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Lymphocyte costimulation plays a central role in immunology, inflammation, and immunotherapy. The inducible T cell
costimulator (ICOS) is expressed on T cells following peptide: MHC engagement with CD28 costimulation. The interaction of
ICOS with its sole ligand, the inducible T cell costimulatory ligand (ICOSL; also known as B7-related protein-1), triggers a
number of key activities of T cells including differentiation and cytokine production. Suppression of T cell activation can be
achieved by blocking this interaction and has been shown to be an effective means of ameliorating disease in models of
autoimmunity. In this study, we isolated specific anti-ICOSL new antigen receptor domains from a synthetic phage display
library and demonstrated their ability to block the ICOS/ICOSL interaction and inhibit T cell proliferation. Anti-mouse ICOSL
domains, considered here as surrogates for the use of anti-human ICOSL domains in patient therapy, were tested for efficacy in
a collagen-induced mouse model of rheumatoid arthritis where they significantly decreased the inflammation of joints and
delayed and reduced overall disease progression and severity.

1. Introduction

Rheumatoid arthritis (RA) is a chronic, immune-mediated
inflammatory joint disease affecting 0.5–1% of the global
population and results in cartilage and bone damage as well
as disability [1]. The root cause of this debilitating disease is
unknown; however, increased understanding of the underly-
ing pathology has resulted in the development of a number of
effective drugs, typically with one of three modes of action: (i)
neutralising the effects of inflammatory cytokines, (ii) T cell
costimulation blockade, or (iii) B cell depletion. Currently

approved biologic-based treatments for RA include TNFα
antagonists. Three of the most successful are monoclonal
antibodies targeting TNFα directly and blocking its binding
to TNFRII: infliximab or remicade [2], adalimumab or
Humira [3], and golimumab or Simponi [4]. Currently
approved therapeutics also include an antibody Fab′ frag-
ment conjugated to a polyethylene glycol (PEG) (certolizu-
mab pegol or Cimzia) [5–7] and a fifth biologic, etanercept
or Enbrel, which comprises of a fusion protein of TNFRII
and the Fc region of human IgG1 [8]. Although targeting
TNFα has been validated through proven therapeutic efficacy
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(and significant commercial value), not all patients respond
with 25–40% of subjects failing to reach the desired ACR20
end point (20% improved response based on the American
College of Rheumatology) during clinical trials [9–11]. These
patients’ outcomes, coupled with the fact that a follow-on
study of patients on TNFα antagonist treatments showed that
after 5 years only 44% were still taking their original therapy
[12], are driving the current interest in alternative targets for
treatment. To help those patients that exhibit poor or no
response to TNFα blockade, there are a number of monoclo-
nal antibodies seeking to treat or control the disease through
an alternative biology (tocilizumab—a humanized anti-IL-6R
IgG1; rituximab—a B cell-directed chimeric anti-CD20 IgG1;
and abatacept—an anti-T cell costimulation inhibitor com-
prising an extracellular domain of CTLA-4 fused to IgG-Fc)
[13–15]. However, despite these additional approaches, there
still remains a significant proportion of patients that struggle
to find a suitable, long-term therapy option.

Shark Ig novel antigen receptors (IgNAR) are naturally
occurring binding proteins that play a pivotal role in the
adaptive immune system of cartilaginous fish [16, 17].
Although there are structural similarities between IgNAR
and mammalian antibodies and shared functional character-
istics such as in vivo maturation, there is evidence to show
that they are derived from a distinct evolutionary lineage
[18]. Therefore, IgNAR could be considered a unique form
of heavy chain-only antibody-like protein consisting of five
constant domains followed by the variable domain (VNAR)
which mediates antigen binding [19]. The lack of a light
chain and therefore the lack of a corresponding hydrophobic
VH-VL interface (seen in a conventional antibody) make
VNARs small and highly soluble in water. Sequence analysis
of VNARs has revealed a close relation to cell surface adhe-
sion molecules and T cell receptors (TCR) further distin-
guishing them from classical antibodies [20–22]. Moreover,
and unlike antibodies that generate a binding site composed
of three regions of high sequence diversity (CDR1, CDR2,
and CDR3) from both the variable heavy and light chain (6
in total), VNARs utilize four regions of diversity (CDR1,
HV2, HV4, and CDR3) creating a 4-loop binding site within
a single domain. The presence of additional noncanonical
cysteine residues in frameworks 2 and 4 and CDR loops
defines a series of related VNAR isotypes or structurally dis-
tinct families with diverse paratope topologies capable of
binding more cryptic or hidden epitopes [23–25]. Together,
their selectivity for target, biochemical properties, and small
size (the smallest naturally occurring immunological-like
binding domain in the vertebrate kingdom at 11 kDa) make
VNARs attractive candidates for therapeutic drug and diag-
nostic development [26–29].

Here, we provide evidence of the therapeutic potency
and potential of shark VNAR domains in collagen-
induced arthritis (CIA) in mice. This model reflects many
of the immunological, histological, and clinical hallmarks
of RA in humans including synovitis and cartilage and
bone erosion [30].

To differentiate from the existing portfolio of anti-RA
TNFα-based therapeutics in the clinic, we chose to target
and neutralise the activity of ICOSL. ICOSL, also known as

B7-related protein (B7RP-1), CD275, and B7 homologue
(B7h), is a cell surface antigen expressed constitutively on
antigen-presenting cells (APCs) such as B cells, activated
monocytes, and dendritic cells and is the ligand for the B7
family member, ICOS (CD278) [31–33]. Initially, it was
believed that its action was restricted to the activation phase
of T cells and T cell-dependent B cell responses [34–36],
but in more recent studies, the interaction between ICOS
and ICOSL has been shown to play a role in the downstream
survival and expansion of T cells (effector and regulatory)
and in germinal centre (GC) formation [37, 38]. As well as
promoting TFH development, Liu et al. have demonstrated
the importance of ICOSL within the GC where it acts as a
molecular linkage between GC TFH and B cells resulting in
positive selection of bone marrow plasma cell formation,
thereby also confirming a role in the control of long-lived
humoral immunity [39].

Importantly, the growing understanding of ICOSL biol-
ogy has now been translated into its use as a viable therapeu-
tic target. The completion of a successful phase I clinical
study in SLE patients and phase II in Sjogren’s syndrome
patients (both conducted by Amgen Inc.) demonstrated effi-
cacy of the human anti-ICOSL mAb, prezalumab [40, 41].
ICOSL and its importance in antibody-mediated disease have
also been verified in several preclinical models of human dis-
ease including RA, SLE, and uveitis [32, 36, 42–46] as well as
in other models of arthritis (proteoglycan-induced arthritis
(PGIA) and glucose-6-phosphate isomerase- (G6PI) induced
arthritis), exemplifying the utility of anti-ICOSL-binding
domains in the treatment of this immune disorder [44, 47,
48]. We have previously isolated VNAR domains from an
immunised Ginglymostoma cirratum (nurse shark) library,
which block the ICOS/ICOSL interaction, and went on to
demonstrate their efficacy in a mouse model of noninfectious
uveitis [42]. Here, we have selected and ranked domains iso-
lated from a synthetic VNAR library. This library is based on
optimized Squalus acanthias spiny dogfish frameworks and
contains significant engineered binding loop diversity. We
have demonstrated the efficacy of anti-ICOSL VNARs in a
model of RA, extending their potential as therapeutics for
treatment of a range of autoimmune diseases.

2. Materials and Methods

2.1. VNAR Phage Display Library Screening. All clones were
isolated from a synthetic VNAR library containing 100 bil-
lion unique clones. Solid-phase, phage display library anti-
gen selections were carried out as detailed previously [49]
using MaxiSorp immunotubes (Nunc, 444474) coated with
1–0.1μg/ml antigen in PBS pH7.4. Predecorated biotinylated
antigen bead selection protocols were adopted from our
previous work [42]. Outputs from each selection round
were screened for antigen-specific binders by monoclonal
phage and periplasmic extract ELISAs against human or
mouse ICOSL and unrelated protein controls at 1μg/ml
in PBS coating concentration. Phage binders were detected
using HRP-conjugated anti-M13 antibody (GE Healthcare,
27942101), and periplasmic protein was detected using
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HRP-conjugated to an anti-c-Myc antibody (Roche, 118
141 50 001).

2.2. Expression and Purification of VNAR Fc-Fusion Proteins.
Selected positive monomeric VNAR domains were PCR-
amplified and subcloned into a proprietary Fc-fusion mam-
malian expression vector. Proteins were transiently expressed
in HEK 293 cells and subsequently purified by Protein A-
Sepharose. Expression levels of VNAR-Fc fusion proteins
were generally in the region of 50–60mg per litre using
serum-free media. Postexpression cells and debris were
removed from conditioned media by centrifugation and
0.2μm filtration. Following affinity chromatography, as
detailed above, proteins were subjected to a final polishing
step by size-exclusion chromatography (SEC) using a Super-
dex 200 26/60 column equilibrated with PBS. Eluted peaks
from SEC were concentrated using Amicon ultrafiltration
units and protein concentrations determined by UV spec-
troscopy. Electrophoresis of purified protein samples was
performed on NuPAGE 4–12% Bis-Tris gels using the MOPS
buffer system (Invitrogen) in accordance with the manufac-
turer’s instructions. Proteins were then visualised by silver
staining (Life Sciences, SilverQuest LC6070) and purity
determined prior to in vivo experimental work.

2.3. Cell-Based Binding Assays. CHO cells expressing human
or murine ICOSL were grown to confluency in DMEM/F12+
5% FBS media, in 96-well cell culture plates (Greiner, Bio-
One). Anti-ICOSL-VNAR-Fc (50μl) was added to the corre-
sponding cells. Cells were incubated for 1 h at 16°C, gently
washed 3x with DMEM/F12+ 2% FBS, and incubated for
another 40min at 16°C with goat anti-human Fc-HRP
(SIGMA) diluted 1 : 10000 in the same media. Cells were
washed a further 3 times with DMEM/F12+ 2% FBS media
and once with PBS; lastly, TMB substrate was added and
allowed to develop.

2.4. Cell-Based Ligand-Receptor Blocking Assays. CHO cells
expressing murine or human ICOS receptor were used in
blocking assays as described in our previous publication [42].

2.5. Murine D10 T Cell Proliferation Assays. Tosyl-activated
magnetic Dynabeads were coated per product insert instruc-
tion with mICOSL, anti-mu CD3e, and hIgG1 filler (1μg
ICOSL/0.5μg anti-CD3/3.5μg hIgG1 per 1× 107 beads).
Prior to assay setup, beads were titred to determine the opti-
mal concentration to give a reading of approximately 8000–
40,000 CPM. Beads (50μl/well) were added to a 96-well plate
containing titred antibody diluted in 100μl of RPMI, 10%
FCS, 2mM glutamine, penicillin/streptomycin, 10mM
HEPES, 1mM Na pyruvate, 2 g/l glucose, and 50μM
BME. D10.G4.1 cells were washed 4x with assay media
and resuspended in the above medium plus 10% rat T stim-
ulatory factor with Con A (BD cat#354115), 2.5 ng/ml IL-2,
and 10 pg/ml IL-1 alpha to 8× 105 cells/ml and added at
50μl/well = 40,000 cells/well. All wells were brought up to a
final volume of 200μl and incubated for 48 h. 3H-thymidine
(1μCi/well) was added and incubated for 5–7h. Cells were
then harvested and counts taken. T cell proliferation assays
to assess anti-hICOSL VNAR domains were conducted using

primary human T cells isolated from normal healthy donors.
The method, in brief, was as follows: for the primary plate
coating, 1μg/ml anti-huCD3 clone OKT3 (eBioscience cat.
#16-5889aCD3) plus 10μg/ml anti-hIgG (Jackson Immu-
noResearch cat. #109-006-098) in PBS in a total of 100μl/
well was added to a 96-well plate and incubated overnight
at 4°C. Residual solution was removed and the plate washed
twice with PBS. For the secondary coating, 4μg/ml rhB7-2/
CD86-Fc (R&D Systems cat. #141-B2-100) plus 500ng/ml
rhB7-H2-Fc (R&D Systems cat. #165-B7-100) was added in
PBS at 100μl/well and incubated for 3 h at room temperature
followed by washes with PBS. Media (50μl) were added to all
wells of the assay plate in addition to 50μl CD4+ T cells
(diluted to give 2× 106 cells/ml) and 50μl of test antibodies
diluted to 3x, with the desired final concentration in media
giving a final cell concentration of 1× 105 cells/well. The sam-
ples were incubated for 3 days then pulsed with 1μCi/well of
3H-thymidine for 6–8h on day 3 and counts measured.

2.6. FACS Analysis. Parental and mICOSL and hICOSL
ligand-expressing CHO cells were washed in PBS and
removed from flasks by the addition of PBS and 5% EDTA
at 37°C for 10–15min. Cells were monodispersed by pipet-
ting up and down against the surface of the flask, spun down
at 1200 rpm, and resuspended in DMEM plus 5% FCS. Cells
were aliquoted at a density of 0.5–1× 106 cells/well into a 96-
well U-bottomed plate. Cells were incubated with 100μl
tissue culture supernatant containing HEK293 VNAR-Fc
expressed proteins for 30min at 16°C followed by 3x washes
with PBS plus 2% FCS. Cells were then incubated with 100μl
anti-hFc biotin (eBioscience #13-4998) at 1μg/ml for 30min
at 16°C. After 3x washes with PBS plus 2% FCS, streptavidin
APC (eBioscience #17-4717) was added at 1μg/ml for 30min
at 16°C. After 1x wash with PBS plus 2% FCS, cells were
resuspended in 400μl PBS plus 2% FCS and transferred into
FACS tubes for analyses on a FACSCanto 2.

2.7. PK/PD Study. Test protein (CC3-Fc) was assessed for
endotoxin, viral, mycoplasma, and bacterial contamination
to ensure quality standards required for animal testing were
achieved. A group of six DBA1 mice were injected with
4mg/kg of CC3-Fc either intravenously or subcutaneously.
Blood samples (0.3ml) were collected after 1, 3, 6, 24, 48,
120, 168, 336, and 340 hours via the saphenous vein into
EDTA tubes following a spin at 3000 × g, 4°C for 10min
for plasma recovery.

2.8. Plasma Pool down and LC-MS Analyses of PK Samples.
CC3-Fc concentrations in plasma were analysed by quantita-
tive LC-MC method described by Steven et al. [50]. Briefly,
50μl Protein A-Sepharose was added to wells of a Millipore
filter plate and conditioned with PBS pH7.4. Plasma samples
were diluted 1 : 4 with PBS and added to the filter plate, incu-
bated at room temperature and agitated at 700 rpm for 1 h.
Wells were washed four times with 200μl PBS using a vac-
uum manifold. Bound Fc protein was eluted twice with
25μl of 100 nM glycine pH2.0 into a low-bind deep-well
block and neutralised by adding 7.5μl 2M Tris pH8.0. Eluted
protein samples were then trypsin-digested by addition of
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20μl of proteomics-grade trypsin (made up at 20μg/mL in
10mM CaCl2, 50mM Tris-HCl, pH8.0) followed by incuba-
tion at 37°C for 18 h prior to LC-MS/MS analysis. Samples
were analysed using LC-MS/MS by monitoring tryptic signa-
ture peptides resulting from CC3-Fc present in the samples.

2.9. Murine Collagen-Induced Arthritis Model. All animal
work was conducted by Charles River Laboratories, Ann
Arbor, Michigan. All animal studies were carried out under
the Animals (Scientific Procedures) Act 1986 regulations
(Home Office UK). Test proteins were assessed to ensure
quality standards required for animal testing were achieved
(as above). In vivo efficacy of anti-mICOSL hits were deter-
mined in a mouse model of rheumatoid arthritis (RA) based
on Iwai et al. [51], where groups of 10 female DBA1 mice
were injected with bovine collagen in Freund’s Complete
adjuvant (day 0) followed by a boost on day 20. Anti-
mICOSL VNAR-Fc domains and positive (HK5.3 mAb)
and negative controls (2V-Fc and rat CHOCK IgG2) were
dosed intraperitoneal on days 19, 21, 23, and 25 at 15mg/
kg in PBS. Clinical scores and weight were measured twice
weekly. Clinical scores were based on calliper measurements
of footpad and digit inflammation: 1 pt/digit, 5 pts/swollen
footpad, and 5pts/swollen ankle therefore giving a possible
total of 15 pts/foot and 60 pts/animal. Histology was con-
ducted on the back left foot of each animal where sections
of 100μm steps were taken and stained with haematoxylin
& eosin and scored for inflammation, pannus formation, car-
tilage damage, bone resorption, and periosteal change.

2.10. Statistical Analysis. Significant differences between
experimental groups were analysed by the Mann-Whitney
U test. Values of p = 0 05 were considered to be significant.

3. Results

3.1. Isolation of ICOSL-Specific VNAR Domains. ICOSL-spe-
cific domains were isolated from a synthetic VNAR library
using phage display technology. Three selection rounds were
sufficient to obtain panels of VNARs specific to mouse
ICOSL, human ICOSL, or cross-reactive clones (Figure 1).
We have previously reported the isolation of anti-mouse
ICOSL binders from a Ginglymostoma cirratum-immunised
library which were cross-reactive with human and mouse
ICOSL. Although these binders could recognise both species
forms, they could only block mouse ligand-receptor interac-
tions and not the interaction between human ligand and its
receptor [42]. In an attempt to bias the selection of VNARs
from the synthetic library that showed both receptor-ligand
blocking and species cross-reactivity, a cell-based blocking
assay as well as a cross-reactive selection campaign were
introduced at an early stage of screening, with parallel selec-
tion and screening for mouse only or human only targets also
included. In addition, two different antigen presentation
regimes were utilized, with biotinylated antigen immobilised
on streptavidin-coated beads and direct immobilisation of
antigen on immunotubes, both conducted to explore the full
diversity of the library. A total of 24 unique anti-murine
ICOSL VNAR clones which block the mICOS/mICOSL

interaction and 12 unique anti-human ICOSL blocking the
hICOS/hICOSL interaction were identified. In this instance,
and despite the stringency of the selection conditions,
selected cross-reactive clones were again not able to block
either murine or human receptor/ligand interactions (data
not shown).

To determine the efficacy of VNAR domains in an in vivo
mouse model, all selected VNAR clones were converted into
an Fc-fusion format to facilitate an extension of serum half-
life and binding avidity. VNAR domains alone are cleared
rapidly in vivo, and whilst this may be useful for some thera-
peutic applications, an extended half-life was expected to be
required for full efficacy [17]. VNAR-Fc proteins were
expressed transiently in HEK-293 cells and purified by pro-
tein A affinity chromatography followed by size exclusion
chromatography. All converted clones expressed protein at
levels of 50–60μg/ml.

3.2. VNAR Domains Assessed by In Vitro Cell-Based Binding
Assays. The ability of purified anti-ICOSL VNAR-Fc
domains to retain their ability to bind to cell surface express-
ing ICOSL ligand was confirmed by titration in cell-based
ELISAs. Of the 24 anti-mICOSL VNAR-Fc proteins assessed,
domains AG2, AG12, A1, CC3, and C4 were the most potent
with IC50 values ranging from 0.15 to 0.35 nM. Conse-
quently, these were selected as the lead anti-mICOSL VNARs
based on both their cell binding (Figures 2(a)) and potent
inhibition of the interaction between ICOSL and ICOS
(Figure 2(c)). Similarly, the 12 selected anti-hICOSL clones
were ranked based on binding (Figure 2(b)) and potency of
neutralisation (Figure 2(d))—of these, 2D4, 1A1, 1C8, 1H2,
and 1D12 (IC50 values ranging from 0.5 to 9.9 nM) were
selected as leads. The VNAR domain 2V was included as
an isotype control for all in vitro and in vivo assays. This
clone, originally isolated from the dogfish Squalus acanthias,
was part of a sequence analysis of naïve VNARs from this
species and has no known target, making it an ideal negative
control for these and other published studies [17].
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Figure 1: Selection of ICOSL-specific VNAR domain outputs from
selection against mICOSL or hICOSL tested for binding to both
ligands in ELISA. Each triangle and circle denote a clone; black fill
triangles are clones binding to mICOSL only, and grey fill circles
are clones binding to hICOSL only; open circles are cross-reactive
clones binding to hICOSL, and open triangles are the same clones
binding to mICOSL.
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Cell surface target selectivity was assessed by flow cytom-
etry analysis with CHO cells overexpressing human ICOSL
or murine ICOSL. All of the anti-mICOSL domains showed
clear binding to mICOSL-CHO cells and negligible binding
to hICOSL-CHO compared to the parental CHO control,
with the exception of clone C4 that showed a modest level
of binding to hICOSL-CHO and control cells (Figure 3(a)).
A similar range of specificities was seen for the anti-
hICOSL domains. They all showed strong binding to
hICOSL-CHO cells with clones 1A1 and 1C8, also displaying
weak binding to control CHO cells (Figure 3(b)).

3.3. Suppression of T Cell Proliferation by Anti-ICOSL VNAR
Domains. ICOSL, on the surface of antigen-expressing cells,
plays an integral role in the activation of CD4+ T cells
through its interaction with ICOS. This cell-cell interaction
results in a cascaded proliferation of helper T cells. To recre-
ate this effect in vitro and determine whether the identified

lead domains could block this downstream intracellular sig-
nalling, T cell assays were performed where murine or pri-
mary human T cells were activated by the addition of
ICOSL and costimulators. All five anti-mICOSL VNAR-Fc
proteins inhibited T cell proliferation in a dose-dependent
manner compared to the 2V isotype control (Figure 4(a)).
Domain CC3 consistently showed the greatest efficacy with
an average EC50 of 792 pM± 143 (n = 11). The ability of the
anti-hICOSL VNAR domains to inhibit T cell proliferation
was determined using primary cells isolated from individual
donors (Figure 4(b)). All five lead domains demonstrated
picomolar EC50 values in this assay with the best clones hav-
ing values of 8.5± 3.6 pM (1A1), 9± 2 pM (1C8), and 7.5
± 2.1 pM (2D4).

3.4. Pharmacokinetics, Dynamics, and Metabolism of Anti-
mICOSL VNAR Domain. A preliminary PK/PD study was
conducted within the mouse strain matched to the intended
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Figure 2: Cell-based binding and ICOS/ICOSL blocking assays. Lead anti-mICOSL and anti-hICOSL VNAR-Fc proteins were tested for
binding to the CHO cell surface expressed ICOSL and their corresponding efficacy in an ICOS/ICOSL blocking assay. (a) Titration
curves of anti-mICOSL VNAR-Fc domains binding to mICOSL-CHO cells. (b) Titration curves of anti-hICOSL VNAR-Fc domains
binding to hICOSL-CHO cells. (c) Concentration-dependent inhibition of mICOSL-Fc binding to cell surface expressing mICOS by
the addition of serial dilutions of anti-mICOSL VNAR-Fc domains. (d) Concentration-dependent inhibition of hICOSL-Fc binding
to cell surface expressing hICOS by the addition of serial dilutions of anti-hICOSL VNAR-Fc domains. 2V-Fc is the VNAR isotype
control in each experiment.
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arthritis model, DBA1, with a single dose at 4mg/kg of CC3-
Fc administrated either intravenously (i.v.) or subcutane-
ously (s.c.). The Fc part of the CC3-Fc molecule was utilized
for sample enrichment using the Protein A-Sepharose cap-
ture step, and protein concentrations were determined in
plasma samples. A quantitative LC-MS/MS method previ-
ously described by Steven et al. [50] was used for analysis

and PK assessment. The PK profiles are shown in Figure 5
and the pharmacodynamic parameters summarised in
Table 1.

3.5. Evaluation of Anti-mICOSL VNAR Domains in a Murine
Model of Collagen-Induced Arthritis (CIA). Protein homol-
ogy between mouse and human ICOSL is approximately
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Figure 3: Flow cytometry analysis of lead domains binding to CHO cells. Lead anti-mICOSL and anti-hICOSL VNAR domains were tested
for binding to cell surface expressing hICOSL, mICOSL, and parental CHO cells. (a) Anti-mICOSL VNAR domains were incubated with
different CHO cell populations overexpressing either human or mouse ICOSL. (b) Anti-hICOSL VNAR domains were incubated with
different CHO cell populations overexpressing either human or mouse ICOSL. To assess any nonspecific binding events, parental CHO
cells were included as a cell control and 2V-Fc as a nonbinding VNAR domain control. Assays were repeated 3 times with representative
data shown.
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43%; therefore, only the anti-mouse domains could be tested
in this surrogate RA model. The CIA model was carried out
by Charles River Laboratories, Ann Arbor, Michigan as fol-
lows. DBA/1J mice were immunised with bovine collagen
in Freund’s complete adjuvant (day 0) and then boosted with
a second administration of collagen on day 21. Fc-fusion
versions of anti-mICOSL VNAR, together with the isotype
format control 2V, were administered intraperitoneally
(i.p.) at 15mg/kg on days 19, 21, 23, and 25, except for clone
C4 which was administrated at a concentration of 8.4mg/kg.
Clinical scores were measured twice weekly as described in
the Materials and Methods. The average clinical score was
measured in each experimental group (10 animals) over the

50-day time period of the study with a score of 60 represent-
ing the maximum level of inflammation (Figures 6(a) and
6(b)). Administration of A1 and CC3 VNAR-Fc proteins
resulted in a significant decrease (p < 0 05) in overall clin-
ical score and a clear lag in the onset of any disease com-
pared to the relevant isotype control. The anti-murine
ICOSL monoclonal IgG HK5.3 was used as the positive
biologic control [51]. The calliper measurements of foot-
pad and digit inflammation (clinical score) were similar
for A1, CC3, and the positive control (HK5.3) groups.
The reduction in inflammation translated into visible his-
topathology differences at the tissue level in the left hind
limb of each animal. Animals treated with dexamethasone,
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Figure 4: T cell proliferation assays mouse T cell line (a) and human primary T cell (b and c) proliferation assays were conducted to
determine the efficacy of anti-mICOSL and anti-hICOSL VNAR-Fc proteins to block ICOS-ICOSL-induced cell proliferation, respectively.
(a) Concentration-dependent inhibition of proliferation by lead anti-mICOSL VNAR-Fc proteins (n = 3). 2V-Fc was included in each
experiment as the VNAR isotype control. (b, c) Efficacy of lead anti-hICOSL VNAR-Fc domains in two independent primary human T
cell proliferation assays from two different donors. The positive controls in each experiment were in-house developed anti-human and
mouse ICOSL monoclonal antibodies. Assays were repeated 3 times with representative data shown.
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a potent anti-inflammatory corticosteroid, presented with
no apparent disease pathology (vi) compared to the vehi-
cle control (vii) which exhibited extensive cartilage
destruction, bone erosion, pannus formation, and granulo-
cyte infiltration (Figure 6(d)). These hallmarks of arthritis

were also evident in both isotype control groups (iii and v)
whereas A1- (i) and CC3- (ii) treated animals show greatly
reduced joint damage similar to the levels seen in HK5.3-
treated samples (iv). Based on the histopathology sections,
an analysis of the ankle RA scores from the left hind joint
from each animal was conducted by measuring the level of
inflammation, pannus formation, cartilage damage, bone
resorption, and periosteal change. Each of these parame-
ters was allocated a score from 1 to 5 and the summarised
histopathology scores plotted in Figure 6(c).

4. Discussion

According to the latest population studies of people aged 18
to 64, about one in three (both men and women) will have
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Figure 5: The PK profiles for an anti-mICOSL VNAR-Fc CC3-Fc dosed at 4mg/kg i.v. and s.c. Composite profiles derived from 6 animals per
route of administration: curve-fitted subcutaneously (a) and curve-fitted intravenously (b).

Table 1

Parameter Intravenous dose Subcutaneous dose

Clearance (ml/h/kg) 17.1 28.1

Half-life (h) 52 38

AUC (h∗μg/ml) 234 142

Bioavailability 61%
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doctor-diagnosed arthritis and/or report joint symptoms
consistent with a diagnosis of arthritis [52]. In the last
decade, our knowledge of the underlying pathobiology of
rheumatoid arthritis has significantly increased with targeted
biological therapies providing clear evidence that multiple

immunological and inflammatory pathways operate. Each
year, new roles for cytokines, mediators, and pathways that
show additional promise in unravelling the full complexity
of the pathways driving RA disease are published [53–55].
ICOSL induces important costimulatory signals delivered
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Figure 6: Clinical scores and histopathology sections from the CIA study CIA study results. (a, b) Average clinical scores for each
experimental group of 10 animals measured twice weekly for the duration of study. A collagen boost was given at day 20 and dosing of
test samples at 15mg/kg at days 19, 21, 23, and 25. Data shown as an average clinical score ± SEM and comparisons were made using the
Mann-Whitney test. (c) Analysis of the ankle RA scores from the left hind joint from each animal: the level of inflammation, pannus
formation, cartilage damage, bone resorption, and periosteal change was measured, and each of these parameters was allocated a score
from 1 to 5. The summarised histopathology scores were plotted. (d) Left hind paws from each experimental animal were sectioned and
stained with H&E. (i) A1-Fc, (ii) CC3-Fc, (iii) 2V-Fc, (iv) HK5.3, (v) IgG2a, (vi) dexamethasone, and (vii) vehicle control. Black arrow: an
example region of bone erosion; grey arrow: an example region of bone resorption; white arrow: cellular infiltrate; yellow arrow: pannus
formation. The size bar represents 2mm.
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through ICOS receptor molecules on the surface of the T cell,
resulting in T cell activation. Therefore, it follows that inter-
ruption or blocking of this costimulatory signal pathway may
provide a potential biological target and therapy option to
treat RA.

Anti-ICOSL VNARs, derived from a synthetic Squalus
acanthias library, were ranked based on their ability to
inhibit the ICOS-ICOSL interaction. Five lead candidates
were selected, and two of them showed comparable efficacy
in a murine CIA model resulting in delayed onset of disease
and reduced overall disease burden.

An important step in the development of biologics is
the study of preclinical efficacy usually using rodent
models. In some cases, a candidate molecule recognises
and neutralises both the human and the orthologous pro-
tein in rat or mouse. For some targets, however, low spe-
cies homology precludes the use of the same candidates in
rodent models of preclinical efficacy with a second panel
of rodent-specific binders used as surrogates to predict
efficacy in a human setting [56–60]. We have tried previ-
ously and unfortunately failed to select neutralising species
cross-reactive anti-ICOSL VNAR derived from an immu-
nised shark library. Here, using a synthetic VNAR library,
the introduction of cross-reactivity and blocking assays
into the screening regime again generated VNAR domains
capable of binding to both human and murine targets, but
lacking the ability to block ICOS/ICOSL in both species.
Therefore, the in vivo activity of anti-mICOSL-specific
VNAR domains must again be considered as surrogates
for the use of anti-hICOSL VNARs in patient therapy. It
is also worth noting that in T cell proliferation assays,
the selected anti-hICOSL VNAR domains demonstrate
100x higher levels of potency (EC50) than lead anti-
mICOSL domains do, reinforcing the expectation that they
would show excellent in vivo efficacy.

In the mouse CIA model HK5.3, a control rat anti-mouse
ICOSL mAb, known to inhibit both Th1 and Th2 immune
responses and ameliorate inflammatory arthritis [51], was
used. When compared to HK5.3, the reduction in clinical
score with A1 and CC3 VNAR-Fc domains was equivalent
and significantly better than the 2V-Fc isotype control. In
histopathological analysis, A1 and CC3 VNAR-Fc reduced
cartilage destruction, bone erosion, pannus formation, and
granulocyte infiltration, to the same extent as HK5.3
(Figure 6(d)). CC3 was administrated at ~50% lower dose
but still had comparable efficacy.

The flexible reformatting of VNAR domains was exem-
plified by the addition of a human Fc region to facilitate an
increase in serum half-life and avidity of binding. Prelimi-
nary, single-dose, pharmacokinetic/pharmacodynamic stud-
ies administrated intravenously or subcutaneously resulted
in considerable bioavailability and serum half-life for both
routes of administration (Figure 5). At only 80 kDa, VNAR-
Fc provides a valuable therapeutic format for systemic
administration. A new VNAR structure known as a Quad-
X™ delivers an Fc fusion and quadravalency (100 kDa) and
has shown even greater potency (10x) than that of the equiv-
alent bivalent Fc format, for an anti-TNFα VNAR domain
[61]. It would be interesting to determine if a Quad-X™

version of candidate anti-ICOSL domains would see a similar
uplift in potency.

5. Conclusion

Anti-ICOSL VNAR domains selected from a synthetic
library have been shown to block receptor/ligand interac-
tion in vitro and in cell-based assays as well as to inhibit
human T cell proliferation with pM potency. When this
in vitro bioassay potency is combined with the use of
anti-mICOSL VNAR-Fc in vivo as surrogate drugs for
accelerated development, these biologics exhibit excellent
efficacy in a predictive mouse model of CIA demonstrat-
ing their ease of reformatting, simplicity of production,
and potential to bring relief to the 40% of patients that
do not respond to first-line anti-TNF therapies in RA
and other debilitating autoimmune diseases.
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