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Different types of dynamics and plasticity principles found through natural neural

networks have been well-applied on Spiking neural networks (SNNs) because of their

biologically-plausible efficient and robust computations compared to their counterpart

deep neural networks (DNNs). Here, we further propose a special Neuronal-plasticity

and Reward-propagation improved Recurrent SNN (NRR-SNN). The historically-related

adaptive threshold with two channels is highlighted as important neuronal plasticity for

increasing the neuronal dynamics, and then global labels instead of errors are used

as a reward for the paralleling gradient propagation. Besides, a recurrent loop with

proper sparseness is designed for robust computation. Higher accuracy and stronger

robust computation are achieved on two sequential datasets (i.e., TIDigits and TIMIT

datasets), which to some extent, shows the power of the proposed NRR-SNN with

biologically-plausible improvements.

Keywords: spiking neural network, neuronal plasticity, synaptic plasticity, reward propagation, sparse connections

1. INTRODUCTION

Many different types of deep neural networks (DNNs) have been proposed for efficient machine
learning on image classification (Ciregan et al., 2012), recognition (Nguyen et al., 2015), memory
association (He et al., 2017), and prediction (Kim et al., 2017). However, with the rapid development
of DNNs, there are some shortcomings hindering their advance.

• The first problem is the increasing number of synaptic parameters. Different types of structures
instead of neurons play important roles in different functions of DNNs, where nearly all artificial
neurons use a Sigmoid-like activation function for simple non-linear input-outputmapping. The
unbalanced complexity between artificial neurons and networks allows DNNs to contain a large
number of network parameters that can be tuned.

• The second problem is the slow backpropagation (BP) with a high computational cost, which is
also considered to be not biologically-plausible. In DNNs, the BP interleaves with feedforward
propagation sequentially, and the error signals have to be backpropagated from the output
neurons to hidden neurons layer-by-layer, with a risk of gradient disappearance or gradient
explosion, especially for extremely-deep networks. The nature of supervised and synchronous
computation of DNNs also makes them difficult to accelerate with parallel computation.
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• The third problem is that all of the artificial neurons in DNNs
during the BP procedure have to satisfy the limitation of
mathematical differentiability, which obviously lacks support
from biological verification, where the non-differential spike-
type signals are everywhere, caused by the time slot of
membrane potential at firing threshold, the probabilistic firing
of a specific spike, or the hard refractory time for stop firing.

• The fourth problem is the separation of spatial and
temporal information with different network architectures.
For example, the convolutional kernels are carefully designed
for efficient spatial information integration, and the recurrent
loops (sparse or dense types) are successfully introduced
for effective sequential information prediction, instead of
simultaneous spatially-temporal information processing in
biological networks.

Unlike DNNs, some other networks are designed to contain
both biologically-realistic network structures and biologically-
plausible tuning methods. A spiking neural network (SNN) is
one of them, which contains spiking neurons with dynamic
membrane potential and also dynamic synapses for spatially-
temporal information processing. There are many advantages
of SNNs compared to their counterpart DNNs. For example,
the two-bit efficient encoding of information at the neuronal
scale; the balanced complexity between the neuronal and network
scales, i.e., with proper-sparseness connections (neurons only
connect in a certain area) and far-more complex neurons
(neurons with dynamic somas and dendrites).

Furthermore, SNNs prefer using the biologically-plausible
tuning methods, such as spike-timing-dependent plasticity
(STDP) (Dan and Poo, 2004), short-term plasticity (STP)
(Zucker, 1989), pre-post membrane balanced plasticity (Zhang
et al., 2018a,b), and excitatory-inhibitory balanced plasticity
(Zeng et al., 2017). The long-term depression (LTD) (Ito,
1989) shows that the repeated low-frequency activation into
postsynaptic neurons will reduce the transmission efficiency of
synapses, while those with repeated high-frequency [long-term
potentiation, LTP (Teyler and DiScenna, 1987)] will lead to
synaptic enhancement. STDP (Bengio et al., 2017) shows that
presynaptic and postsynaptic activations of different neurons in
chronological order would result in different (with an increment
or decrement) synaptic changes, i.e., if the postsynaptic neuron
fired within 20 ms after the activation of the presynaptic neuron,
it would cause LTP, or LTD. Additionally, more effective plasticity
propagation rules have been elucidated and are well-applied in
the training of SNNs. The reward propagation (Zhang et al.,
2020b) describes an efficient label-based, instead of error-based,
gradient propagation. Synaptic plasticity propagation describes
LTP/LTD propagation in neighborhood synapses (Bi and Poo,
2001). Most of these plasticity propagation rules are biologically-
plausible for the efficient learning of SNNs.

There are also some shortcomings of SNNs. First, due to
the non-differential character of biological neurons in SNNs,
the gradient backpropagation that is powered by tuning DNNs
is not directly applicable on the training of SNNs; Second,
ordinary SNNs have limited neuronal dynamics, omitting
dynamic thresholds and other related features of biological

networks. These phenomena make the current SNNs more
closed to DNNs with an unbalanced complexity between local
neurons and global networks, instead of a balanced complexity
in biological networks.

This paper focuses more on the research on neuronal
dynamics, learning plasticity, and sparseness architectures of
SNNs, looking toward a more efficient biologically-plausible
computation. Hence, under these considerations, the Neuronal-
plasticity and Reward-propagation improved Recurrent SNN
(NRR-SNN) is proposed for efficient and robust computations.
The contribution of this paper can be concluded as follows:

• First, the historically-related two-channel adaptive threshold is
highlighted as an important neuronal plasticity for increasing
neuronal dynamics. This additional neuronal dynamic will
integrate well with other dynamic membrane potentials (e.g.,
the leaky integrated-and-fire, LIF) for a stronger temporal
information computation.

• Second, the global labels, instead of errors, are used as a reward
for the gradient propagation. This new learning method can
also be parallelly computed to save on computational costs.

• Third, dynamic neurons are then connected in a recurrent
loop with defined sparseness for the robust computation.
Moreover, an additional parameter is set to represent the
degree of sparseness to analyze the proposed algorithm’s anti-
noise performance.

The paper is organized as follows: The section 2 provides a
brief introduction of related works. In section 3, some basic
background knowledge about dynamic neurons, the procedure of
feedforward propagation, and plasticity propagation in standard
SNNs is provided. A detailed description of the proposed NRR-
SNN is given in section 4, including the dynamic nodes with
neuronal plasticity, the architecture with different sparseness, and
the tuning method reward propagation. Section 5 details the
proposed algorithm’s performance on two standard sequential
datasets (i.e., TIDigits and TIMIT) on their efficient and robust
computations. Further discussions and conclusions will be
provided in the section 6.

2. RELATED WORKS

The multi-scale plasticity in SNN covers the neuronal plasticity,
synaptic plasticity, and plasticity propagations. Neuronal
plasticity plays a critical role in the dynamic information
processing of the biological neural network (Hassabis et al., 2017;
Zhang et al., 2020a). The standard neurons in SNNs include the
H-H model (Hodgkin and Huxley, 1939, 1945; Noble, 1962),
LIF model (Gerstner et al., 2014), SRM model (Gerstner et al.,
1993; Gerstner, 2008), and Izhikevich model (Izhikevich, 2003).
The VPSNN (short for voltage-dependent and plasticity-centric
SNN) has been proposed, which contains the neuronal plasticity
and focuses more on membrane potential dynamics with a static
firing threshold (Zhang et al., 2018a). Yu et al. (2018) have also
proposed several plasticity algorithms to deal with spike coding’s
neuronal plasticity during training.
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Synaptic plasticity refers to the dynamic changes of synapses
according to different tasks. Zenke et al. (Zenke and Ganguli,
2018) have proposed the SuperSpike, where a non-linear voltage-
based three-factor learning rule was used to dynamically update
neuronal plasticity at the synapse scale. Kheradpisheh et al.
(2018) have proved that the STDP plasticity was simpler and
superior to other unsupervised learning rules in the same
network architectures.

The propagation of synaptic plasticity is closely related to the
credit assignment of error signals in SNNs. Zhang et al. have
given an overview introduction of several target propagation
methods, such as error propagation, symbol propagation, and
label propagation (Frenkel et al., 2019), where the reward
propagation can propagate the reward (instead of the traditional
error signals) directly to all hidden layers (instead of the
traditional layer-to-layer backpropagation). This plasticity is
biologically-plausible and will also be used as the main credit
assignment of SNNs in our NRR-SNN algorithm. Zhao et al.
(2020) have proposed a similar method, where global random
feedback alignment is combined with STDP for efficient
credit assignment.

Besides the plasticity, network structures have played
important roles in network learning. Currently, the network
structures in SNNs are similar to their counterpart DNNs (Lee
et al., 2016; Wu et al., 2020a), depending on the requirement
of different spatial or temporal tasks. For example, feedforward-
type architectures are usually used during the spatial information
processing (e.g., the image classification on the MNIST dataset)
(Diehl and Cook, 2015; Zhang et al., 2020a), and recurrent-type
architectures are constructed more for sequential information
processing (e.g., the auditory sequence recognition on the
TIDigits dataset) (Dong et al., 2018; Pan et al., 2019).

3. BACKGROUND

3.1. Dynamic Spiking Neurons
The dynamic spiking neurons in SNNs are not continuous
in the real number field, which is different from the artificial

neurons such as the Sigmoid activation function, Tanh activation
function, and Rectified linear unit (ReLU). The standard LIF
neuron is shown as follows:

{

C dVi(t)
dt

=g(Vi(t)− Vrest)+
∑N

j=1Wi,jXj(t)

Vi(t)=Vreset if (Vi(t)=Vth, t − tspike > τref )
, (1)

where Vi(t) is membrane potential, Vth is firing threshold, Vreset

is reset membrane potential (also generating a spike at the same
time), and Vrest is the resting potential. τref is the refractory time
period, where the Vi(t) will not increase toward the Vth at time
t only if it is still during the period of τref . Xj(t) is the receiving
LIF neuron input from the presynaptic neuron j. One schematic
diagram of dynamic LIF neuron is shown in Figure 1B.

3.2. Feedforward Propagation in SNN
Figure 1A shows the sequential spike trains in the feedforward
propagation (labeled as period Tff ) of SNNs for each epoch. For
example, as a speech, it is spitted as N frames, and each frame is
encoded as a normally-distributed spike train. Then these spike
trains are sequentially inputted into the feedforward procedure of
SNN. The information encoding in each LIF neuron with spikes
is shown as follows:



















C
dV

f
i (t)

dt
=g(Vi(t)− Vrest)(1− Sf )+

∑N
j=1W

f
i,jXj(t)

V
f
i (t)=Vreset , S

f=1 if
(

V
f
i (t)=Vth

)

Sf=1 if
(

t − tspikef < τref , t ∈ (1,T1)

)

, (2)

where V
f
i (t) is the feedforward membrane potential with

historically integrated states, S is a spike flag for the neuron,

which indicates the number of spikes when theVi(t) (whereV
f
i (t)

is part of Vi(t)) reaches Vth. The S also controls the refractory
time period τref by resetting the historical membrane potential

g(Vi(t)− Vrest) instead of blocking the V
f
i (t) directly.

3.3. Standard Target Propagation
The standard backpropagation (BP) (Rumelhart et al., 1986) uses
the gradient descent algorithm to modify the synaptic weights

FIGURE 1 | A schematic diagram depicting the SNN with dynamic neurons, feedforward spike propagation, and feedback error propagation. (A) The feedforward

propagation and error target propagation in the standard SNN, containing dynamic neurons at spiking or resting states. (B) The dynamic LIF neuron with spikes and

subthreshold membrane potential.
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layer-by-layer with the differential chain rule. However, the
derivative of activation functions is usually less than 1, causing
the backpropagated gradient to vanish in some deeper layers.

This study aims modify all synaptic weights parallelly without
worrying about the gradient vanishing problem, especially for
dynamic LIF neurons. Hence, we will pay more attention to
the target propagation (Frenkel et al., 2019), as shown in
Figure 1A, where the error or other reward-like signals are
directly propagated from the output layer to all hidden layers
parallelly without losing accuracy.

4. METHOD

Here, we will provide a detailed introduction about NRR-SNN,
including three main parts: the neuronal plasticity with a 2-
channel dynamic firing threshold; the recurrent connections with
different proportions of sparseness; the reward propagation with
the direct tuning of synaptic weights with loaded labels, as shown
in Figure 2.

4.1. Neuronal Plasticity
The neuronal plasticity is different from traditional synaptic
plasticity, where more dynamic characteristics within neurons

are discussed for better spatially-temporal information
processing. Here, we set an adaptive threshold with an ordinary
differential equation (ODE). This is an ingenious effort to obtain
a dynamic firing threshold with an attractor in ODE, instead of
directly setting that as a predefined static value, as shown in the
following equation:

dai(t)

dt
=(α − 1)ai(t)+ β(Sf + Sr), (3)

where ai(t) is a dynamic threshold with an equilibrium point
of 0 without input spikes, or with another equilibrium point of
−

β
α−1 given input spikes Sf + Sr from feedforward and recurrent

channels. Hence, the ODE of membrane potential for LIF neuron
is updated as follows:

C
dVi(t)

dt
=g

(

Vi(t)− Vrest

)

(

1− Sf − Sr
)

+

N
∑

j=1

Wi,jXj(t)−γ ai(t),

(4)
where during the period from the resetting to the firing of
membrane potential, the dynamic threshold parameter ai(t) is
accumulated gradually and eventually reached a relatively stable
value. Because of the −γ ai(t), the firing threshold is increased

FIGURE 2 | The architecture, two phases of information propagations, and multi-scale dynamics in NRR-SNN. (A) The SNN architecture with the feedforward period

Tff , the recurrent period Trec, and the reward propagation with labels. (B) The feedforward information propagation from input neurons Vi,t to network output yj,t. (C,E)

The two-channel neuronal plasticity related to spike trains. (D) The feedback information propagation from label RPt to hidden neurons Vi,t, Vi,t−k where k ∈ T. (F,G)

The vector field examples of dynamic membrane potentials. (H) A diagram depicting the reward propagation with teaching signals of repeated labels.
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into Vth + γ ai(t). For the ai(t), we can solve the stable value
a∗i =

β
1−α

(Sf + Sr).
In this paper, we provide α=0.9, β=0.1, and γ=1, therefore

the stable a∗=0 for no spikes, a∗=1 for one spike, and a∗=2
for spikes from two channels (i.e., the feedforward and recurrent
channels). When ai(t) < (Sf + Sr), ai(t) will increase and the
threshold will increase, otherwise, they will both decrease. It can
be considered that the threshold will be changed dynamically
with neurons’ discharge. The adaptive threshold will also be
increased or decreased when the firing frequency is higher
or lower. Here, we use it as the main controlling part of
neuronal plasticity.

4.2. Architecture With Sparse Loops
Recurrent connections show the dynamics at the network scale,
as shown in Figure 2A, where neurons are connected within the
inner hidden layers with defined or learnable connections. Hence,
two types of membrane potentials are combined in the dynamic
neurons. One is the recurrent membrane potential Vr

i (t), and

the other is the feedforward membrane potential V
f
i (t). The

definitions of these two types of membrane potential can be
considered as two channels with the following equations:















V
f
i (t)=Vreset , S

f=1 if (V
f
i (t)=Vth)

Vr
i (t)=Vreset , S

r=1 if (Vr
i (t)=Vth)

Sf=1 if (t − tsf < τref , t ∈ (1,T1))

Sr=1 if (t − tsr < τref , t ∈ (1,T2))

, (5)

where two spike flags (Sf and Sr) are defined separately. The

dynamic membrane potential of Vr
i (t) and V

f
i (t) are then

integrated together, and defined as follows:























C
dV

f
i (t)

dt
=g(Vi(t)− Vrest)(1− S)+

∑N
j=1W

f
i,jXj(t)

C
dVr

i (t)

dt
=

∑N
j=1W

r
i,jS

Vi(t)=V
f
i (t)+ Vr

i (t)

S=Sf + Sr

, (6)

where feedforward Tff and recurrent period Trec are integrated

together at membrane potential Vi(t)=V
f
i (t) + Vr

i (t) and firing

flag S=Sf+Sr . TheVr
i (t) saves the historical membrane potentials

of the adjacent neurons. Furthermore, the recurrent SNN is
designed with network dynamics from different scales, as shown
in Figure 2A, where sparse or dense connections are given to the
neurons in the same hidden layer.

4.3. Global Reward Propagation
Different from standard target propagations (a detailed
description is shown in section 3.3), the reward propagation uses
labels instead of errors as the teaching signals for the tuning of
synaptic weights in the hidden layers, as shown in Figures 2A,H.

The reward propagation has been reported in our previous
work, where only feedforward connections are introduced
(Zhang et al., 2020b). Here, we update it to satisfy the criteria
of both feedforward and recurrent propagations in the NRR-
SNN architecture. The main idea is also trying to obtain the state

differences from the propagated target gradient, which is defined
as follows:











GradRP=B
f ,l

rand
∗ RPt − hf ,l

1W
f ,l
t =− ηf (GradRP)

1Wr,l
t =− ηr

(

Gradt+1 + GradRP
)

, (7)

where GradRP is the gradient of reward propagation, B
f ,l

rand
is a

predefined random matrix for the dimension conversion from
the output layer to the hidden layer l, hf ,l is the current layer state,
RPt is the spike train repeated with one-hot labels, Wf ,l is the

synaptic weight at the feedforward procedure of the layer l, Wr,l
t

is the recurrent synaptic weight at layer l, Gradt+1 is the gradient
calculated from the time t + 1.

4.4. Local Gradient Propagation With
Pseudo-BP
Here, we use pseudo-BP to make the membrane potential
differentiable, especially for those at the firing time. During
the process of the torch.autograd in toolbox PyTorch, we set a
“functional hook,” to store the spike signals and synaptic weight
values generated from the feedforward procedure. This hook will
then be automatically triggered as a backpropagate function for
the pseudo-BP approximation in the feedback procedure.

The Gradlocal is used to represent the local gradient from
hidden membrane potentials to synaptic weights. In this
procedure, the non-differential part is only the period of Vi(t)
at Vi(t)=Vth. Hence, the Gradlocal of the neuron i is revised as
follows:

Gradlocal=
∂Si(t)

∂Vi(t)
=

{

1 if
(∣

∣Vi(t)− Vth

∣

∣ < Vwindow

)

0 else
, (8)

where only the differential parts are calculated or are otherwise
omitted. The weight gradient of the full connection and loop
connection will then be calculated by the automatic derivation
mechanism of PyTorch.

4.5. The Learning Procedure of NRR-SNN
After integrating these three main parts, i.e., the neuronal
plasticity, recurrent architecture, and reward propagation, we will
get the integrated NRR-SNN.

The feedforward and feed-back propagations are shown in
Figures 2B,D, where the Si,t and Sj,t are the neuron-firing states,
Vi,t and Vj,t are the membrane potentials, and a is the neuronal
plasticity with adaptive threshold. Thismodel has two time scales,
containing Tff for the feedforward propagation and Trec for the
recurrent propagation. The feedforward propagation connects a
neuron’s state at spatial scales, while the recurrent propagation
links them at temporal scales. The neuronal plasticity has played
important roles on the dynamic information propagation from
the previous spike Si,t−1 to the next-step membrane potential Vi,t

in the feedforward procedure in Figure 2B, and also the gradient
propagation from Vi,t back to Si,t−1 in the feedback procedure in
Figure 2D.

The vector field of the simplified dynamic LIF neuron is
shown in Figures 2F,G, where Figure 2F shows an attractor at
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(1, 0), which means membrane potentials would move toward
this stable point no matter where the initial point was, Figure 2G
shows a saddle point at (−1, 0), whichmeans that the point on the
plane would move toward this point on one direction, but keep
away from this point on another direction. The trend of these two
directions would influence the other points on the plain.

An example of the relationship between neuronal plasticity
with dynamic thresholds and spike trains is shown in
Figures 2C,E, including the neuronal dynamics during learning
the TIDigits dataset. The blue bar represents the sum of the Sf

and Sr . The Sf means the neuron firing state on the feedforward
propagation and the Sr means the neuron firing state on the
recurrent propagation. Therefore, the (S=Sf + Sr) ∈ {0, 1, 2}.
When the dynamic adaptive threshold a(t) < Spike, it would
likely increase. When a(t) > S, it would have a negative attractor
that could cause a decrease of a(t). The dynamic adaptive
thresholds of different neurons would contribute to the feature
learning during training, which would be further introduced in
the following experiments.

The encoding of the NRR-SNN contains two parts: the
network-input part and the inner-network part. For the first part,
to retain the original data information as much as possible, we
only resize the spectrum data by a scalar variable and then feed
it directly into the network. For the second part, we encode
information as the spike by comparing the signal to a threshold
Vth, where the signal above the threshold is set as 1, or else 0.

5. EXPERIMENTS

5.1. Dataset Introduction
The TIDigits (Leonard and Doddington, 1993) and TIMIT
(Garofolo, 1993) were selected as the two benchmark datasets
for their sequential characteristics. The TIDigits dataset contains

4,144 spoken digits from zero to nine. Each sample in it was

sampled as 20K Hz during 1 s and processed after fast Fourier
transform (FFT) with 39 frames and 39 bands. TIMIT contains

630 American speakers, with 10 sentences for each person. Each
sample was sampled as 16K Hz and processed after MFCC (short

forMel frequency cepstrum coefficient) with different frames and
39 bands. The frames were changed according to voice length,
and the maximum was 780 frames.

For an easier description of the two benchmark datasets,
Figure 3 shows the speech waveform of some selected samples,
including the spoken word waves from the TIMIT dataset in
Figures 3A1,B1 and the spoken numbers from the TIDigits
dataset in Figures 3C1,D1. The waveforms of speeches were
in line with our intuition, where the amplitude of the voice
waveform would increase for voice signals. However, it was not
easy to extract all of the high-dimensional information from the
original waves directly.

In the time domain, the speech waves were converted into
the frequency domain, called the speech frequency spectrum, to
obtain more valuable speech information at high dimensions.

FIGURE 3 | Speech waveforms and spectrograms of some samples, e.g., the temporal and spatial representations of spoken numbers, for example, “Or borrow

some money from someone and go home by bus?” (A1,A2), “Critical equipment needs proper maintenance.” (B1,B2), “Two” (C1,C2) and “Zero” (D1,D2).
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Figures 3A2–D2 show four spectrograms of the same examples
from the original waves in Figures 3A1–D1, respectively.

These two types of datasets covered most of the commonly
used spoken words and numbers. From the temporal waves, we
could find out that the spoken speeches in Figures 3A1,B1 were
more complicated than spoken numbers in Figures 3C1,D1.
Similar conclusions could also be found out from the spatial
spectrograms, where more dynamics occurred in different voice
bands of spoken speeches (with sentences) than spoken numbers
(with simple words or numbers), with the MFCC parameters
(Maesa et al., 2012).

In our experiments, the accuracy of TIDigits is defined as the
number of correct identifying samples divided by the number of
all samples. In contrast, the accuracy of TIMIT is defined as the
number of correct identifying phonemes divided by the number
of all phonemes, for the consideration of the multiphonemes in
the same sample.

5.2. Parameters of the NRR-SNN
The key parameters of NRR-SNN for different tasks are shown
in Table 1 from the scale of dynamic neurons to networks.
In the table, g is conductance, Vth is the firing threshold
of neurons, τref is the refractory period, and T is the time
window for the simulation of dynamic neurons. Furthermore, the
capacitance of membrane potential was C=1µF/cm2, the reset
value of membrane potential was Vreset=0mV . For the reward

propagation network, the loss function was selected as the mean
square error (MSE), the optimizer was Adam, and the batch size
was set as 50.

5.3. Neuronal Plasticity With Adaptive
Threshold
We tested the NRR-SNN and DNN together, with or without
neuronal plasticity (and 50% uniformly-distributed random
connections), to better analyze the contribution of neural
plasticity to the network learning. The results are shown in
Figure 4, where the neuronal plasticity has played a more
important role in improving test performance than that in BP
based recurrent SNN (BP-RSNN).

The network of NRR-SNN with 50% sparseness connections
had similar performance compared with that with 100%
connections in Figure 4A. In other words, the sparse connections
of neurons reduced power consumption without compromising
performance. Figure 4B shows that the sparse connections
could largely reduce the accuracy of speech recognition of
the DNNs. Furthermore, Figure 4C shows that networks using
neuronal plasticity could largely increase the test’s accuracy.
Considering that it took energy to pass information between
neurons, the network’s full connection would consume more
computational resources during training. Therefore, the sparse
connections of neurons would result in less consumption of
computational cost.

TABLE 1 | NRR-SNN parameters for the two benchmark temporal tasks, where “RFC” is short for recurrent feedforward connection, and “FC” is short for feedforward

connection.

Tasks Topology Learning rate g Vth τref T Vwindow

TIMIT RFC500-FC10 Step wise from 1e-3
0.2 nS 0.5 mV 1 ms 10–100 ms 0.5 mV

TIDigits RFC500-FC39 1e-4

FIGURE 4 | The neuronal plasticity and sparse connection for improving network learning. (A) The test accuracy of NRR-SNN with or without neural plasticity. (B) The

performances of DNNs. (C) The performance comparisons of NRR-SNN and DNN, containing 100% connections and 50% sparse connections, with or without

neural plasticity. (D,E) The neuronal spikes at different learning epochs, from epoch 1 to epoch 400.
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Another hypothesis was that the sparse connections between
neurons would decrease the network’s complexity, but on the
contrary, the additional adaptive threshold method of neurons
would increase neurons’ complexity. NRR-SNN was staying at
a proper complexity for the efficient processing of information.
This characteristic showed a good balance between neuronal
complexity and network complexity.

During training, we also recorded the firing states of different
dynamic neurons. Figures 4D,E show the neuron firing states
from the beginning of training (e.g., epoch = 1) to the end of
the learning (e.g., epoch = 400). For each epoch, the duration of
signal propagation is 200 ms. Some neurons randomly selected
from the NRR-SNN network are shown in the figure with the
x-coordinate as the simulation time (ms) and the y-coordinate
as the neuron index (id). The spikes for most neurons were
sparser, and the spike count or fire rate was smaller at the
beginning of learning (epoch = 1) compared to that at the end
of learning (epoch = 400). Neurons also reached stable learning
states with obvious periodic firing. Besides, some neurons had
more confidence for the judgment of firing (e.g., the neuron
with id 41715) by responding more strongly and quickly to
the input stimulus, while some other neurons were tuned to
have a weaker response to the same input (e.g., the neuron
with id 6739).

5.4. Reward Propagation Contributed to
the Neuronal Dynamics
The differences between the NRR-SNN and BP-RSNN (recurrent
SNN trained with pseudo-BP) were with or without reward

propagations. The proposed NRR-SNNs were convergent during
the training of TIDigits in Figure 5A and TIMIT in Figure 5D.
Besides, the models with adaptive thresholds showed higher
test accuracies. The standard BP-RSNN models were also
tested on these two benchmark datasets in Figures 5B,E and
showed a smaller difference between those with or without
neuronal plasticity. This result shows that NRR-SNN architecture
could cooperate better with neuronal plasticity to some extent.
Figure 5C showed the maximal test accuracies on the TIDigits
dataset. The NRR-SNN and BP-RSNN reached 56.96 and
58.19%, respectively, without neuronal plasticity. After neuronal
plasticity, the performance of NRR-SNN was increased to
63.03%, which was higher than BP-RSNN with 59.57%. A
similar higher performance of NRR-SNN was also reached
with the TIMIT dataset in Figure 5F, where NRR-SNN reached
56.12% accuracy and BP-SNN reached only 53.08% accuracy
with neuronal plasticity. These experimental results showed that
reward propagation contributed to the neuronal plasticity toward
the higher SNNs’ performance.

5.5. Robust Computation With Sparse and
Recurrent Connections
The NRR-SNN contained tunable recurrent connections in the
inner hidden layers that would contribute to the recognition
performance, especially for the samples with noise (uniformly-
distributed random noise).

Figures 6A–D showed the test accuracy of traditional DNNs,
where the performances decayed quickly with the increase in the
proportion of the noise. Unlike DNNs, theNRR-SNNs performed

FIGURE 5 | Accuracy on the test set for the models (i.e., NRR-SNN and BP-SNN) that with or without neuronal plasticity. (A–C) The performance on the two models

on the TIDigits dataset. The test set for the models (D–F), the performance on the two models on the TIMIT dataset.
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better toward the robust computation, where the performances
were not changed as much with different proportions of noises
on the TIDigits dataset and were only a slightly effected for those
on the TIMIT dataset, as shown in Figures 6E–H. Obviously, the
recurrent connections in SNNs were the key to keeping a robust
classification of sequential information.

Furthermore, we used another standard indicator called
accuracy-noise ratio to describe the performances of the robust

computation, represented as RobustRatio=
Accnoiseless,noise
Accnoise,noise

, where

Accnoiseless,noise meaned “accuracy of noiseless data set for train
and noise data set for test,” and Accnoise,noise meaned “accuracy of
noise data set for train and noise data set for test.”

The performance of the robust ratio is shown in Figure 7,
where even for the models trained with noise-free training data,
accuracy was maintained when the noise ratio of the test data
reached 50%. While for DNNs, they were sensitive to noise, and
their recognition accuracy was significantly reduced with the
increase of noise proportions.

5.6. The Comparison of NRR-SNN With
Other SNN Models
In Table 2, we compared the performance of our NRR-SNNs
(with bold marker) with other SNNs. An ablation study was
further given, especially on the adaptive threshold, sparse loop,
reward propagation, and shallow or deep architectures on SNNs.

It was obvious that our NRR-SNN reached the best
performance on the TIDigits dataset. The pure feedforward
SNN with three layers reached 36.25% tuned with Pseudo-BP.
Then SNN with an additional adaptive threshold reached 66.05%
accuracy, while those with additional sparse loops reached
60.86% accuracy. We also tested NRR-SNN with different
configurations. The NRR-SNN with shallow architecture (three
layers, with only one feedforward hidden layer with recurrent
loops) obtained 63.03% accuracy, while a deeper one (five layers,
containing input layer, convolution layer, feedforward layer with
recurrent loops, feedforward layer, and output layer) obtained
97.40% accuracy, higher than some other SNNs, such as those

FIGURE 6 | The comparisons of DNNs and NRR-SNNs for the robust computation on the samples containing noises. The “noise-noise” means that we added the

noise both into the training dataset and test dataset. The noiseless-noise meant that we only added the noise to the test dataset without giving that to the training

dataset. (A) Epochs on TIDigital noise-noise. (B) Epochs on TIDigital noiseless-noise. (C) Epochs on TIMIT noise-noise. (D) Epochs on TIMIT noiseless-noise. (E)

Epochs on TIDigital noise-noise. (F) Epochs on TIDigital noiseless-noise. (G) Epochs on TIMIT noise-noise. (H) Epochs on TIMIT noiseless-noise.

FIGURE 7 | The comparison of robust ratios between DNNs and NRR-SNNs. The robust ratios of NRR-SNN decrease slowly compared to that of DNN on both

sequential TIDigits (A) and TIMIT datasets (B).
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TABLE 2 | The performance comparison of our NRR-SNN model with other

spiking models.

Task Architecture Training type Learning rule Performance

(%)

TIDigits

SOM-SNN (Wu et al.,

2018)

Rate+Spike SOM+BP 97.40

Liquid state machine

(Zhang et al., 2015)

Spike-based BP 92.30

Pure feedforward

SNN

Spike-based Pseudo-BP 36.25

Feedforward with

adaptive threshold

Spike-based Pseudo-BP 66.05

Feedforward with

sparse loop

Spike-based Pseudo-BP 60.86

Shallow NRR-SNN

(three layers)

Spike-based RP 63.03

Deep NRR-SNN (five

layers)

Spike-based RP 98.34

TIMIT

Recurrent-SNN (Bellec

et al., 2020; Wu et al.,

2020b)

Spike-based BPTT 73.60

LSNN (Bellec et al.,

2020)

Spike-based E-prop 65.40

Pure feedforward

SNN

Spike-based Pseudo-BP 52.97

Feedforward with

adaptive threshold

Spike-based Pseudo-BP 53.42

Feedforward with

sparse loop

Spike-based Pseudo-BP 55.67

NRR-SNN Spike-based RP 56.12

BP-SNN Spike-based RP 53.08

The bold values were the experimental results reached by different subtypes of the

proposed NRR-SNN.

based on the self-organizing map (SOM) (Wu et al., 2018) or
liquid state machine (LSM) (Zhang et al., 2015).

For the TIMIT dataset, the shallow feedforward SNN reached
52.97% by Pseudo-BP. Then accuracies increased to 53.42% after
adding the adaptive threshold and to 55.67% after adding sparse
loops. It was reported that the accuracy of SNNs reached 73.06%
for those with recurrent connections (RSNN) (Bellec et al., 2020;
Wu et al., 2020b), and 65.40% for those with LSTM-based (long
short-term memory) spiking neural networks (LSNN) (Bellec
et al., 2020).

We established that our NRR-SNN reached 56.12%, which
was lower than the previous RSNN and LSNN. However, we
also noticed that the accuracy of NRR-SNN was still higher after
replacing RP with BP (only 53.08%). We thought this was already
a good indicator to show the performance of NRR-SNN, since the
lower accuracy compared to other SOTAmethods was more than

the different sample lengths of TIMIT, where all of the samples in
the same patch were normalized as the same length by padding
zero to short samples. However, these problems are currently not
in the scope of this paper.

6. CONCLUSION

Most of the research related to SNNs focuses on synaptic
plasticity, including the STDP, STP, and other biologically-
inspired plasticity rules. However, inner neurons’ plasticity also
plays important roles in the neural network dynamics but is
seldom introduced. This paper’s important motivation is to
improve the performance of SNNs toward higher classification
accuracy and more robust computation for processing temporal
information with noises. A special Neuronal-plasticity and
Reward-propagation improved Recurrent SNN (NRR-SNN) have
been proposed for reaching these goals:

• The historically-related adaptive threshold with two channels
is highlighted as important neuronal plasticity for increasing
the neuronal dynamics.

• Instead of errors, global labels are used as a reward for the
paralleling gradient propagation.

• Dynamic neurons are then connected in a recurrent loop with
proper sparseness for the robust computation.

The experimental results have shown the proposed NRR-SNN’s
efficiency compared to the standard DNNs and other SNNs.
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