, FC, CS, 
NO, and LS. Data from dermatological images are categorized into training and test sets in a 4:1 ratio (Table 1). 

2.3. Deep learning algorithms 

The deep learning algorithm [19] model originates from the human neural network, comprising multiple units connected to each 
other to form a network. Each layer of the network is equivalent to the human cerebral cortex; the more cortex content, the deeper the 
network. The depth generally refers to more than ten layers. Since the introduction of neural network algorithms, there have been 
more and more deep learning algorithms, attributed to the number of nodes in each layer, the depth of each layer, and different design 

Table 1 
Distribution of training set and the test set.   

Train Dataset num Test Dataset num Sum 

CS 169 43 212 
FC 276 70 346 
LS 89 23 112 
ML 186 47 233 
NO 171 43 214 
NZ 204 51 255 
Sum 1089 277 1366  
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of the layers, and so on. In the optimal situation for pretrained model training, the validation loss no longer improves or achieves the 
expected accuracy rate, and the training can be considered to converge. 

In this study, 10 pretrained models were used, including VGG-19, GoogLeNet, InceptionV3, ResNet50V2, ResNet101V2, 
ResNet152V2, InceptionResNetV2, DesseNet201, MobileNet, and NASNetMobile. The structure diagram of the 10 deep learning 
networks is presented in Fig. 1. 

Considering the VGG-19 model architecture [20], VGG-19 consists of 19 sequentially stacked layers, including a convolutional 
layer, maximum pooling layer, and fully connected layer. VGG-19 has a simple and unified architecture, which can be easily un-
derstood and implemented. The model performed well in various image classification tasks. The VGG-19 has many parameters and 
high computational and memory consumption, which may not be applicable to environments with limited resources. 

GoogLeNet model architecture [21] contains multiple Inception modules, with a total of 22 layers. GoogLeNet uses the concept of 
Inception modules and overlays them with the maximum pooling layer and the average pooling layer to achieve high accuracy while 
reducing computational complexity. It can efficiently extract features at different scales. The main drawback of GoogLeNet is its 
complexity, making it difficult to understand and implement. 

The InceptionV3 model architecture [22] consists of approximately 48 layers, including convolutional layers, Inception modules, 
and fully connected layers. InceptionV3, like GoogLeNet, overlays multiple Inception modules with pooling and fully connected layers. 
InceptionV3 further introduces techniques such as decomposition and dimensionality reduction according to GoogLeNet. It performs 
well in various image classification tasks. Nonetheless, Inception V3 is a relatively complex architecture, and may require high 
computational resources for its training. 

The ResNet50v2, ResNet101, and ResNet152v2 models architecture [23] include 50 layers, 101 layers, and 152 layers, respec-
tively. These layers include convolutional layers, residual blocks, and fully connected layers. ResNet uses residual blocks, and the 
output of one block is added to the input of subsequent blocks. The ResNet model solves the vanishing gradient problem, making 
training easier and building a very deep network. The model could achieve state-of-the-art performance in image classification tasks. 
Compared to other architectures, the ResNet model is deeper, having more parameters, slower training speed, and requires more 
computing resources. 

The InceptionResNetv2 model architecture [24] consists of approximately 572 layers and the stacks Inception modules and uses 
residual connections within these modules. InceptionResNetV2 further improves on GoogLeNet and ResNet, while using residual 
connections and has excellent accuracy in various computer vision tasks. InceptionResNetV2 is a relatively complex architecture and 
requires high computational resource during the training process. 

The DenseNet201 model architecture [25] has a total of 201 layers, that includes convolutional layers, densely connected blocks, 
and fully connected layers. DesseNet201 emphasizes dense connections, and each layer is directly connected to all subsequent layers. 
The dense connection of DesseNet201 helps better reuse of features and reduction in the number of parameters. It performs well in 
tasks such as image classification, has higher computational complexity, and may require longer training time compared to other 
models. 

The MobileNet model architecture [26] convolutional neural network (CNN) is designed for mobile and embedded devices, with 
different variants and usually comprises dozens of layers. MobileNet uses deep separable convolutions to reduce computational 
complexity, simultaneously maintaining high accuracy. The model typically includes convolutional layers, deep separable convolu-
tional layers, and fully connected layers. The MobileNet architecture is efficient and suitable for limited computing resource envi-
ronments. It is widely used in mobile applications. Compared to other models, MobileNet may sacrifice some accuracy. For some 

Fig. 1. Ten pretrained models.  
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complex tasks, performance may not be as good as other deeper models. 
The NASNetMobile (Neural Architecture Search Network) model architecture [27] is a series of CNN designed using neural ar-

chitecture search. NASNetMobile is a variant optimized for mobile devices, and has dozens of layers. NASNetMobile uses Rein-
forcement learning and other technologies to automatically discover the network architecture, which comprises multiple modules and 
connection modes. The design of NASNetMobile has been optimized to achieve competitive performance on mobile devices. It achieves 
efficient network architecture through automatic search. Compared to traditional predefined architectures, the network search and 
training of NASNetMobile may require more computing resources and time. 

2.4. Statistical analysis 

2.4.1. Normalization 
The images do not usually have homogenous intensities and affect the performance of the automated methods. Several normali-

zation algorithms have been implemented by using different types of images for high performance [28,29]. However, they may lead to 
high computational costs. Therefore, in the proposed approach, an efficient algorithm has been provided for normalization. The 
normalization and standardization formulas are as follows: 

x′ =
x − min(x)

max(x) − min(x)
(1)  

x″ =
x′ − x−

σ (2)  

In formulas 1 and 2, where X, min(X), max(X), and X′, respectively, represent the characteristic value, the minimum value under the 
characteristic, the maximum value under the characteristic, and the normalized value [19]. They represent the mean value, the 
variance, and the standardized result under the feature. 

2.4.2. Accuracy 
Accuracy is one of the evaluation indicators for deep learning algorithm models. Accuracy is the degree to which the predicted 

value matches the true value under certain experimental conditions, and is expressed in error [30]. A confusion matrix, also known as 
an error matrix, is a standard format to evaluate the accuracy and is expressed as a matrix with N rows and N columns. Accuracy= (TP 
+ TN)/(TP + FN + FP + TN). 

2.4.3. Confusion matrix 
The Confusion matrix is a graphical way to intuitively display the quality of the deep learning classification model. A confusion 

matrix, also known as a possibility table or error matrix in artificial intelligence and machine learning [31]. The confusion matrix is 
used to visually present the results of algorithm performance, especially in supervised learning. In unsupervised learning, matching 
matrices are generally used. In a confusion matrix, the accuracy of classification results can be displayed as the differences between 
classification results and actual values. The confusion matrix is calculated by classification of each measured pixel and comparing the 
position with the corresponding status and classification in the classified image. 

2.4.4. Sensitivity specificity curve 
An AUC is a performance metric used to measure the quality of deep learning classification model. An area under the ROC curve 

(AUC) is a performance metric used to measure the quality of learners [32]. As ROC curves cannot clearly explain which classifier is 
better, AUC value is often used as the evaluation standard. The classifier with a larger AUC value is better. When AUC = 1, it represents 
a perfect classifier; when 0.5 < AUC <1, it is better than the random classifier; when 0 < AUC <0.5, it is worse than the random 
classifier. The abscissa of a ROC curve represents specificity (sensitivity = TP/(TP + FN)) and its ordinate represents sensitivity 
(specificity = TN/(TN + FP)). 

Among them, true negative (TN), known as true negative rate, indicates the number of negative samples. The false positive rate 
(FP), or false positive rate, is the number of negative samples that are expected to be positive. False negative (FN), also called the false 
negative rate, shows the number of positive samples that are predicted to be negative samples. True positive (TP), or true positive rate, 
measures the number of positive samples that are expected to be positive. 

2.4.5. Experimental environment 
Experiments were conducted using a supercomputer to build a deep learning network. The configurations of CPU, memory, gpu0, 

gpu1, and gpu2 of the first notebook computer were 2.90ghz, 160.0gb, 92.0gb, 92.0gb, and 92.0gb, respectively. Finally, the ten 
network models VGG-19, GoogLeNet, inception V3, ResNet50v2, ResNet101v2, ResNet152v2, inception ResNetv2, dessenet201, 
MobileNet, and NASNetMobile were trained on the supercomputer. The trained models were then tested on the test set. Lastly, the 
confusion matrix, AUC curve, and accuracy evaluation index were visualized. 
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3. Result 

3.1. The area under the ROC curve results 

AUC area and training set accuracy for 10 different pretrained models are shown in Table 2. After 50 iterations of VGG-19, 
GoogLeNet, inception V3, ResNet50v2, ResNet101v2, ResNet152v2, inception ResNetv2, dessenet201, MobileNet, and NASNetMo-
bile algorithms, the respective parameters obtained were 18333510, 5979702, 21815078, 23577094, 42638854, 58343942, 
54345958, 18333510, 3235014, and 4276058. The training time was 380, 162, 199, 188, 315, 511, 471, 697, 101, and 144 min, 
respectively and the respective accuracy rates of the training set were 85.94%, 99.72%, 99.61%, 99.52%, 99.52%, 98.84%, 99.61%, 
99.13%, 99.52%, and 99.61%. The accuracy rates of the test set data were 73.28%, 57.40%, 70.04%, 71.48%, 68.23%, 71.11%, 
71.84%, 73.28%, 70.39%, and 43.68%, respectively. The respective areas of AUC curves were 0.93, 0.86, 0.93, 0.91, 0.91, 0.92, 0.93, 
0.92, 0.93, and 0.82. The optimal convolution algorithm MobileNet was then analyzed in detail employing four indicators: the number 
of model parameters, training time, the accuracy of test set data, and the area of the AUC curve. 

As shown in Fig. 2(a–j), a comparison of the AUC curves of the above ten classifiers revealed that the MobileNet classifier was the 
best performer. According to Fig. 2 (i), the MobileNet algorithm model performed the best on CS, followed by NO, FC, NZ, and LS, and 
the worst on ML. Most classification algorithms have shown good classification results for CS skin pigmentation disease. Experimental 
results indicate better performance of the MobileNet classical CNN algorithm used in this paper than the InceptionV3 algorithm used in 
the study of the team in Stanford, published in Nature in 2017. In conclusion, we observed that the MobileNet classical CNN algorithm 
exhibited higher accuracy and more vital generalization ability in classifying objects in this study. 

3.2. The results of confusion matrices 

In Fig. 3(a–j) are the confusion matrices of 6 classification tasks of 10 classical CNN, respectively. The figure shows that the ele-
ments (i and j) of each confusion matrix represent the probability of predicting class j when it is actually class i. Where, 0,1,2,3,4 and 5 
represent CS, FC, LS, ML, NO, and NZ, respectively. The MobileNet algorithm for the recognition of pigmentary dermatosis was better 
selected only by the confusion matrix. VGG-19, GoogLeNet, InceptionV3, ResNet50V2, ResNet101V2, ResNet152V2, InceptionRes-
NetV2, DesseNet201, MobileNet, and NASNetMobi were also compared using AUC in this paper. Ten classical CNN were analyzed in 
six common pigmented skin diseases as follows. 

3.3. The classification system of hyperpigmented skin diseases 

A deep learning algorithm is used to classify skin and venereal diseases by analyzing images of common skin diseases, whose data 
are entered into the system. The input images are cropped into 224x224 images after data preprocessing, and then the by the 
MobileNet algorithm was used for comprehensive prediction. Model parameters were stored in the Model layer of the MobileNet 
algorithm. Fig. 4 shows the classification result of medical image data of the patient. After adding 2%, 5%, 10%, 20%, 30%, and 50% 
noise to the images of hyperpigmented skin diseases in the test set, their sensitivity, specificity, and accuracy slightly decreased, but the 
change was not significant (Supplementary Fig. 1). Low-definition photos have little impact on the model, and the MobileNet algo-
rithm is highly robust. 

Fig. 5 shows the auxiliary diagnosis system of hyperpigmented skin diseases. First, the medical image images of six pigmented skin 
diseases were classified and sorted. After comparing ten deep learning algorithms, a model trained by the optimal MobileNet algorithm 
was deployed to the server. The patient uploaded a picture of their skin lesions by the client application (a mobile app, or a browser, or 
a desktop computer application). The data was fed into an algorithm using the MobileNet network model to predict the pigmento-
dermatosis category of the patient. The results were reviewed by dermatologist, and then forwarded patients with the diagnosis to the 
client application, to realize a computer-aided diagnosis and pigment dermatologist, thus once again significantly improving the ef-
ficiency of diagnosis. 

Table 2 
The accuracy table of each convolution neural network.   

Train Accuracy(%) Test Accuracy(%) AUC Params Train Time(min) 

VGG19 85.94 73.28 0.93 18333510 380 
GoogleNet 99.72 57.40 0.86 5979702 162 
InceptionV3 99.61 70.04 0.93 21815078 199 
ResNet50V2 99.52 71.48 0.91 23577094 188 
ResNet101V2 99.52 68.23 0.91 42638854 315 
ResNet152V2 98.84 71.11 0.92 58343942 511 
InceptionResNetV2 99.61 71.84 0.93 54345958 471 
DenseNet201 99.13 73.28 0.92 18333510 697 
MobileNet 99.52 70.39 0.93 3235014 101 
NASNetMobile 99.61 43.68 0.82 4276058 144  
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4. Discussion 

In this study, multiple pretrained models were used to classify the images of the most common hyperpigmented skin diseases. The 
experimental results were visualized using sensitivity-specificity curves and confusion matrices. To evaluate the 10 algorithms, VGG- 
19, GoogLeNet, InceptionV3, ResNet50V2, ResNet101V2, ResNet152V2, InceptionResNetV2, DesseNet201, MobileNet, and NAS-
NetMobile, we used the model parameter, training time, test set accuracy, and AUC as evaluation indicators. According to the research 
findings, the classification effect of the MobileNet algorithm model was the best. Lastly, a system for online diagnosis of hyperpig-
mented skin diseases was developed. Doctors will now be able to improve their diagnosis efficiency and reduce their misdiagnosis rate 

Fig. 2. Area Under the ROC Curve for 10 common convolutional neural network (CNN) algorithms for skin disease classification. The AUC of VGG- 
19 (a), GoogLeNet (b), InceptionV3 (c), ResNet50V2 (d), ResNet101V2 (e), ResNet152V2 (f), InceptionResNetV2 (g), DesseNet201 (h), MobileNet 
(i), and NASNetMobil (j) for predicting skin diseases. 
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using the optimal MobileNet algorithm for comprehensive diagnosis. Furthermore, it can be used to solve problems such as cross- 
regional diagnosis of patients and on-time diagnosis. Further advancements in deep learning will lead to better CNN network 
models for diagnosing pigmented skin diseases in the future. Online clinical diagnosis can be improved by combining the results of 
dermoscopy, RCM, skin pathology, etc. More accurate diagnosis results can be obtained using the comprehensive multimodal data as 

Fig. 3. Confusion matrix of 10 convolutional neural network (CNN) algorithms for predicting skin diseases, The confusion matrix of VGG-19 (a), 
GoogLeNet (b), InceptionV3 (c), ResNet50V2 (d), ResNet101V2 (e), ResNet152V2 (f), InceptionResNetV2 (g), DesseNet201 (h), MobileNet (i), and 
NASNetMobil (j) for predicting skin diseases, respectively. 
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input to the deep learning algorithm. 
The limitation of this study is that we only worked on 10 deep learning algorithm models. In the following research work, more 

algorithm models can be attempted for comparison. Second, according to the basic theory of deep learning, the more data trained, the 
more accurate is the resulting model. Therefore, the next step can be to consider using more image data of pigmented skin diseases for 
training. 

Noise is another important factor affecting image processing and there are different kinds of noise. Different denoising techniques 
have been compared and evaluated recently to assess their performances in the classification of skin lesions [33]. In the proposed 
approach, we did not use any denoising technique. As an extension of this work, a denoising method in a pre-processing stage can be 
used to evaluate the performance of the proposed approach. 

In the future, the performance of the proposed approach can be compared with that of a capsule network because capsule networks 
can preserve spatial relationships of learned features and have been used recently for image classification [34–36]. 

Deep network architectures are data-hungry; several augmentation methods in the literature have been applied to increase the 
reliability and robustness of the automated lesion classifications from skin images [37–40]. Therefore, an appropriate data 
augmentation can be employed and the performance of the proposed approach can be evaluated after training with expanded image 

Fig. 4. The classification system of hyperpigmented skin diseases based on MobileNet.  

Fig. 5. The auxiliary diagnosis system of hyperpigmented skin diseases.  
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datasets as an extension of this study. 

5. Conclusion 

MobileNet provides a good prospect of clinical application in the auxiliary diagnosis of hyperpigmented skin, with high accuracy 
and vital generalization ability. 
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