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Myogenic progenitor/stem cells retain their skeletal muscle differentiation

potential by maintaining myogenic transcription factors such as MyoD.

However, the mechanism of how MyoD expression is maintained in prolifera-

tive progenitor cells has not been elucidated. Here, we found that MyoD
expression was reduced at the mRNA level by cell cycle arrest in S and G2

phases, which in turn led to the absence of skeletal muscle differentiation.

The reduction of MyoD mRNA was correlated with the reduced expression

of factors regulating RNA metabolism, including methyltransferase like 3

(Mettl3), which induces N6-methyladenosine (m6A) modifications of RNA.

Knockdown of Mettl3 revealed that MyoD RNAwas specifically downregulated

and that this was caused by a decrease in processed, but not unprocessed,

mRNA. Potential m6A modification sites were profiled by m6A sequencing

and identified within the 50 untranslated region (UTR) of MyoD mRNA.

Deletion of the 50 UTR revealed that it has a role in MyoD mRNA processing.

These data showed that Mettl3 is required for MyoD mRNA expression in

proliferative myoblasts.
1. Introduction
Stem cells are able to self-renew and to multiply rapidly while maintaining

their pluripotency, resulting in histogenesis [1,2]. The differentiation process

from stem cells to various tissues has previously been elucidated by studies

that characterized the factors or conditions required for differentiation into

each organ or tissue [3–9]; by contrast, it is unclear how the differentiation

potential is maintained in proliferative cells. In the case of skeletal muscle,

which accounts for approximately 40% and 30% of adult male and female

body weights, respectively [10], it is reasonable to assume that the differen-

tiation of stem cells and progenitors requires multiple rounds of cell division

to attain a high muscular density. However, the means by which the myo-

genic potential is maintained in proliferative skeletal muscle stem cells and

progenitors remains to be determined.

The identification of MyoD and the MyoD family of myogenic regulatory

factors (MRFs) has revealed that the myogenic potential is determined by the

expression of transcription factors that influence myogenic gene expression.

Conversely, the loss of MyoD and/or MRFs in skeletal myoblasts, both

in vitro in C2C12 cells [11,12] and in vivo, suppresses skeletal myogenesis
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Figure 1. MyoD mRNA expression is reduced upon cell cycle arrest. (a) mRNA levels of Myod1, Mettl3 and Elavl1 in C2C12 cells treated with thymidine or RO-3306
for 48 h. (i) Cells treated with thymidine were compared with non-treated cells. (ii) Cells treated with RO-3306 were compared with DMSO-treated cells.
(b) Morphology of C2C12 cells treated with DMSO (labelled as Mock), thymidine and RO-3306. RO-3306 was used as a Cdk1 inhibitor. Cells were immunostained
for anti-MyHC and Hoechst at 72 h after the induction of differentiation. MyHC, myosin heavy chain.
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[13,14]. During differentiation, together with Pbx homeo-

domain protein, MyoD binds to the regulatory regions of

myogenic genes, including Myog, Mylpf, Myh3, Tnni and Ryr1
[15], which triggers chromatin remodelling by recruiting the

SWI/SNF chromatin remodelling factor Brg1 for myogenic

gene transcription [16,17]. Before differentiation, MyoD labels

myogenic gene loci by incorporating the variant histone H3.3

with chromodomain helicase DNA-binding domain 2 (Chd2),

without activating transcription [8]. Thus, during proliferative

phases, MyoD is critical for myoblast differentiation and the

inheritance of differentiation potency.

Transcription factor expression is destabilized by RNA

modifications that influence the differentiation potential of

stem cells [18,19]. In embryonic stem (ES) cells, methyltrans-

ferase like 3 (Mettl3) [20] induces an N6-methyladenosine

(m6A) modification in Nanog RNA, which is required for

pluripotency and differentiation [19]. m6A modifications

have been reported to affect RNA function by various

mechanisms, including splicing, stabilization/destabilization

[18,21], nuclear export [22] and translation efficiency [23,24].

RNA modifications or stabilization may also be crucial for

skeletal muscle differentiation because MyoD mRNA has a

short half-life of approximately 90 min [25,26]. The RNA-

binding protein HuR has been reported to stabilize MyoD
mRNA and to be necessary for terminal skeletal muscle

differentiation [25,27]. It was also shown that MyoD mRNA

levels are quite low in G0-arrested cells but increase upon

re-entry into the cell cycle [28], implying that MyoD mRNA

could be stabilized during the cell cycle. However, the under-

lying mechanisms, as well as the factors required for the

maintenance of MyoD expression during proliferation,

remain to be clarified.

Here, we explored the maintenance of MyoD mRNA

levels in proliferative myoblasts. We found that cell cycle

arrest reduced MyoD mRNA expression, thus suppress-

ing myogenic differentiation, and that Mettl3 stabilized

MyoD mRNA by promoting mRNA processing in skeletal

myoblasts. Our results suggest that m6A modification by

Mettl3 stabilizes MyoD mRNA levels for skeletal muscle

differentiation.
2. Results
2.1. Cell cycle arrest in S and G2 phases reduces MyoD

mRNA levels and inhibits myoblast differentiation
During proliferative phases, MyoD binding to target genes

such as myogenic genes is required for skeletal muscle differen-

tiation [8,13,29], suggesting that the maintenance of MyoD

expression during cell cycle progression could be critical for

differentiation. Because MyoD mRNA levels were reported to

be low following cell cycle arrest at G0 [28], we hypothesized

that cell cycle arrest may cause MyoD mRNA instability.

C2C12 cells, a mouse myoblast cell line with both self-renewal

and differentiation potential, were arrested either in the S phase

by thymidine or in the G2 phase by the Cdk1 inhibitor RO-

3306, and MyoD mRNA levels were analysed by quantitative

reverse transcription PCR (qRT-PCR). Cell cycle arrest was con-

firmed by measuring the population in each cell cycle phase

after exposure to thymidine or RO-3306 (electronic supplemen-

tary material, figure S1a). We observed cell cycle re-entry and

the proliferation of cells after removal of the inhibitors (elec-

tronic supplementary material, figure S1b), confirming that

the drug treatments did not induce cell death under our exper-

imental conditions. qRT-PCR analysis showed that MyoD
mRNA levels were significantly reduced after cell cycle arrest

in both S and G2 phases in the growth state ( p ¼ 0.04 and

0.007, respectively; figure 1a(i)). On the other hand, mRNA

levels of other skeletal muscle-specific transcription factors

(Pax7 and Srf) were not substantially affected by cell cycle

arrest in the proliferative state (electronic supplementary

material, figure S2a).

Next, we examined the skeletal muscle differentiation of

arrested C2C12 cells. Cells were cultured with 2% horse serum

(HS) media for 48 h to induce differentiation. We found that

myotube formation was diminished in thymidine- and RO-

3306-treated cells but not in mock-treated cells (figure 1b).

qRT-PCR analysis revealed that mRNA levels of MyoD as well

as those of the skeletal muscle-specific genes Myog and Acta1
were decreased by cell cycle arrest in the differentiated state
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Figure 2. Knockdown of Mettl3, but not HuR, downregulates MyoD mRNA levels and suppresses skeletal muscle differentiation. (a) qRT-PCR analysis of Myod1 in (i)
Mettl3 and (ii) HuR knockdown cells. (b) qRT-PCR analysis to monitor (i) Mettl3 and (ii) HuR knockdown efficiency. (c) Western blot analysis to monitor (i) Mettl3
and (ii) HuR knockdown efficiency. Hsp90 was used as a loading control. (d ) Morphology of C2C12 cells with transfected Mettl3 siRNA. Cells were immunostained for
anti-MyHC and Hoechst at 72 h after the induction of differentiation.
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(electronic supplementary material, figure S2b). Taken together,

these results suggest that during proliferative phases, cell cycle

arrest leads to a reduction of MyoD mRNA expression that is

required for skeletal muscle differentiation.

2.2. Cell cycle arrest affects mRNA levels of HuR and
Mettl3

To examine the mechanism by which MyoD mRNA expression

is decreased upon cell cycle arrest, we focused on two pathways

potentially involved in RNA metabolism. One was the HuR

(also known as Elavl1)-mediated stabilization of RNA, which

involves HuR binding to AU-rich elements of MyoD mRNA in

the early stages of skeletal myoblast differentiation [25,27,30].

The other was the m6A modification of RNA introduced by

Mettl3 [20], which is also important for RNA stabilization.

qRT-PCR analysis showed that Elavl1 and Mettl3 mRNA levels
were significantly reduced by cell cycle arrest using thymidine

(both p , 0.05; figure 1a(i)), but the effect was relatively limited

following treatment with RO-3306 ( p ¼ 0.087 and 0.143, respect-

ively; figure 1a(ii)). These results suggest that the decreased

expression of HuR and/or Mettl3 may account for the decline

in MyoD mRNA expression upon cell cycle arrest.
2.3. Knockdown of Mettl3, but not of HuR,
downregulates MyoD mRNA levels in skeletal
myoblasts

Next, to determine if HuR and/or Mettl3 regulate MyoD
mRNA expression, we carried out small interfering

(si)RNA-mediated knockdown of Mettl3 and HuR. qRT-

PCR showed that MyoD mRNA levels were significantly

reduced in Mettl3 knockdown cells ( p ¼ 0.03; figure 2a(i)),
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but not in HuR knockdown cells (figure 2a(ii)). Both siRNAs

suppressed the expression of target genes at the mRNA

(figure 2b) as well as protein level (figure 2c), validating the

knockdown efficiency. These data suggest that Mettl3, but

not HuR, is implicated in maintaining MyoD mRNA levels.

Mettl3-targeted siRNA treatment also suppressed myotube

formation (figure 2d ).
2.4. Knockdown of Mettl3 markedly downregulates
processed, but not unprocessed, MyoD mRNA levels

Because m6A modification by Mettl3 has been proposed to

regulate RNA metabolism such as splicing [31–35], we exam-

ined the processing of MyoD pre-mRNA for the generation of

mature MyoD mRNA. To investigate whether Mettl3 affects

MyoD RNA splicing, two primer pairs were designed to

anneal between two of the three MyoD exons and another

two pairs to include both an intron and an exon (figure 3a).

qRT-PCR analysis showed that in Mettl3 knockdown cells,

fewer PCR products containing only exons were obtained
(figure 3b(ii)), whereas there was no effect on the amount of

PCR products containing an intron (figure 3b(i)). The length

of PCR products amplified with exonic primer pairs was the

correct splice size, and non-spliced RNA was not amplified

(electronic supplementary material, figure S3a). Taken

together, this indicates that knockdown of Mettl3 significantly

decreased the amount of processed MyoD mRNA without

affecting that of unprocessed MyoD RNA.

To investigate whether the m6A reading process is

associated with the maintenance of Myod1 mRNA, we focused

on the representative m6A readers YTHDF2, YTHDC1,

HNRNPA2B1 and HNRNPC [18,24,31–36], which were

previously shown to be involved in RNA stability and proces-

sing [34,35]. We performed siRNA-mediated knockdown of

these four factors and found that MyoD mRNA expression

and myotube formation were only suppressed by Ythdf2

knockdown (electronic supplementary material, figure

S3b,c). Knockdown of Ythdf2, however, led to a decrease of

both processed and unprocessed MyoD RNA (electronic sup-

plementary material, figure S3d ), unlike the case of Mettl3

knockdown.
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2.5. m6A modifications of MyoD mRNA are primarily
enriched in the 50 untranslated region

To further investigate the m6A modification of Myod1 mRNA,

m6A-sequencing (m6A-seq) was conducted by pulling down

transcripts with an antibody that specifically recognizes m6A

modifications [31]. Published studies have reported that m6A

modifications are distributed in 30 UTRs, stop codons and

internal long exons, but rarely in 50 UTRs [19,31,37,38]

(figure 4a(ii)), while we observed enriched m6A signals in

C2C12 cells both near the start codon and stop codon

(figure 4a(i)). Integrative Genomics Viewer plots showed that

while m6A modifications on the majority of RNAs such as

Gapdh and Srf were enriched around 30 UTRs, stop codons

and long exons (figure 4b; electronic supplementary material,

figure S4), m6A modifications of Myod1 were notably enriched

around the 50 UTR (figure 4b(i), green arrow).

We also found that C2C12 cells and ES cells had many ana-

logous loci for m6A signal enrichment (figure 4b(ii); electronic

supplementary material, figure S4, upper panel). However,

several skeletal muscle-specific genes such as Myod1 and

Myog were enriched in m6A signals only in C2C12 cells,

whereas m6A signal enrichment in pluripotent genes such as

Nanog was observed only in ES cells (figure 4b(i); electronic
supplementary material, figure S4, middle and lower panels),

reflecting cell type-specific regulations.
2.6. Myod1 50 UTR is required for the maintenance of
processed Myod1 mRNA during cell proliferation

To investigate the function of m6A modification on MyoD
mRNA, especially around the 50 UTR, we constructed vectors

harbouring Myod1 with various mutations and deletions in

the 50 UTR. ‘RRAC’ has been shown to be a common sequence

of m6A sites, with ‘GGAC’ the most frequent of these

[18,24,31,37,38]. m6A-seq revealed the presence of some

‘GGAC’ motifs within m6A modifications on Myod1 50 UTR.

Therefore, deleted or mutated versions of three ‘GGAC’

motifs in the Myod1 50 UTR were generated, as well as an

entire 50 UTR deletion mutant, and an entire 30 UTR deletion

mutant (figure 5a). These mutants were transiently transfected

into NIH3T3 cells, and qRT-PCR detected total (both proces-

sed and unprocessed) and processed MyoD RNA using

primer pairs within exon 1 of Myod1 and between exon 1 and

exon 2, respectively.

The ectopic introduction of each vector could be monitored

by total MyoD RNA levels, all of which led to a similar pattern
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of decline (figure 5b). To quantify the accumulation of pro-

cessed Myod1 mRNA, these levels were normalized against

those of total Myod1 RNA (figure 5c). When transfecting vec-

tors containing full-length Myod1 and 30 UTR deletion

mutants, which retained the complete 50 UTR, we observed

an accumulation of processed Myod1 mRNA until day 6

(figure 5c, Full and 30 del). By contrast, all 50 UTR deletion

mutants showed no significant accumulation of processed

mRNA upon transfection (figure 5c, 50del, Mut1, Mut2 and

6b-del). Collectively, these data suggest that MyoD RNA

is actively stabilized by its 50 UTR through the efficient

processing of Myod1 mRNA during cell proliferation.
3. Discussion
In this study, we showed that MyoD mRNA expression

reduces upon cell cycle arrest. We also found that Mettl3

regulates the maintenance of MyoD mRNA levels through

m6A modification of the 50 UTR during cell proliferation.

Taken together, these results suggest that the myogenic

potential is maintained throughout the cell cycle, at least in

part by the Mettl3-mediated stabilization of processed

MyoD mRNA during proliferative phases.

m6A-seq data showed that MyoD mRNA contains m6A

modifications, mainly in its 50 UTR, while previous studies

reported that m6A is more commonly seen in 30 UTRs, stop

codons and internal long exons (figure 4a(ii)) [19,31,37–39].

The function of m6A is largely dependent on modifications

around the 30 UTR; for example, YTHDF2 typically targets

the stop codon region (42%), the coding region (36%) and the

30 UTR (14%), while the proportion of all YTHDF2-binding

sites in the 50 UTR is only 2% [18]. However, a recent study

found that a 50 UTR m6A promoted cap-independent trans-

lation [23]. These lines of evidence suggest that the functions

of m6A modification may differ between 50 UTRs and 30 UTRs.

Because Mettl3 knockdown in this study caused the imma-

ture processing of MyoD RNA, we evaluated the involvement

of YTHDC1, which is a nuclear m6A reader that regulates

mRNA splicing by recruiting splicing factors [32,33]. Our

results showed, however, that knockdown of YTHDC1 did
not change MyoD RNA level significantly (electronic sup-

plementary material, figure S3b). Previous studies reported

that target RNAs for YTHDF2 are destabilized by m6A modifi-

cation and stabilized upon Mettl3 knockdown [18,19]. Our

results, however, showed the opposite effects, and thus suggest

that MyoD RNAs are unlikely to be a direct target of YTHDF2.

This raises the possibility that YTHDF2 functions to indirectly

stabilize MyoD mRNA through its many (greater than 3000)

targets [18]. Future work should attempt to uncover the

mechanisms involving these factors.

Although HuR and Mettl3 mRNA expression was reduced

by thymidine-mediated cell cycle arrest, this decrease was non-

significant following treatment with RO-3306. Cell cycle arrest

was planned for the standard duration of 48 h. While a single

treatment of thymidine was adequate to achieve cell cycle

arrest because its effects increase gradually for at least 48 h,

RO-3306 acts rapidly within 8 h, but its effects are diminished

by 12 h such that additional treatments were required at inter-

vals of 8–12 h. Between additional doses, reactivated cells may

have affected mRNA levels, which may explain the more

prominent effects of thymidine compared with RO-3306.

To directly examine the involvement of HuR and Mettl3 in

the regulation of MyoD mRNA expression, we conducted

siRNA-mediated knockdown experiments and found that

knockdown of Mettl3, but not of HuR, significantly affected

MyoD mRNA expression. Previous studies reported that HuR

stabilizes MyoD mRNA by binding to its AU-rich elements

during the early stages of differentiation [25]. The discrepancy

between these results and our own remains to be resolved.

Because our investigation was conducted during the growth

state, HuR may have had little effect on MyoD mRNA

expression before the onset of differentiation. Interestingly,

it was previously reported that HuR is significantly associa-

ted with m6A bait [31], but the exact relationship remains to

be elucidated.

In summary, MyoD mRNA levels appear to be maintained

by Mettl3-mediated m6A modifications, suggesting that Mettl3

is a critical regulator for skeletal muscle differentiation. These

findings help understand the mechanisms underlying the

maintenance of myogenic potential in proliferative skeletal

muscle progenitors. Moreover, the methods developed in this
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study may be beneficial in evaluating different cell types from

various species.
sob.royalsocietypublishing.org
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4. Material and methods
4.1. Cell culture and drug treatment
The mouse myoblast cell line C2C12 was maintained in a

growth state in Dulbecco’s modified Eagle’s medium (DMEM)

(Gibco by Thermo Fisher Scientific) containing 1 g l21 glucose,

1% L-glutamine and 1% penicillin/streptomycin supplemented

with 20% fetal bovine serum (FBS). NIH3T3 cells were main-

tained in DMEM containing 4.5 g l21 glucose, 1% L-glutamine

and 1% penicillin/streptomycin supplemented with 20% FBS.

Cells were grown in a 5% CO2 cell culture incubator at 378C.

Differentiation stimuli were induced by exchanging media

with 2% HS instead of 20% FBS.

C2C12 myoblasts were arrested in S phase by thymidine

(Sigma-Aldrich, T1895) and in G2 phase by Cdk1 inhibitor

(RO-3306, Sigma-Aldrich, SML0569) for 48 h. A single treat-

ment of thymidine was applied, while additional RO-3306

was added at intervals of 8–12 h.

4.2. Immunocytochemistry
Cells were cultured on m-Plate 24 Well (ibidi), washed twice

with phosphate-buffered saline (PBS), fixed with 1% parafor-

maldehyde in PBS, permeabilized with 0.5% Triton X-100 in

PBS and washed twice with PBS. A 15 min incubation with

Blocking One (Nacalai Tesque Inc.) was followed by a 2 h

incubation with mouse anti-myosin heavy chain (MF20,

eBioscience, 1 : 200) diluted with 10% Blocking One in PBS

at room temperature. The m-Plate 24 Well was then washed

three times with PBS and incubated for 30 min at room temp-

erature with CF568-labelled goat anti-mouse antibody (1 :

1000; Biotium Inc.) and Bisbenzimide H33342 Fluorochrome

Trihydrochloride (Hoechst) (1 : 2000; Nacalai Tesque Inc.)

diluted with 10% Blocking One in PBS. The m-Plate 24 Well

was again washed three times in PBS and mounted in ibidi

Mounting Medium (ibidi). Images were visualized using a

fluorescence microscope (BZ-9000; Keyence). Co-localization

was evaluated using BZ-II ANALYZER software (Keyence).

4.3. Fluorescence activated cell sorting
C2C12 cells in a growth state were isolated by trypsin treat-

ment and centrifuged for 5 min at 190g. The cell pellet was

resuspended in 1 ml of PBS supplemented with Hoechst

33342 stain (Nacalai Tesque Inc.) and incubated for 15 min.

This suspension was analysed by a cell sorter (SONY, SH800).

4.4. Quantitative RT-PCR
Total RNA was extracted from cells using Sepasol-RNA I Super

G (Nacalai Tesque Inc.) and ethanol precipitation. Total RNA

(1 mg) was used for reverse transcription with the PrimeScript

RT reagent kit (Takara Bio Inc., RR047A). qRT-PCR was per-

formed using Thunderbird SYBR qPCR Mix (Toyobo Co.,

Ltd.) with the PikoReal 96 Real-Time PCR System (Thermo

Fisher Scientific) as previously described [40]. Primers are

listed in the electronic supplementary material, table S1. qRT-

PCR data were normalized to Gapdh or Eef1a1 expression
levels and presented as the mean+ s.d. of three independent

experiments. For qRT-PCR of processed MyoD mRNA in

NIH3T3 cells with transfected MyoD mutants, differences

in transfection efficiencies were normalized by using total

MyoD RNA in each sample as an internal control. Total

MyoD RNA levels were quantified by performing qRT-PCR

using primer pairs within exon 1 of Myod1, while processed

MyoD mRNA was quantified using primer pairs between

exon 1 and exon 2.

4.5. Western blotting
Cells were harvested and disrupted in a Sample Buffer Solution

with 2-ME (Nacalai Tesque Inc.). Samples were separated by

sodium dodecyl sulfate polyacrylamide gel electrophoresis

using a 5–20% Extra PAGE One Precast Gel (Nacalai Tesque

Inc.) and electrotransferred to a polyvinylidene fluoride mem-

brane with the Trans-Blot Turbo Transfer System (Bio-Rad

Laboratories, Hercules, CA; 2.5 A, 25 V, 7 min). The membrane

was blocked for 1 h in 5% (w/v) skimmed milk in Tris-buffered

saline containing 0.05% (v/v) Tween 20, then incubated with

primary antibodies in Hikari Solution A (Nacalai Tesque

Inc.), followed by incubation with secondary antibodies and

detection using Chemi-Lumi One Ultra (Nacalai Tesque Inc.).

The following primary antibodies were used for western

blotting: rat anti-MyoD (5F11, Millipore 1 : 500), anti-Mettl3

(15073-1-AP, Proteintech, 1 : 1000), anti-Hsp90 (H-114, Santa

Cruz Biotechnology, 1 : 1000) and mouse anti-HuR (3A2,

Santa Cruz Biotechnology, 1 : 200). Secondary antibodies

were horseradish peroxidase-conjugated anti-rabbit and

anti-mouse IgG antibodies (GE Healthcare, 1 : 5000).

4.6. siRNA-mediated knockdown of Mettl3, Elavl1 and
m6A readers

Transient knockdown of target genes by siRNA was per-

formed with Lipofectamine RNAi MAX (Invitrogen) and

opti-MEM (Gibco by Thermo Fisher Scientific). The following

siRNAs were used: siMettl3 (Dharmacon, ON-TARGETplus

SMARTpool #L-049446), siElavl1 (Dharmacon, ON-

TARGETplus SMARTpool #L-053812), siYthdf2 (Dharmacon,

ON-TARGETplus SMARTpool #L-058271), siYthdc1

(Dharmacon, ON-TARGETplus SMARTpool #L-167076),

siHnrnpa2b1 (Dharmacon, ON-TARGETplus SMARTpool

#L-040194) and siHnrnpc (Dharmacon, ON-TARGETplus

SMARTpool #L-044147).

4.7. Transfection
Seven MyoD mutants were generated as DNA inserts. Each

insert DNA was amplified by PCR using KOD FX neo DNA

polymerase (Toyobo Co., Ltd.) and ligated with the pCAGGS

vector. A list of primers for cloning is shown in the electronic

supplementary material, table S1. Plasmid transfection was

performed using Lipofectamine 2000 (Invitrogen) following

the manufacturer’s instructions. The sequences of all mutants

were confirmed by Sanger sequencing.

4.8. mRNA-seq
Total RNA was extracted from cells using Sepasol-RNA I

Super G (Nacalai Tesque Inc.) and ethanol precipitation.
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Purified RNA samples underwent library construction using

the NEBNext Ultra Directional RNA Library Prep Kit

for Illumina (New England Biolabs, NEB #7420S). Library

preparation and sequence analysis followed a previously

described protocol [41].

Sequenced reads were mapped onto the mouse genome

(mm9) using TOPHAT (version 2.0.8). Gene expression levels

(fragments per kilobase of exon per million mapped sequence

reads) were estimated using the Cuffdiff program in CUFFLINKS

(version 2.0.1) using mapped reads and the software’s default

parameters [42].
Open
Biol.7:170119
4.9. m6A immunoprecipitation
m6A immunoprecipitation was performed according to a pre-

viously described protocol [31,43]. Total RNA was extracted

from cells with Sepasol-RNA I Super G (Nacalai Tesque)

and ethanol precipitation, and 348 mg was used for indepen-

dent experiments. RNA was fragmented by mixing with

10 � fragmentation buffer (1 M ZnCl2, 1 M Tris–HCl pH

7.0 and RNase-free water) at 948C for 5 min using a preheated

thermal cycler. The fragmentation mix was ethanol precipi-

tated by adding 1/10 volumes of 3 M sodium acetate, pH

5.2, glycogen (100 mg ml21 final), and 2.5 volumes of 100%

ethanol, mixing well, then incubating at –808C overnight. Frag-

mented RNA was mixed with an anti-m6A antibody (Synaptic

Systems, 202003, 12.5 mg) and 5 � immunoprecipitation buffer

(0.05 M Tris–HCl, pH 7.4, 0.75 M NaCl, 0.5% Igepal CA-630,

and RNase-free water). Ribonucleoside-vanadyl complexes

(Sigma-Aldrich, R3380, 2 mM final) and RNasin Plus RNase

inhibitor (Promega, N2611, 200–400 U, final) were mixed

with immunoprecipitation reagents to prevent RNA degra-

dation. Immunoprecipitation mixtures were incubated for 2 h

at 48C on a rotating wheel to allow the formation of anti-

body-RNA complexes. These complexes were mixed with

Dynabeads Protein A (Novex by Life Technologies) and incu-

bated for 2 h at 48C on a rotating wheel. Immunoprecipitated

RNA was eluted by competition with N6-methyladenosine,

50-monophosphate sodium salt (m6A, Sigma-Aldrich, M2780,

6.7 mM final).
4.10. m6A-seq data analysis
Purified RNA fragments from m6A RNA immunoprecipita-

tion underwent library construction using the NEBNext

Ultra Directional RNA Library Prep Kit for Illumina (New

England Biolabs, NEB #7420S). The m6A-seq library was

sequenced on an Illumina HiSeq 1500 sequencing system.

Sequence reads were aligned to the reference mouse

genome (GRCm38) using HISAT2 software (version 2.0.4)

[44]. The software DEEPTOOLS2 (version 2.3.5) [45] was used

to create the coverage tracks (BigWig file) of m6A-modi-

fied/input RNA on the mouse genome with the options:

bamCoverage –binSize 1 –normalizeTo1x2267226534 (the effec-

tive mouse genome size for 50 bp reads)’, and the m6A

signal profiles on all coding sequences (taken from UCSC

refSeq genes) with the options: computeMatrix -m 2000 -b
2000 -a 2000 –unscaled5prime 500 –unscaled3prime 500 –skip-
Zeros –missingDataAsZero.

4.11. Statistical analysis
Statistical significance in qRT-PCR data was evaluated using

the two-sided Welch’s t-test.

Data accessibility. mRNA-seq and m6A-seq data were deposited into the
DNA Data Bank of Japan database (accession no.: DRA005057). The
other datasets supporting this article have been uploaded as part of
the electronic supplementary material.
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