
Research Article
Adaptive Resource Utilization Prediction System for
Infrastructure as a Service Cloud

Qazi Zia Ullah,1,2 Shahzad Hassan,1 and Gul Muhammad Khan3

1Computer Engineering Department, Bahria University, Islamabad, Pakistan
2Department of Electrical Engineering, COMSATS Institute of Information Technology Attock, Attock, Pakistan
3Department of Electrical Engineering, University of Engineering and Technology, Peshawar, Peshawar, Pakistan

Correspondence should be addressed to Qazi Zia Ullah; zia comsian@yahoo.com

Received 31 December 2016; Revised 19 March 2017; Accepted 16 April 2017; Published 25 July 2017

Academic Editor: Silvia Conforto

Copyright © 2017 Qazi Zia Ullah et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Infrastructure as a Service (IaaS) cloud provides resources as a service from a pool of compute, network, and storage resources.
Cloud providers can manage their resource usage by knowing future usage demand from the current and past usage patterns of
resources. Resource usage prediction is of great importance for dynamic scaling of cloud resources to achieve efficiency in terms
of cost and energy consumption while keeping quality of service. The purpose of this paper is to present a real-time resource usage
prediction system. The system takes real-time utilization of resources and feeds utilization values into several buffers based on
the type of resources and time span size. Buffers are read by R language based statistical system. These buffers’ data are checked
to determine whether their data follows Gaussian distribution or not. In case of following Gaussian distribution, Autoregressive
IntegratedMovingAverage (ARIMA) is applied; otherwise AutoregressiveNeural Network (AR-NN) is applied. InARIMAprocess,
a model is selected based on minimum Akaike Information Criterion (AIC) values. Similarly, in AR-NN process, a network with
the lowest Network Information Criterion (NIC) value is selected.We have evaluated our systemwith real traces of CPU utilization
of an IaaS cloud of one hundred and twenty servers.

1. Introduction

The demand for high performance computing has trans-
formed the shape of today’s computer industry. The com-
puting is no more limited to personal computers and work
stations. It has now become a public grid, where users (per-
sonal computers, cell phones, work stations, and servers) can
have access to the storage and computing resources through
internet. The environment where users can have access to a
distant infrastructure, platform, or software over the internet
is termed as cloud computing [1]. Cloud computing requires
high performance and efficient underlying microarchitec-
tures so as millions of customers (users) simultaneously can
access the available resources (storage, computing, etc.) on
the cloud. To gain high computing performance and through-
put,multicore andmultinode architectures have been devised
[2, 3].

Cloud computing can be defined as a model to enable
ubiquitous, convenient, and on-demand network access to

a shared pool of configurable computing resources (e.g.,
networks, servers, storage, applications, and services), where
these computing resources can be rapidly released with min-
imal management effort and less service provider interaction
[4].

According to a survey released by North Bridge Venture
Partners, in conjunction with Gigaom Research and a record
72 collaborating organizations on 19th June, 2014, 56% of
businesses are using IaaS technologies to harness elastic
computing resources. It is also reported that over eleven
thousand cloud services and APIs (Application Program
Interfaces) are currently in use by the cloud customers and
the tendency is towards every-thing-as-a-service in the future
(http://www.northbridge.com/cloud-computing). Similarly,
according to Bezos’s law, it is observed that, over the history of
cloud, one unit of computing power price is reduced by 50%
approximately every three years (https://gigaom.com/2014/
04/19/moores-law-gives-way-to-bezoss-law). As the cloud
computing price reduces, most of the enterprises will dump

Hindawi
Computational Intelligence and Neuroscience
Volume 2017, Article ID 4873459, 12 pages
https://doi.org/10.1155/2017/4873459

http://www.northbridge.com/cloud-computing
https://gigaom.com/2014/04/19/moores-law-gives-way-to-bezoss-law
https://gigaom.com/2014/04/19/moores-law-gives-way-to-bezoss-law
https://doi.org/10.1155/2017/4873459

2 Computational Intelligence and Neuroscience

Cloud
manager

Cluster
manager 2

Cluster
manager 1

CM2CM1 CM! CM1 CM2

Hypervisor
VM1 VM2

Q
ue

rie
s,

co
m

m
an

ds

Queries,

commands

Re
po

rt
s

Q
ue

rie
s,

co
m

m
an

ds

Re
po

rt
s

Queries,
commands

Reports
Reports

Network

Users

CM:
WAN
LAN

Logical IaaS cloud architecture

...

· · ·

· · ·

· · ·

· · ·

· · ·· · ·

Cluster

Computer manager

CMNCMNCMN

VMN

Computer manager j

manager N

Figure 1: A generic IaaS cloud architecture. There may be different architectures with some more details and different positioning of logical
structures. We present this simple architecture to highlight the cloud cluster and the resources it provides to customers [4, 5].

their data centers and move to the public cloud, thus saving
money. As there will be more data traffic on public cloud
clusters in the future, there is need to understand the nature,
size, and type of workload in advance to efficiently manage
resources for minimizing energy consumption, maintaining
quality of service, and reducing cost.

IaaS cloud resources can be efficiently managed and
utilized by predicting either the future workload or the future
resource utilization pattern.The nature and type of workload
at a public cloud are not deterministic, so some cognitive
techniques are required to predict the type and nature of
workload along with size and rate. Also the workload does
not provide realistic information about requiredmemory and
CPU before subjecting to physical machine (host).Therefore,
a better way for efficient resource management is to predict
the resource utilization of all physical machines within the
cloud and then allocate resources that fulfill the required
predictedmemory, CPU, and storage.This approachhasmore
realistic information about physical machines than the work-
load prediction. In this approach, we predict the memory
and CPU utilization of each physical machine. The predicted
utilization of all physical machines within the cloud is accu-
mulated at cloud manager level. Then, based on accumulated
predicted utilization, the resources are allocated by the cloud
manager. The predicted resources utilization tells that the
future workload will require memory and CPU as predicted.

In this paper, we apply an adaptive system for resource
utilization prediction of IaaS cloud. The system has two

approaches for prediction; when utilization pattern is suitable
for Autoregressive Integrated Moving Average (ARIMA),
then this approach is applied; otherwise AR-NN is applied.
The remainder of the paper consists of contemporary work,
system and application models, experimental setup, perfor-
mance evaluation and results, and conclusion and future
recommendations.

2. Contemporary Work

Fundamentally, each cloud computing system has the same
purpose: to provide access to large pool of resources and data
over internet [5]. Nurmi et al. in [5] presented an open source
software framework for cloud computing: Eucalyptus. A
logical architecture of Eucalyptus IaaS cloud has been shown
in Figure 1. This model shows an abstract-level presentation
of cloud architecture [4]. Other architectures of cloud may
add some more details (components) or parallelize/split
some components for performance reasons in the indicated
model. IaaS cloud receives subscriber’s queries/commands
through cloud manager, forwarded to cluster manager and
entertained through computer manager (by hypervisor and
virtualmachines) [5].Theoperation of cloudmanager, cluster
managers, and computer managers has been summarized as
follows:

(1) Cloud manager: subscribers sign up for accounts,
manage their rented resources, and access their

Computational Intelligence and Neuroscience 3

stored data in the cloud through cloud manager. The
cloud manager has mechanisms for authentication
and validation of subscribers and performs top-level
resource allocation. The cloud manager also enforces
any cloud-global policies governing resource requests
[4]

(2) Cluster manager: the cluster manager manages a col-
lection of computers connected via high-speed local
area networks (e.g., 10 GB Ethernet). A cluster man-
ager receives commands (computational tasks) and
queries from the cloud manager. It checks whether
part or all of a command (computational task) can
be entertained by the resources of the computers in
the cluster. It asks the computer manager (running on
each computer in the cluster) about the availability of
resources and sends back response to the cloud man-
ager.The clustermanager then instructs the computer
manager to allocate resources and reconfigures the
virtual network infrastructure as per directions of the
cloud manager [4]

(3) Computer manager: the computer manager commu-
nicates and coordinates with the hypervisor (running
on each computer in the cluster). Hypervisor receives
commands from computer manager to start, stop,
suspend, and reconfigure virtual machines and also
to set the local virtual network configuration [4, 5]

Researchers have extensively studied resource management
in cloud computing environment. We will discuss here the
most relevant work to our research, due to space limitation.
Silva et al. in [6] used heuristic based approach to assign
resources to tasks in utility computing environment. Their
studymade a compromise between speedup of task execution
and utilization budget of virtualized resources. Lim et al. in
[7] used proportional thresholding policy for stable feedback
control offered by virtual compute cloud services. However,
their approach is not proactive and hence performance may
degrade due to virtual machine instance creation, allocation,
and initialization (booting) delay in the cloud. Thus, to
overcome such performance degradation problems caused by
dynamic scaling of resource, Caron et al. in [8] used past
resource usage map for workload prediction. As the dynamic
scaling of resources adds some overhead in case of virtual
machine creation, allocation, and release, performance can
be achieved if there is some prediction and then scaling
mechanism in the system in response to changes in workload.
In their work, they identified similar trend in past resource
usage and weighted interpolation to get most similar pattern
for predicting resource utilization. The predicted utilization
is used as basis for making dynamic scaling decisions in real
time.

Some researchers studied workload modeling and pre-
diction techniques for capacity management and virtual
machine placement in cloud environment [9–15]. Govindan
et al. in [9] used statistical profiling of resources for predict-
ing resource usage by workloads, thus minimizing energy
consumption of large data centers. The prediction in these
approaches is based on the statistics of workload time series
[16]. Khan et al. in [17] introduced a coclustering algorithm

to identify VM groups and the time periods in which certain
workload patterns appear in a group [18]. They applied a
multiple time series approach for workload analysis at group
level rather than at individual VM level.

Some researchers have used offline or online profil-
ing to determine application resource requirements using
benchmark or real applicationworkloads [9, 19–22].Deriving
resource requirements usually takes long time and also
requires extra machine.

Recently, model-driven resource management has got
enough attention from researchers. Those approaches are
based on queueing theory [23] or statistical learningmethods
[24–27] for predicting future resource demand. In model-
driven prediction, detailed prior knowledge about the prob-
lem/scenario is needed; otherwise suitable prediction results
cannot be achieved. In contrast, our approach uses validity
tests for selecting optimal model, so it has more diversity and
acts as application- and platform-independent.

For adaptive resource allocation, some researchers used
reinforcement learning [28] and control theory [29–31]. The
main limitation of those methods is to specify or tune the
parameters offline and add time overhead in finding the
optimal solution. Rolia et al. perform dynamic resource
allocation using an estimated burst factor times the most
recent resource demand [32]. Gmach et al. in [33] used
Fourier transform to extract long-term repeated patterns of
workload. Sparse periodic autoregression for load prediction
was used by Chen et al. in [34]. The problems in their
approach are long prediction intervals and requirement of
prior knowledge about the repetition period. Autoregression
and histogram based workload prediction algorithms have
been proposed in [35]. An integrated workload placement
technique (i.e., demand based workload assignment along
with feedback control guided workload migration) has been
studied in [36]. The authors in [37] used autocorrelations
to extract repeating patterns for identifying performance
abnormalities. A gossip protocol for solving the load bal-
ancing problem in cloud systems has been proposed in [38].
PRESS in [39] predicts workloads by using pattern matching
and state-driven approaches. Repeating patterns (signatures)
are first identified by signal processing techniques. If no
repeating patterns are found, then a statistical state-driven
approach is applied, which uses a discrete timeMarkov chain
for predicting future workload.

In comparison, our approach uses a combination of
ARIMA and AR-NN. ARIMA model has the ability to
represent different types of time series in a flexible way.
Also, when used in combination with Box-Jenkins process,
it can choose an optimal model for the targeted time series
[40]. Due to its simplicity in terms of computation time,
it can provide fast predictions in comparison to Artificial
Neural Network (ANN), Markov chain, and Support Vector
Machine (SVM) based approaches [41]. So it will add less
prediction overhead, as required by real-time autoscaling
of cloud resources. Calheiros et al. in [42] used ARIMA
model in combinationwithBox-Jenkins process forworkload
prediction of Software as a Service (SaaS) cloud platform
[43]. Their approach uses workload arrival rate as input to
their adaptive cloud provisioning model, but we use physical

4 Computational Intelligence and Neuroscience

Resource monitor

Preprocessing unit

Resource utilization predictor

Physical layer

B30ＧB10ＧB1ＧB1 Ｍ

B30ＧB10ＧB1ＧB1 Ｍ

B30ＧB10ＧB1ＧB1 Ｍ

ce monitor

cessing unit

ce utilization predictor

l layer

B30ＧB10ＧB1ＧB1 Ｍ

B30ＧB10ＧB1ＧB1 Ｍ

B30ＧB10ＧB1ＧB1 Ｍ

Figure 2: Architecture for adaptive resource utilization prediction
system.

resources utilization as input to our model. Tran et al. in
[44] used ARIMA model for server workload prediction
that targets long-time prediction, that is, up to 168 hours.
Our system has the flavors of both ARIMA and AR-NN for
prediction.

Workload prediction for adaptive provisioning of resour-
ces does not provide better resultswhen compared to adaptive
provisioning based on resource utilization. Workload does
not provide its memory and CPU utilization; it only gives
information about its data rate. By data rate one can deduce
that system will receive this amount of data, but it does not
provide information about how much CPU and memory
it will use. Our approach explicitly predicts utilization of
resources and then adaptively scales the resources that are
suitable for autoscaling of IaaS cloud cluster resources.

3. System and Application Models

The proposed system model of architecture in this paper
is a public cloud provider that provides resources as a
service to its users (Figure 2). The system receives resource
utilization (memory and CPU) history from physical layer
and accumulates all physical machines’ historic utilization
at virtualization (IaaS) layer. The main components of our
system are (1) resource monitor, (2) preprocessing unit, (3)
ARIMA based resource utilization predictor, and (4) AR-NN
based resource utilization predictor. The resource monitor
collects utilization data of resources; the collected data is
fed to preprocessing unit for checking normality. If the
data set passes normality test, ARIMA is applied; otherwise
AR-NN is applied. The detailed description of architecture
resource monitor is shown in Figure 3. Detailed architectures
of overall system, resource monitor, preprocessing unit, and

Sigar API

Physical layer

B30ＧB10ＧB1ＧB1 Ｍ

Sigar API

al layer

B30ＧB10ＧB1ＧB1 Ｍ

Figure 3: Resource monitor.

resources utilization predictors are presented in Figures 2–6,
respectively.

3.1. Resource Monitor. Our resource monitor consists of
Sigar API (https://github.com/hyperic/sigar) that collects
utilization of resources on different time spans. We collect
utilization on each second, one minute, ten minutes, and
thirty minutes of a resource.The utilization collected on each
second is stored in a buffer B1 s, one-minute-based utilization
is stored in B1m, ten-minutes-based utilization is stored in
B10m, and half-hourly utilization is stored in B30m. Data in
B1 s is stored for one hour, which becomes three thousand and
six hundred data samples. From this we predict utilization
for next one minute (i.e., 60 samples). The buffer B1m stores
data for one day (i.e., 1440 samples) which is used to predict
next ten minutes’ utilization (i.e., 10 samples). The buffer
B10m stores data for one week (i.e., 1008 samples) and is
used to predict next hour utilization pattern (i.e., 6 samples).
Similarly, the buffer having half-hourly collected data stores
data for one month (i.e., 1440 samples) and is used to predict
next day utilization (i.e., 48 samples). Thus, to predict next
minute utilization, buffer B1 s is used, for next ten minutes’
predictions, B1m is used, for next hour, B10m is used, and
for next day, B30m is used. The selected buffer is read by
preprocessing unit for testing normality and transformation
purposes.

3.2. Preprocessing Unit. Physical machines usage time series
are smoothed by some filtering techniques. We use simple
moving average (SMA) filter for smoothing machines usage
time series which is given as follows:

𝑦 (𝑖) = 1𝑀
𝑀−1∑
𝑗=0

𝑥 (𝑖 + 𝑗) , (1)

where 𝑥() is input series, 𝑦() is output series, and 𝑀 is the
number of points in the average. As ARIMA is applicable

https://github.com/hyperic/sigar

Computational Intelligence and Neuroscience 5

Resource monitor
buffer

Normality
test

If

Pass

Fail

Feed resource monitor’s
buffered data to ARIMA
based resources utilization
predictor unit

Feed resource monitor’s
buffered data to AR-NN based
resources utilization predictor
unit

Smoothing/
denoising
trace data

Figure 4: Preprocessing unit.

(1) Resource monitor
buffer (if data follow
Gaussian distribution)

Stationarity
testing
(KPSS)

Fitting model
on time series
data (3) Model

AIC values
(2) Stationary
time series
data

Comparison
of AIC values
and selection
of model with
lowest AIC
value

(4) Selected
model

Predictions based on
fitted time series

(5) Fitted
time series

(6) Prediction
results storage in
buffer

Resource monitor
ffeffff r (if data foff llow
ussian distribution)

Stationarity
testing
(KPSS)

Fitting model
on time series
data (3) Model

AIC values
(2) Stationary
time series
data

Comparison
of AIC values
and selection
of model with
lowest AIC
value

(4) Selected
model

Predictions based on
fitted time series

(5) Fitted
time series

(6) Prediction

Figure 5: ARIMA based resources utilization predictor unit.

to data sets that follow Gaussian distribution, we check
normality of the data set by using Jarque-Bera test with
significance level of 5% [45]. If the data set fails, the normality
test and neural network based prediction is performed on the
data set; otherwise ARIMA based prediction is performed as
shown in Figure 4. Furtherwe explain our resource utilization
predictors.

3.3. ARIMA Based Resources Utilization Predictor. We inter-
face the R statistical language with Java through rJava
(http://www.rforge.net/rJava) package for real-time predic-
tion of resources. The resources utilization predictor uses the
auto.arima() function in forecast package of R statistical lan-
guage. The auto.arima() function selects the best fit ARIMA
prediction model based on lowest Akaike Information Crite-
rion (AIC) and Bayesian Information Criterion (BIC) values.
The selected model first fits the data and then predicts the
next CPU and memory utilization values. In our approach,
the resource utilization is predicted for the next time interval
so as to scale resources accordingly. In this paper, we use an
Autoregressive Integrated Moving Average (ARIMA) model
to solve the resource utilization prediction problem as shown
in Figure 5.

The Autoregressive Integrated Moving Average model is
one of the econometric models widely used for time series
analysis [42]. It is used to remove nonstationarity in the
time series data by differencing method. It then applies

Autoregression (AR) and Moving Average (MA) techniques
collectively to the time series. Generic form of Autoregressive
Integrated Moving Average (ARIMA) model is given as
follows [46, 47]:

𝑦𝑡 = 𝜇 + 𝜙1𝑦𝑡−1 + ⋅ ⋅ ⋅ + 𝜙𝑝𝑦𝑡−𝑝 − 𝜃1𝑒𝑡−1 − ⋅ ⋅ ⋅ − 𝜃𝑞𝑒𝑡−𝑞, (2)

where 𝜇 is the constant (intercept), 𝜙𝑝 is the Autoregression
(AR) coefficient at lag 𝑝, 𝜃𝑞 is the Moving Average (MA)
coefficient at lag 𝑞, and 𝑒𝑡−𝑞 = 𝑦𝑡−𝑞 − 𝑦𝑡−𝑞 is the forecast error
observed at period 𝑡 − 𝑞. In our scenario, 𝑦𝑡 is the predicted
resource utilization at time 𝑡 and 𝑦𝑡−𝑞 is resource utilization
of past 𝑝 samples.

It is necessary for a time series to be transformed into a
stationary time series. Let𝑦𝑡 represent the data sample at time𝑡 and then after a time interval 𝜏 let the next data sample
be 𝑦𝑡+𝜏. Thus the mean and variance of 𝑦𝑡 and 𝑦𝑡+𝜏 must
be constant and independent of 𝑡 and the autocovariance
between 𝑦𝑡 and 𝑦𝑡+𝜏 should only be influenced by 𝜏 for the
series to be stationary. For this purpose, ARIMA differen-
tiates the original series until the stationary time series is
achieved and constitutes 𝑑 parameter of ARIMA(𝑝, 𝑑, 𝑞).The𝑝 and 𝑞 values of ARIMA(𝑝, 𝑑, 𝑞) can be determined by
analyzing partial autocorrelation and autocorrelation plots
of the time series data, respectively. During model fitting
process, selecting high order of 𝑝 and 𝑞 will result in very
small amount of white noise variance. The prediction errors
of such model will be large due to overfitting.The parameters

http://www.rforge.net/rJava

6 Computational Intelligence and Neuroscience

(1) Preprocessing unit buffer
(if resource monitor’s buffer
data does not pass normality
test)

Fitting AR-NN
network on
time series
data (2) AR-NN

NIC values

Comparison
of NIC values
and selection
of network
with lowest
NIC value

(3) Selected
AR-NN
network

Predictions based on
fitted time series

(4) Fitted
time series

(5) Prediction results
storage in buffer

Figure 6: AR-NN based resources utilization predictor unit.

estimation errors will be large for high-order model, so it is
necessary to introduce some penalty factor to avoid fitting
sample data to high-order models. Based on penalty factor,
many criteria have been proposed in literature; widely used
criteria are combination of AIC and BIC [48]. The AIC
statistic is defined as

AIC (𝛽) = −2 ln 𝐿𝑋 (𝛽, 𝜎̂2) + 2 (𝑝 + 𝑞 + 1) , (3)

where 𝛽 is the coefficient vector and 𝜎2 is the white noise
variance; those values of 𝑝 and 𝑞 for the fitted model are
selected, which minimize AIC(𝛽). Also 𝐿𝑋(𝛽, 𝜎̂2) is the
maximum likelihood function, where 𝜎̂ and 𝛽 are likelihood
estimators of parameters 𝛽 and 𝜎whichmaximize 𝐿 for given
data set𝑋.

The AIC statistic has tendency towards overfitting the
model order, which can be corrected by using the BIC statistic
[48]. BIC statistic is defined as

BIC = (𝑛 − 𝑝 − 𝑞) ln(𝑛󵱰𝜎2𝑛 − 𝑝 − 𝑞) + 𝑛 (1 + ln√2𝜋)

+ (𝑝 + 𝑞) ln((∑𝑛𝑡=1𝑋2𝑡 − 𝑛󵱰𝜎2)(𝑝 + 𝑞)) ,
(4)

where 𝑛 represents the number of data samples,𝑋 is the data
set, and 󵱰𝜎2 is the maximum likelihood estimate of the white
noise variance.

The time series is first converted into stationary time
series by differentiation, which constitutes parameter 𝑑 of
ARIMA process. Then, from (3) and (4), those values of 𝑝
and 𝑞 are selected, which minimize AIC and BIC statistics.
Thus the fitted model is used for predicting future utilization
values of memory and CPU as given in (2).

3.4. AR-NN Based Resources Utilization Predictor. As dis-
cussed in previous section, the R statistical language is
linked with Java through rJava (http://www.rforge.net/rJava)
package for real-time prediction of resources. Here we use
an Autoregressive Neural Network that uses lagged values
of time series as input, as shown in Figure 6. Our AR-NN

(Autoregressive Neural Network) has three layers, that is,
an input layer, one hidden layer, and an output layer. We
use Network Information Criterion (NIC) for selecting the
optimal network model for the given training data set [49].

3.4.1. Autoregressive Neural Network (AR-NN). Autoregres-
sive Neural Network (AR-NN) is a suitable candidate for
nonlinear time series forecasting. In comparison with strong
forecasting models like ARIMA, the AR-NN models have
shown better performance [50]. A generic 𝑛-lagged AR-NN
model havingℎhiddenneurons can be represented as follows:

𝑦𝑡 = 𝑎0 + 𝑛∑
𝑖=1

𝑎𝑖𝑦𝑡−𝑖 + ℎ∑
𝑗=1

𝑔(𝜔0𝑗 + 𝑛∑
𝑖=1

𝜔𝑖𝑗𝑦𝑡−𝑖)𝛽𝑗 + 𝜀𝑡, (5)

where 𝑎0 is the intercept, 𝑎𝑖 is vector of autoregressive
coefficients, and 𝛽 is weights vector of nonlinear part of
AR-NN. The function 𝑔() is activation function and 𝜀𝑡 is
stochastic error of the model.

Let 𝑦𝑡 be the output at time 𝑡; then the estimated output󵱰𝑦𝑡 is 󵱰𝑦𝑡 = 𝑦𝑡 − 𝜀𝑡.
Thus

󵱰𝑦𝑡 = 𝑎0 + 𝑛∑
𝑖=1

𝑎𝑖𝑦𝑡−𝑖 + ℎ∑
𝑗=1

𝑔(𝜔0𝑗 + 𝑛∑
𝑖=1

𝜔𝑖𝑗𝑦𝑡−𝑖)𝛽𝑗. (6)

The performance of the model can be improved by gradually
minimizing the squared error:

𝜀𝑡2 = 󵄩󵄩󵄩󵄩𝑦𝑡 − 󵱰𝑦𝑡󵄩󵄩󵄩󵄩2 . (7)

During training session of AR-NN, all the weights and
coefficients are initialized randomly, and the squared error is
computed and checked to determine whether it approaches
zero or not. The weights are determined by partial differ-
entiation of (7) with respective weight. Another important
consideration is the number of nonlinear units that cannot be
determined by the standard error metrics like RMSE, MSE,
and so forth. Extra nonlinear units add computational and
space complexity to the model, so there should be a limited
number of nonlinear units. As mentioned above, a better
criterion is NIC, which limits the number of nonlinear units.

http://www.rforge.net/rJava

Computational Intelligence and Neuroscience 7

Cloud node layer

Cluster nodes
layer

Computer
nodes
layer

CN1 CN1 CN2 CN1 CN2CN2

CLN1 CLN2 · · ·

· · ·· · ·· · ·

CLNn

CNn CNnCNn

Figure 7: Experimental setup.

IaaS cloud CPU usage time series

1000 2000 3000 4000 5000 6000 70000
Time (minutes)

0e + 00

1e + 05

2e + 05

3e + 05

4e + 05

5e + 05

CP
U

 u
sa

ge
 (M

H
z)

Figure 8: CPU usage time series of fastStorage trace.

4. Experimental Setup

Our experimental setup consists of three layers, computer
nodes layer, cluster nodes layer, and cloud node layer, as
shown in Figure 7. Computer nodes represent IaaS servers
that execute cloud users’ virtual machines (VMs). Hundreds
to thousands of computer nodes are connected to a cluster
node through high-speed local area network (LAN). Each
computer node reports its usage to respective cluster node.
Similarly, each cluster node is connected to cloud node
through wide area network (WAN). Cluster node accumu-
lates usage of its connected computer nodes and reports
to cloud node. Cloud node accumulates usages received
from cluster nodes. At cloud node, periodic usage time
series is subjected to preprocessing unit and then forwarded
to resource utilization predictor for predicting future uti-
lization of the cloud as explained in Section 3. We have

evaluated our system with a real trace named as fastStorage
(http://gwa.ewi.tudelft.nl/datasets/gwa-t-12-bitbrains) which
has 1250VMs, memory of 17729 Gigabytes, and 4057 CPU
cores.

5. Performance Evaluation and Results

We have evaluated our system with real trace, fastStorage,
recorded for 7000 minutes. The cloud has 1250VMs that are
connected to fast Storage Area Network (SAN) devices. The
trace includes a random selection of VMs fromBitbrains data
center. CPU usage time series of the trace has been shown in
Figure 8. The trace time series has higher frequencies; so to
remove these noisy higher frequencies, we apply SMA filter.
Figure 9 shows the noisy time series along with smoothed
time series. The filtering result has been shown in Figure 10.
We apply 50-point SMA filter, which filters out the higher

http://gwa.ewi.tudelft.nl/datasets/gwa-t-12-bitbrains

8 Computational Intelligence and Neuroscience

IaaS cloud CPU usage time series

0e + 00

1e + 05

2e + 05

3e + 05

4e + 05

5e + 05

CP
U

 u
sa

ge
 (M

H
z)

1000 2000 3000 4000 5000 6000 70000
Time (minutes)

Figure 9: Original time series and simple moving average filtering.

IaaS cloud CPU usage time series

0e + 00

1e + 05

2e + 05

3e + 05

4e + 05

CP
U

 u
sa

ge
 (M

H
z)

1000 2000 3000 4000 5000 6000 70000
Time (minutes)

Figure 10: SMA filtered series with𝑀 = 50.

noise frequencies. We then apply Jarque-Bera test to check
whether the smoothed time series follows normal distribu-
tion or not. If the time series follows normal distribution, we
apply ARIMA process; otherwise AR-NN is applied.

5.1. ARIMA Based Prediction Performance and Results. The
data set is tested by Jarque-Bera test with significance level
of 5% for normality. Test results show that the data set
does not follow normal distribution. Test results have been
shown in Table 1. The test result of data set shows that
computed 𝑝 value is less than alpha (i.e., 0.02); thus null
hypothesis can be rejected and alternate hypothesis becomes
true. Our system will select AR-NN for prediction purpose.
For testing purpose, we have applied ARIMA model to the
data set that generates results shown in Figure 11. Predicted
results have been tested on various accuracy metrics, that is,

Mean Error (ME), Root Mean Squared Error (RMSE), Mean
Absolute Error (MAE), Mean Percentage Error (MPE), and
Mean Absolute Percentage Error (MAPE). The fitted model’s
prediction errors tested on various accuracymetrics are given
in Table 2. All accuracymetrics’ tests show that ARIMAbased
prediction is not suitable for the given data set.

5.2. AR-NN Based Prediction Performance and Results. As
stated earlier, the data set fails normality test at 5% signif-
icant level. Thus our system applies AR-NN to the data set
for predicting future workload. The AR-NN applies twenty
models one by one to the data set and selects the one that
has the lowest NIC value. The selected AR-NN model has
three layers, that is, input layer, hidden layer, and output layer.
Input layer has 18 neurons, which simply take eighteen-lagged
inputs, and forwards them to hidden layer. Hidden layer has

Computational Intelligence and Neuroscience 9

ARIMA based prediction

0e + 00

1e + 05

2e + 05

3e + 05

4e + 05

CP
U

 u
sa

ge
 (M

H
z)

1000 2000 3000 4000 5000 6000 70000
Time (minutes)

Figure 11: ARIMA based model fitting to IaaS cloud CPU usage time series and future usage prediction.

Table 1: Jarque-Bera test results of IaaS cloud CPU usage data set.

Jarque-Bera test results
Test metric Value
JB (observed value) 7.967
JB (critical value) 5.991𝑝 value 0.00000000000000022204
Alpha 0.02

Table 2: ARIMA based prediction accuracy by various metrics.

Accuracy metric AR-NN prediction ARIMA prediction
ME 6969.056306 −222841.1743
RMSE 61449.22523 270979.9746
MAE 51220.64295 222841.1743
MPE −31.4578077 −6784.02403
MAPE 19.08957285 6784.02403

10 neurons, which perform actual processing, and forwards
processed data to output neuron (i.e., output layer has single
neuron).

5.2.1. Training of AR-NN Model. First eighteen samples of
data set are used for training the AR-NNmodel. The selected
model has a total of two hundred and one weights; out of
those, one hundred and eighty are lagged input weights that
lead to hidden layer, ten are coefficient weights (i.e., one for
each hidden neuron), ten are hidden layer output weights that
lead to output layer, and there is one weight of output unit. All
these weights are trained for training data.

5.2.2. Validation Results of AR-NNModel. TheAR-NNmodel
is validated by six thousand eight hundred and eighty-three
samples of data set. The validation results are shown in
Figure 12, where red line shows validated/fitted results and

black line in the start shows training data. As red (fitted) and
black (actual) lines overlap, the model best fits the validation
data.

5.2.3. Prediction Results and Performance of AR-NN Model.
The model is used to predict future four hundred minutes’
usage that is shown with blue line in Figure 12. We evaluate
performance of the model based on predicted results; for that
we compare 400minutes’ actual data set values and predicted
results based on several performance metrics tabulated in
Table 2.TheMAPEof predicted result is 19.08957285%,which
is a better result when compared with ARIMA’s prediction
MAPE, that is, 6784.02403%.Actual and predicted time series
have been shown in Figure 13. Our results show that, for the
given data set, AR-NN performs better than ARIMA.

6. Conclusion and Future Recommendations

In this paper, we presented an adaptive resource utilization
prediction system for IaaS cloud.The system extracts physical
resources utilization, stores the utilization patterns, and
checks normality; if utilization pattern passes normality test,
it applies ARIMA models based on AIC values; otherwise
AR-NN algorithm is applied, which selects AR-NN model
based on NIC values. The model with lowest AIC or NIC
value is selected for fitting the training data, which then
predicts future utilization demand.We used real trace, that is,
fastStorage of Bitbrains data center, for evaluating our system.
The system predicts four hundred future data samples, that
is, workload demand for 400 minutes. The results show that
AR-NN has better results than ARIMA for a data set that
fails normality test with confidence level of 5%. Also the
system can use low prediction confidence limits for energy
efficiency and economy of scale but high confidence limits for
better quality of service to its customers. Furthermore, other
prediction techniques like deep learning based networks
can be used, while noticing both the temporal and spatial

10 Computational Intelligence and Neuroscience

AR-NN based prediction

0e + 00

1e + 05

2e + 05

3e + 05

4e + 05

CP
U

 u
sa

ge
 (M

H
z)

1000 2000 3000 4000 5000 6000 70000
Time (minutes)

Figure 12: AR-NN based model fitting to IaaS cloud CPU usage time series and future usage prediction.

Original CPU usage
AR-NN predicted
ARIMA predicted

0

100000

200000

300000

400000

CP
U

 u
sa

ge
 (M

H
z)

100 200 300 4000
Time (minutes)

Figure 13: Comparison of predicted results.

complexities of the method in comparison with ARIMA and
AR-NN. Also hybrid techniques can be used depending on
the size of training data, duration for prediction, and type
of prediction patterns (i.e., a minute utilization, ten minutes’
utilization, hourly pattern, daily pattern, network usage, etc.).

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] M. A. Vouk, “Cloud computing—issues, research and imple-
mentations,” Journal of Computing and Information Technology,
vol. 16, no. 4, pp. 235–246, 2008.

[2] M. Khare and A. Kumar, “Method and apparatus for prevent-
ing starvation in a multi-node architecture,” U.S. Patent No.
6,487,643, 2002.

[3] W. Vanderbauwhede, “The Gannet service-based SoC: a
service-level reconfigurable architecture,” in Proceedings of the
1st NASA/ESA Conference on Adaptive Hardware and Systems,
AHS ’06, pp. 255–261, June 2006.

[4] M. L. Badger, T. Grance, R. Patt-Corner, and J. Voas, “Cloud
computing synopsis and recommendations,” in NIST Special
Publication, vol. 800, p. 146, NIST special publication, 2011.

[5] D. Nurmi, R. Wolski, C. Grzegorczyk et al., “The eucalyptus
open-source cloud-computing system,” in Proceedings of the 9th
IEEE/ACM International Symposium on Cluster Computing and
theGrid (CCGRID ’09), pp. 124–131, Shanghai, China,May 2009.

[6] J. N. Silva, L. Veiga, and P. Ferreira, “Heuristic for resources
allocation on utility computing infrastructures,” in Proceedings
of the 6th International Workshop on Middleware for Grid Com-
puting (MGC ’08), pp. 1–6, ACM, Leuven, Belgium, December
2008.

[7] H. C. Lim, S. Babu, J. S. Chase, and S. S. Parekh, “Automated
control in cloud computing: challenges and opportunities,”
in Proceedings of the 1st Workshop on Automated Control for
Datacenters and Clouds ACDC ’09, pp. 13–18, ACM, New York,
NY, USA, 2009.

[8] E. Caron, F. Desprez, and A. Muresan, “Forecasting for grid
and cloud computing on-demand resources based on pattern
matching,” in Proceedings of the 2nd IEEE International Confer-
ence on Cloud Computing Technology and Science, CloudCom
’10, pp. 456–463, IEEE, Indianapolis, Indiana, USA, November
2010.

[9] S. Govindan, J. Choi, B. Urgaonkar, A. Sivasubramaniam, and
A. Baldini, “Statistical profiling-based techniques for effective
power provisioning in data centers,” in Proceedings of the 4th
ACM European Conference on Computer Systems, EuroSys’09,
pp. 317–330, April 2009.

[10] N. Bobroff, A. Kochut, and K. Beaty, “Dynamic placement of
virtual machines for managing SLA violations,” in Proceedings
of the 10th IFIP/IEEE International Symposium on Integrated
Network Management, pp. 119–128, May 2007.

[11] A. Verma, G. Dasgupta, T. K. Nayak, P. De, and R. Kothari,
“Server workload analysis for power minimization using con-
solidation,” in USENIX ATC, 2009.

[12] J. Rolia, L. Cherkasova, M. Arlitt, and A. Andrzejak, “A capacity
management service for resource pools,” in Proceedings of
the 5th International Workshop on Software and Performance,
WOSP’05, pp. 229–237, July 2005.

Computational Intelligence and Neuroscience 11

[13] G. Chen, W. He, J. Liu et al., “Energy aware server provi-
sioning and load dispatching for connection-intensive internet
services,” in NSDI, pp. 337–350, 2008.

[14] N. R. Herbst, N. Huber, S. Kounev, and E. Amrehn, “Self-
adaptive workload classification and forecasting for proactive
resource provisioning,” Concurrency Computation Practice and
Experience, vol. 26, no. 12, pp. 2053–2078, 2014.

[15] N. Kim, J. Cho, and E. Seo, “Energy-credit scheduler: An
energy-aware virtual machine scheduler for cloud systems,”
Future Generation Computer Systems, vol. 32, no. 1, pp. 128–137,
2014.

[16] H. Nguyen et al., “Agile: elastic distributed resource scaling for
infrastructure-as-a-service,” in Proceedings of the of the 10th
International Conference on Autonomic Computing ICAC ’13,
2013.

[17] A. Khan, X. Yan, S. Tao, and N. Anerousis, “Workload charac-
terization and prediction in the cloud: a multiple time series
approach,” in Proceedings of the IEEE Network Operations and
Management Symposium (NOMS ’12), pp. 1287–1294, Maui,
Hawaii, USA, April 2012.

[18] D. Choi and P. J. Wolfe, “Co-clustering separately exchangeable
network data,”The Annals of Statistics, vol. 42, no. 1, pp. 29–63,
2014.

[19] B. Urgaonkar, P. Shenoy, and T. Roscoe, “Resource overbooking
and application profiling in shared hosting platforms,” in Pro-
ceedings of the the 5th symposium, p. 239, Boston,Massachusetts,
December 2002.

[20] T.Wood, L. Cherkasova et al., “Profiling andmodeling resource
usage of virtualized applications,” in Proceedings of the Middle-
ware Conference—Proceedings, 2008.

[21] W. Zheng et al., “JustRunIt: experiment-based management of
virtualized data centers,” in Proceedings of the USENIX Annual
Technical Conference, 2009.

[22] A. Beloglazov and R. Buyya, “Optimal online deterministic
algorithms and adaptive heuristics for energy and performance
efficient dynamic consolidation of virtual machines in Cloud
data centers,” Concurrency Computation Practice and Experi-
ence, vol. 24, no. 13, pp. 1397–1420, 2012.

[23] R.Doyle, J. Chase,O.Asad,W. Jin, andA.Vahdat, “Model-based
resource provisioning in a web service utility,” USITS, 2003.

[24] P. Shivam, S. Babu, and J. Chase, “Learning application models
for utility resource planning,” in Proceedings of the USITS, 2003.

[25] C. Stewart, T. Kelly, A. Zhang, and K. Shen, “A dollar from
15 cents: cross-platform management for internet services,” in
Proceedings of the USENIX Annual Technical Conference, 2008.

[26] A. Ganapathi, H. Kuno, U. Dayal et al., “Predicting multiple
metrics for queries: Better decisions enabled by machine learn-
ing,” in Proceedings of the 25th IEEE International Conference on
Data Engineering, ICDE ’09, pp. 592–603, April 2009.

[27] P. Shivam, S. Babu, and J. Chase, “Active and accelerated
learning of cost models for optimizing scientific applications,”
in Proceedings of the 32nd International Conference on Very
Large Data Bases, VLDB ’06, September 2006.

[28] J. Rao, X. Bu, C.-Z. Xu, L. Wang, and G. Yin, “VCONF: a
reinforcement learning approach to virtual machines auto-
configuration,” in Proceedings of the 6th International Confer-
ence on Autonomic Computing, ICAC ’09, pp. 137–146, June
2009.

[29] X. Zhu, D. Young, B. J. Watson et al., “1000 Islands: integrated
capacity and workload management for the next generation
data center,” in Proceedings of the 5th International Conference
on Autonomic Computing, ICAC ’08, pp. 172–181, June 2008.

[30] E. Kalyvianaki, T. Charalambous, and S. Hand, “Self-adaptive
and self-configured CPU resource provisioning for virtualized
servers using Kalman filters,” in Proceedings of the 6th Interna-
tional Conference on Autonomic Computing, ICAC ’09, pp. 117–
126, June 2009.

[31] P. Padala, K. G. Shin, X. Zhu et al., “Adaptive control of
virtualized resources in utility computing environments,” in
Proceedings of the 2007 Eurosys Conference, pp. 289–302, March
2007.

[32] J. Rolia, L. Cherkasova,M.Arlitt, andV.Machiraju, “Supporting
application quality of service in shared resource pools,”Commu-
nications of the ACM, vol. 49, no. 3, pp. 55–60, 2006.

[33] D. Gmach, J. Rolia, L. Cherkasova, and A. Kemper, “Capacity
management and demand prediction for next generation data
centers,” in Proceedings of the 2007 IEEE International Confer-
ence on Web Services, ICWS ’07, pp. 43–50, July 2007.

[34] G. Chen, W. He, J. Liu et al., “Energy-aware server provisioning
and load dispatching for connection-intensive internet ser-
vices,” in Proceedings of the National Spatial Data Infrastructure
(NSDI), 2008.

[35] A. Chandra,W. Gong, and P. Shenoy, “Dynamic Resource Allo-
cation for Shared Data Centers Using Online Measurements,”
in Quality of Service ? IWQoS 2003, vol. 2707 of Lecture Notes
in Computer Science, pp. 381–398, Springer Berlin Heidelberg,
Berlin, Heidelberg, 2003.

[36] E. S. Buneci and D. A. Reed, “Analysis of application heartbeats:
learning structural and temporal features in time series data for
identification of performance problems,” in Proceedings of the
Supercomputing, 2008.

[37] D. Gmach, J. Rolia, and L. Cherkasova, “Satisfying service level
objectives in a self-managing resource pool,” in Proceedings
of the SASO 2009—3rd IEEE International Conference on Self-
Adaptive and Self-Organizing Systems, pp. 243–253, September
2009.

[38] F. Wuhib, R. Stadler, and M. Spreitzer, “Gossip-based resource
management for cloud environments,” in Proceedings of the 2010
International Conference on Network and Service Management,
CNSM ’10, pp. 1–8, October 2010.

[39] Z. Gong, X. Gu, and J.Wilkes, “Press: predictive elastic resource
scaling for cloud systems,” in Proceedings of the International
Conference on Network and Service Management (CNSM ’10),
pp. 9–16, IEEE, Ontario, Canada, October 2010.

[40] G. P. Zhang, “Time series forecasting using a hybrid ARIMA
and neural network model,” Neurocomputing, vol. 50, pp. 159–
175, 2003.

[41] M. Valipour, M. E. Banihabib, and S. M. R. Behbahani, “Com-
parison of the ARMA, ARIMA, and the autoregressive artificial
neural networkmodels in forecasting themonthly inflowofDez
dam reservoir,” Journal of Hydrology, vol. 476, pp. 433–441, 2013.

[42] R. N. Calheiros, E. Masoumi, R. Ranjan, and R. Buyya, “Work-
load prediction using ARIMA model and its impact on cloud
applications’ QoS,” IEEE Transactions on Cloud Computing, vol.
3, no. 4, pp. 449–458, 2015.

[43] F. Ding and H. Duan, “Two-stage parameter estimation algo-
rithms for Box-Jenkins systems,” IET Signal Processing, vol. 7,
no. 8, pp. 646–654, 2013.

[44] V. G. Tran, V. Debusschere, and S. Bacha, “Hourly server
workload forecasting up to 168 hours ahead using Seasonal
ARIMA model,” in Proceedings of the 2012 IEEE International
Conference on Industrial Technology, ICIT ’12, pp. 1127–1131,
March 2012.

12 Computational Intelligence and Neuroscience

[45] T. Thadewald and H. Büning, “Jarque-Bera test and its com-
petitors for testing normality—a power comparison,” Journal of
Applied Statistics, vol. 34, no. 1-2, pp. 87–105, 2007.

[46] K. W. Hipel and A. I. McLeod, Time Series Modelling of Water
Resources and Environmental Systems, Elsevier, Amsterdam,
Holland, 1994.

[47] J. J. Ruiz-Aguilar, I. J. Turias, and M. J. Jiménez-Come, “A
novel three-step procedure to forecast the inspection volume,”
Transportation Research Part C: Emerging Technologies, vol. 56,
pp. 393–414, 2015.

[48] P. J. Brockwell and R. A. Davis, Introduction to Time Series and
Forecasting, Springer Science and Business Media, Gewerbe-
strasse, Switzerland, 2006.

[49] N. Murata, S. Yoshizawa, and S.-I. Amari, “Network informa-
tion criterion-determining the number of hidden units for an
artificial neural network model,” IEEE Transactions on Neural
Networks, vol. 5, no. 6, pp. 865–872, 1994.

[50] S. F. Crone, K. Nikolopoulos, and M. Hibon, “Automatic mod-
elling and forecasting with artificial neural networks–A fore-
casting competition evaluation,” Final report for the IIF/SAS
Grant, vol. 6, 2005.

