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Abstract

Long non-coding RNAs (lncRNAs) played essential roles in nearly every biological process and disease. Many algorithms were developed
to distinguish lncRNAs from mRNAs in transcriptomic data and facilitated discoveries of more than 600 000 of lncRNAs. However, only
a tiny fraction (<1%) of lncRNA transcripts (∼4000) were further validated by low-throughput experiments (EVlncRNAs). Given the cost
and labor-intensive nature of experimental validations, it is necessary to develop computational tools to prioritize those potentially
functional lncRNAs because many lncRNAs from high-throughput sequencing (HTlncRNAs) could be resulted from transcriptional
noises. Here, we employed deep learning algorithms to separate EVlncRNAs from HTlncRNAs and mRNAs. For overcoming the challenge
of small datasets, we employed a three-layer deep-learning neural network (DNN) with a K-mer feature as the input and a small
convolutional neural network (CNN) with one-hot encoding as the input. Three separate models were trained for human (h), mouse (m)
and plant (p), respectively. The final concatenated models (EVlncRNA-Dpred (h), EVlncRNA-Dpred (m) and EVlncRNA-Dpred (p)) provided
substantial improvement over a previous model based on support-vector-machines (EVlncRNA-pred). For example, EVlncRNA-Dpred (h)
achieved 0.896 for the area under receiver-operating characteristic curve, compared with 0.582 given by sequence-based EVlncRNA-pred
model. The models developed here should be useful for screening lncRNA transcripts for experimental validations. EVlncRNA-Dpred
is available as a web server at https://www.sdklab-biophysics-dzu.net/EVlncRNA-Dpred/index.html, and the data and source code can
be freely available along with the web server.
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Introduction
Long non-coding RNAs (lncRNAs) are non-coding transcripts com-
posed of more than 200 nucleotides. They have been found to
play important roles in many biological processes and diseases
[1]. Rapid advances in transcriptomics facilitate the discovery of
more than 600 000 of lncRNAs [2] that were inferred by compu-
tational predictors such as CNIT [3], CPC2 [4] and CPAT [5] and

annotated in several databases such as NONCODE [2], GENCODE
[6], Ensembl [7] and RefSeq [8]. However, it is unknown how
many of these lncRNAs are biologically active or resulted from
transcriptional errors [9]. High cost of function determination led
to fewer than 1% of lncRNA transcripts from high-throughput
experiments that are validated by low-throughput experiments
[10]. The huge gap between sequenced and validated lncRNAs
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demands development of computational techniques to screen
and prioritize lncRNAs that can be validated by low-throughput
experiments.

Most previous computational efforts, however, were developed
for separating lncRNAs from mRNAs only. These methods
include machine-learning models such as CNIT [3], CPC2 [4] and
CPAT [5], and more recently, deep-learning techniques such as
lncRNA_Mdeep [11], lncRNAnet [12] and LncADeep [13] with
increasingly higher accuracy. However, it did not address the
question if these lncRNAs are functional.

One direct way to predict lncRNA function is to infer from
sequence similarity or high-throughput experimental data [14],
such as RNA-seq, Chip-Seq and CLIP-seq. These data allows
the construction of lncRNA-DNA/miRNA/mRNA/protein co-
expression or interaction network for functional inference
[14]. For example, lnc-GFP employed a bi-colored network [15],
KATZLGO utilized a global network [16] and lnCaNet inferred from
a co-expression network of lncRNA and non-neighboring cancer
gene [17]. However, these experimental data are often limited to
specific experimental conditions, such as a particular cell line or
tissue, or a particular cancer. Thus, a wider application of these
methods for function inference is not possible.

Previously, we developed a method called EVlncRNA-pred [18]
to separate those experimentally validated lncRNAs (EVlncRNA)
from those obtained from high-throughput sequencing (HTlncR-
NAs). Using an SVM model, we demonstrated that EVlncRNA
is predictable with an estimate that 30% human HTlncRNAs is
functional. Recently, deep learning algorithms have been demon-
strated increasingly powerful in improving the performance of
bioinformatics tools including the success in protein structure
prediction [19]. Here, we investigate if and how a deep learning
technique can be employed to further improve the performance
of EVlncRNA-pred.

Using the largest collection of EVlncRNA available [10], we
trained several deep learning models to distinguish EVlncRNAs
from function-unknown lncRNAs obtained from high-throughput
sequencing (HTlncRNAs) and mRNAs. By comparing the perfor-
mance of different features (K-mer features, one-hot encoding,
word2vec model, conservation and secondary structure features)
and model architectures [convolutional neural network (CNN),
deep neural network (DNN), Transformer], we found that simple
sequence features and simple network models worked best, due
to the small size of the available training set. Moreover, species-
specific models work better for specific species. The online server
of EVlncRNA-Dpred and the source code are freely available at
https://www.sdklab-biophysics-dzu.net/EVlncRNA-Dpred/index.
html.

Materials and methods
The flow chart for developing EVlncRNA-Dpred is shown in
Figure 1. It involves the collection for both positive and negative
data from EVLncRNAs and GENCODE, respectively. The network
architecture consists of separate training of two separate models
(CNN and DNN), which are concatenated for final prediction.
More specific details can be found below.

Training and test datasets for human lncRNAs
The datasets were constructed as in our previous work [18] but
expanded by using the largest collection of experimentally val-
idated functional lncRNAs (EVlncRNAs) available in EVLncRNAs
2.0 database [10]. This collection of human EVlncRNAs is consid-
ered as the positive set. After removing the redundant sequences

by CD-HIT [20] with 80% sequence identity, we randomly selected
80% for training and 20% for test. After excluding the positive
dataset and removing the redundant sequences by CD-HIT, we
randomly selected an equal number of high-throughput lncRNAs
(HTlncRNAs) and an equal number of mRNAs from the GENCODE
V38 as a combined negative set. The final human training dataset
contains 2831 EVlncRNAs (positive), 2831 HTlncRNAs and 2831
mRNAs (negative), respectively. The human test set contains 707
EVlncRNAs (positive), 707 HTlncRNAs and 707 mRNAs (negative),
respectively. A 5-fold cross validation was performed in training.

Training and test datasets for mouse and plant
lncRNAs
The training and test datasets for mouse and plant lncRNAs
were constructed as above. After removing the redundancy within
itself, we obtained 365 mouse EVlncRNAs and 162 plant EVlncR-
NAs (including 128 arabidopsis lncRNAs, 16 maize lncRNAs, 4
wheat lncRNAs, 2 rice lncRNAs and 12 lncRNAs of other plants).
Corresponding negative sets were also obtained from GENCODE
M27 for mouse and Ensembl Plants [21]. In particular, consider-
ing that arabidopsis, maize, wheat and rice are the most stud-
ied model plants, we randomly selected 141 arabidopsis HTl-
ncRNAs/mRNAs, 16 maize HTlncRNAs/mRNAs, 4 wheat HTlncR-
NAs/mRNAs and 1 rice HTlncRNA/mRNAs from Ensembl Plants
as the negative dataset. The final mouse training dataset con-
tains 292 EVlncRNAs (positive), 292 HTlncRNAs and 292 mRNAs
(negative), respectively. The mouse test set contains 73 EVlncRNAs
(positive), 73 HTlncRNAs and 73 mRNAs (negative), respectively.
The final plant training dataset contains 130 EVlncRNAs (posi-
tive), 130 HTlncRNAs and 130 mRNAs (negative), respectively. The
plant test set contains 32 EVlncRNAs (positive), 32 HTlncRNAs and
32 mRNAs (negative), respectively. It is clear that both mouse and
plant datasets are substantially smaller than the human datasets.

Methods overview
Deep learning methods have been widely used in biological study
[22–26]. Compared with traditional machine-learning algorithms,
deep learning methods have powerful representation learning
capability and can automatically extract and screen the input
information layer by layer without extensive data pre-processing
or manual feature extraction. This character makes it a suitable
tool to analyze complex structures of high-dimensional data [27,
28]. The CNN could learn the spatial information [29, 30]. There-
fore, we employed deep learning methods to mine the essential
features in functional lncRNA sequences without human inter-
vention.

After experimenting different model architectures (CNN, DNN
and Transformer), we found that simple neural networks worked
best for our small dataset. Moreover, examining the performance
of K-mer features, one-hot encoding, word2vec model, conser-
vation and secondary structure features (see Discussions) led
us to choose k-mer features and one-hot encoding to build a
three-layer DNN and a CNN models, separately. The two mod-
els were then combined into a concatenate layer and a fully
connected layer to make the final selection of EVlncRNAs from
HTlncRNAs and mRNAs. The same network architecture was
used for the mouse lncRNA (EVlncRNA-Dpred (m)) and the plant
lncRNA (EVlncRNA-Dpred (p)), respectively. Considering the rela-
tively small size of dataset, we employed a variety of techniques
to prevent overfitting: early stopping, dropout, batch normaliza-
tion, simplified the neural network and reduced learning rate,
in addition to make training and test sets nonredundant from
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Figure 1. The flow chart for developing EVlncRNA-Dpred. (A) Positive and negative datasets were obtained from the databases of EVLncRNAs and
GENCODE, respectively. (B) The network architecture of EVlncRNADpred consists of separate training of two separate models (CNN and DNN), which
are concatenated for final prediction. EVlncRNAs: experimentally validated functional lncRNAs; HTlncRNAs: functional unknown lncRNAs obtained
from high-throughput sequencing.

each other. The details were shown in the corresponding section
below.

K-mer descriptor
For a given RNA sequence, we can calculate the frequencies
of each k neighboring bases. These frequencies are stored in a
vector of dimension 4K. To prevent overfitting, we employed a
simple 3-layer DNN model consisted of an input layer, two hidden
layers and an output layer. At the same time, dropout layers were
added after each layer (Figure 2). The rectified linear unit (ReLU)
was used as the activation function. This model was trained for
predicting EVlncRNAs. When training the model, we used low
learning rate and stopped training when three epochs of training
do not lead to improvement. For the final concatenated model,
the last hidden layer of this DNN model was used as the input
feature.

One-hot encoding descriptor
One-hot encoding transformed the four nucleotides A, C, G and U
to binary vectors of (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0) and (0, 0, 0,
1), respectively. Thus, the transcript of length L was represented
by 4 × L matrix. We employed a simple CNN model made of
one convolution layer, one batch normalization, one pooling and
one output layer. Batch normalization layer and dropout layer
were added to prevent overfitting (Figure 2). ReLU was used as
the activation function. This model was trained for predicting
EVlncRNAs. Low learning rate and early stopping were used to
prevent overfitting. As the convolution layer requires a fixed-
length input, we set a parameter of maxlen. If the length L of a
sequence is shorter than the maxlen, it will be patched with (0, 0,
0, 0) × (maxlen-L) matrix, and if the sequence length is longer than
the maxlen, the excess sequence region is ignored. For the final
concatenated model, the last hidden layer of this CNN model was
used as the input feature. A maxlen of 4000 nt was chosen after
examining the performance dependence on the sequence length.

Model fusion
We firstly separately trained the DNN model for the k-mer feature
and the CNN model for the one-hot encoding. Then, the last
hidden layers of the DNN and CNN models were used as inputs
and were fed into a concatenate layer. Batch normalization layer
and dropout layer were added to prevent overfitting, and the
sigmoid function was applied on the last layer for final prediction
(Figure 2). When training the fused model, low learning rate and
early stopping were used to prevent overfitting.

Performance evaluation
The method performance was evaluated by area under the ROC
curve (AUROC), area under the precision-recall curve (AUPRC),
accuracy, Matthews correlation coefficient (MCC), sensitivity,
specificity and F1_score as shown by the equations below.

Accuracy = TP + TN
TP + TN + FP + FN

(1)

MCC = (TP × TN − FP × FN)√
(TP + FP) × (TP + FN) × (TN + FP) × (TN + FN)

(2)

Sensitivity = TP
TP + FN

(3)

Specificity = TN
FP + TN

(4)

F1_score = 2TP
2TP + FP + FN

, (5)

where TP and TN represent positive and negative samples that
have been correctly predicted, respectively, and FP and FN rep-
resent positive and negative samples that have been falsely pre-
dicted, respectively. MCC is essentially a correlation coefficient
between predicted and actual binary classifications with values
between −1 and 1 with zero for random prediction. It is a bal-
anced measure for unequal-sized positive and negative samples.
Sensitivity is the fraction of predicted true EVlncRNAs in all true
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Figure 2. The architecture of EVlncRNA-Dpred.

EVlncRNAs. Specificity is the fraction of predicted true negatives
in all true negatives. Precision is the fraction of true EVlncRNAs in
all predicted EVlncRNAs.

Data and software availability
EVlncRNA-Dpred was implemented in Python 3 using Keras 2.2.5
with the backend of Tensorflow-gpu 1.14.0. The models were
trained on a NVIDIA TITAN RTX. EVlncRNA-Dpred is available as a
web server at https://www.sdklab-biophysics-dzu.net/EVlncRNA-
Dpred/index.html. The data and source code are freely available
at the web server for download.

Results
Performance of EVlncRNA-Dpred (h) for human
datasets
Setting the parameters
The dependence of the performance on k in the k-mer descriptor
was evaluated. The results are shown in Figure 3A. The AUROC
of the 5-fold CV increases from k = 1 to 8 and kept the same at
k = 9. However, at k = 8, the variation from the performance in 5-
folds is the smallest. Moreover, using k = 8 requires less computing
time than using k = 9. Thus, we set the k as 8 for the final model.
Figure 3B shows the dependence of the performance on maxlen in
one-hot encoding. The overall dependence on maxlen is small. As
95% human lncRNAs are shorter than 4000 in length in GENCODE
[12], we set the maxlen as 4000.

Comparison between individual and combined models
Table 1 compares the performance of the individual models (the
k-mer DNN and one-hot-encoding CNN models) with those of
their combined models. The average AUROC of 5-fold CV of the
DNN model and CNN model were 0.839 and 0.717, respectively.
A simple average of DNN and CNN models further improves
the performance to AUROC = 0.849, whereas a concatenated
model provides a slight further improvement with an AUROC
of 0.858. Similar trend was observed for other performance
measures such as AUPRC, AUPRC, ACC, MCC and F1_score. Thus,
we employed the concatenated model as our final model for
EVlncRNA-Dpred (h).

Comparison with the previous method
To the best of our knowledge, our previous SVM-based EVlncRNA-
pred [18] is the only one that predicts potential functional

lncRNAs. Due to the overlap between the current test set and
the previous training set for EVlncRNA-pred, we employed the
current human training set to retrain an SVM model so that
both have the same training and test sets. Table 2 shows the
performance comparison on the human test set between SVM
(EVlncRNA-pred sequence-only model) and EVlncRNA-Dpred. The
AUROC, AUPRC, accuracy and MCC for SVM (EVlncRNA-pred) was
0.582, 0.404, 0.657 and 0.077, respectively, compared with 0.896,
0.850, 0.852 and 0.617, respectively, given by EVlncRNA-Dpred.
Other traditional machine learning methods (random forest,
decision tree and k-nearest neighbor) were examined with the
same training and test sets. Their performance is worse than the
SVM model, as shown in Table 2.

For completeness, we also compared to the current lncRNA
prediction methods focused on separating lncRNAs from mRNAs
only. Figure 4 compares the ROC curves and PRC curves given by
EVlncRNA-Dpred, several deep learning methods (lncRNA_Mdeep
[11], lncRNAnet [12], LncADeep [13]) and traditional machine
learning methods (CNCI [31], CPC2 [4], PLEK [32]) on our human
test set. This comparison was not to illustrate the improvement of
our method over previous techniques but to highlight the differ-
ence in the prediction goals. These methods trained the models
with lncRNAs in GENCODE (could contain both EVlncRNAs and
HTlncRNAs) as positives and mRNAs as negatives. As a result, the
AUROCs of lncRNA_Mdeep [11], lncRNAnet [12] and LncADeep
[13] on human test set all achieved 0.7 (>0.5), the AUROCs of
CNCI [31], CPC2 [4], PLEK [32] on human test set all achieved
0.65 (>0.5), but significantly worse than that of EVlncRNA-
Dpred as expected (Figure 4A). The same is true for AUPRCs
(Figure 4B).

EVlncRNA-Dpred (m) for predicting mouse
EVlncRNAs
Similar to the development of human model EVlncRNA-Dpred,
we established mouse model EVlncRNA-Dpred (m) using mouse
datasets.

Performance of EVlncRNA-Dpred (m)
The effects of the hyper-parameters in EVlncRNA-Dpred (m) were
evaluated and the AUROC of the 5-fold CV test are shown in
Figure 5. Unlike EVlncRNA-Dpred (h), the performance is the
best for the hyper-parameter k = 7. Like EVlncRNA-Dpred (h), the
overall dependence on maxlen is small. Thus, maxlen was set to
4000 as in EVlncRNA-Dpred (h). The performance of the 5-fold CV
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Figure 3. Performance of 5-fold cross-validation on human training set (A) for the k-mer DNN model as a function of k and (B) for the one-hot encoding
CNN model as a function of maxlen.

Table 1. Performance comparison for individual models and combined models in 5-fold cross validations on human training set

Model AUROC AUPRC ACC MCC Sensitivity Specificity F1_score

DNN 0.839 ± 0.004 0.777 ± 0.015 0.808 ± 0.013 0.552 ± 0.029 0.594 ± 0.035 0.914 ± 0.030 0.673 ± 0.016
CNN 0.717 ± 0.024 0.538 ± 0.062 0.686 ± 0.020 0.157 ± 0.111 0.089 ± 0.099 0.985 ± 0.021 0.144 ± 0.153
Average 0.849 ± 0.008 0.782 ± 0.017 0.798 ± 0.007 0.530 ± 0.019 0.462 ± 0.036 0.966 ± 0.016 0.603 ± 0.024
Concatenated 0.858 ± 0.006 0.807 ± 0.014 0.816 ± 0.008 0.574 ± 0.021 0.598 ± 0.061 0.925 ± 0.039 0.683 ± 0.017

Table 2. Performance of EVlncRNA-Dpred, the previous SVM model and other traditional machine learning methods on the human
test set

Model AUROC AUPRC ACC MCC Sensitivity Specificity F1_score

EVlncRNA-Dpred (h) 0.896 0.850 0.852 0.617 0.564 0.968 0.693
SVM 0.582 0.404 0.657 0.077 0.122 0.925 0.191
Random Forest 0.530 0.442 0.653 0.087 0.156 0.901 0.234
Decision Tree 0.527 0.476 0.577 0.053 0.376 0.677 0.372
K-Nearest Neighbors 0.532 0.468 0.670 0.116 0.117 0.947 0.192

Figure 4. Receiver operating characteristic curves (A) and precision-recall curves (B) on the human test set by EVlncRNA-Dpred (h), several deep learning
methods and traditional machine learning methods for separating lncRNAs from mRNA on the human test set.
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Figure 5. Performance of 5-fold cross-validation on the mouse training set (A) for the k-mer DNN model as a function of k and (B) for the one-hot
encoding CNN model as a function of maxlen.

Table 3. Performance comparison for individual models and combined models in 5-fold cross validations on the mouse training set

Model AUROC AUPRC ACC MCC Sensitivity Specificity F1_score

DNN 0.782 ± 0.070 0.726 ± 0.076 0.766 ± 0.050 0.463 ± 0.111 0.596 ± 0.071 0.851 ± 0.056 0.630 ± 0.071
CNN 0.685 ± 0.030 0.569 ± 0.078 0.688 ± 0.013 0.182 ± 0.113 0.068 ± 0.046 0.998 ± 0.004 0.124 ± 0.083
EVlncRNA-Dpred (m) 0.816 ± 0.026 0.769 ± 0.032 0.765 ± 0.054 0.482 ± 0.063 0.597 ± 0.142 0.849 ± 0.144 0.627 ± 0.035

Table 4. Performance of EVlncRNA-Dpred (m), the previous SVM model and EVlncRNA-Dpred (h) on the mouse test set

Model AUROC AUPRC ACC MCC Sensitivity Specificity F1_score

EVlncRNA-Dpred (m) 0.830 0.790 0.808 0.551 0.534 0.945 0.650
SVM 0.604 0.419 0.662 0.135 0.219 0.884 0.302
EVlncRNA-Dpred (h) 0.652 0.396 0.612 0.294 0.781 0.527 0.573

results of the DNN model, the CNN model and their combination
EVlncRNA-Dpred (m) are shown in Table 3. The average AUROC
values of 5-fold CV test of the DNN model and the CNN model
were 0.782 and 0.685, respectively. The concatenation of the two
models improved the AUROC value to 0.816.

Comparison on the mouse test dataset
Our previous work did not train models for mouse and plant sep-
arately because the sizes of the datasets were too small. For com-
parison to a SVM-based model, we re-trained an SVM model with
the present mouse training set and compared its performance
on the mouse test set to EVlncRNA-Dpred (m) and EVlncRNA-
Dpred (h) in Table 4. The AUROC and AUPRC values were 0.830
and 0.790, respectively, by the EVlncRNA-Dpred (m). These values
are substantially higher than the respective values of 0.604 and
0.419 by the SVM model. The direct application of EVlncRNA-
Dpred (h) to the mouse test set yielded 0.652 for AUROC and
0.396 for AUPRC (Table 4). This indicates that human-data-trained
EVlncRNA-Dpred (h) retained some capability of distinguishing
mouse EVlncRNAs.

EVlncRNA-Dpred (p) for predicting plant
EVlncRNAs
Performance of EVlncRNA-Dpred (p)
We set k = 6 and maxlen = 2000 for EVlncRNA-Dpred (p) after exam-
ining the performance dependence of the CNN and DNN models

on maxlen and k, respectively, as for EVlncRNA-Dpred (h) and
EVlncRNA-Dpred (m). Table 5 compared the performance of the
5-fold CV test of the CNN model, the DNN model and EVlncRNA-
Dpred (p). The average AUROC values of the DNN model and CNN
model were 0.730 and 0.696, respectively, compared with 0.786 by
the combination of these two models: EVlncRNA-Dpred (p).

Comparison on plant test dataset
Similarly, we trained an SVM model with the plant training set.
Interestingly, now the SVM model has a similar performance as
EVlncRNA-Dpred (p) on the plant test set as shown in Table 6. This
confirmed the discriminative power of an SVM model for a small
dataset of 390 training sequences. The AUROC of the EVlncRNA-
Dpred (p) on the plant test set was 0.813, compared with 0.829
given by the SVM model. We also tested the performance of
EVlncRNA-Dpred (h) on the plant test set. It provides a reasonable
performance despite the species difference.

Case study
Recently, Johnsson et al. [33] studied transcriptional kinetics and
molecular functions of lncRNAs. Based on the analysis of single-
cell transcriptome data of mouse, the authors experimentally
verified seven functional lncRNAs, which have predicted cell
cycle expression patterns as measured by RT-qPCR. We applied
EVlncRNA-Dpred (m) to the seven lncRNAs. Five of the seven
lncRNAs were predicted as EVlncRNAs (positive). The remaining
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Table 5. Performance comparison for individual models and combined models in 5-fold cross validations on plant training set

Model AUROC AUPRC ACC MCC Sensitivity Specificity F1_score

DNN 0.730 ± 0.026 0.590 ± 0.049 0.741 ± 0.025 0.388 ± 0.064 0.485 ± 0.097 0.869 ± 0.048 0.551 ± 0.067
CNN 0.696 ± 0.041 0.579 ± 0.045 0.700 ± 0.031 0.249 ± 0.101 0.215 ± 0.100 0.942 ± 0.061 0.313 ± 0.117
EVlncRNA-Dpred (p) 0.786 ± 0.064 0.673 ± 0.106 0.738 ± 0.040 0.397 ± 0.067 0.500 ± 0.115 0.858 ± 0.106 0.558 ± 0.047

Table 6. Performance of EVlncRNA-Dpred (p), the previous SVM model and EVlncRNA-Dpred on the plant test set

Model AUROC AUPRC ACC MCC Sensitivity Specificity F1_score

EVlncRNA-Dpred (p) 0.813 0.716 0.740 0.474 0.781 0.719 0.667
SVM 0.829 0.692 0.792 0.510 0.563 0.906 0.643
EVlncRNA-Dpred (h) 0.666 0.517 0.740 0.365 0.344 0.938 0.468

two lncRNAs were predicted with a probability of 0.47 and 0.48,
respectively, close to the threshold of 0.5. This result confirms
the usefulness of EVlncRNA-Dpred (m) for prioritizing potentially
functional lncRNAs.

Discussion
There is an urgent need for the prediction of potentially func-
tional lncRNAs, which could speed up the screening and vali-
dation of functional lncRNAs. Due to a limited number of con-
firmed lncRNAs, we established EVlncRNA-Dpred with small net-
works and simple sequence features. To the best of our knowl-
edge, EVlncRNA-Dpred is the first sequence-based deep-learning
method that predicts potentially functional lncRNAs.

During the development of the method, we have experimented
additional features. These include the unpaired and paired bases
from secondary structure predicted by RNAfold [34], the solvent
accessibility predicted by RNAsnap2 [35]; the protein conservation
score from BLASTx that searches a given nucleotide sequence
against the protein sequence in the UniProt database [36]; and
RNA conservation score calculated with Infernal [37] by searching
Rfam databases [38] for RNA structure and sequence similarities.
The last two were used in our previous work EVlncRNA-pred.
These features were combined with the last hidden layer of DNN
model for predicting EVlncRNA. Although the performance for 5-
fold cross validation in AUROC was improved from 0.858 ± 0.006
to 0.902 ± 0.007, the performance on the test set was decreased
from 0.896 to 0.742, indicating an overtrained model. Thus, the
final model only employed k-mer features.

Thus, the new model employed much simpler features than
the previous SVM-based EVlncRNA-pred did. EVlncRNA-pred
employed GC contents, purine content and other sequence
information. These sequence-based features, in principle, can
be learned directly from deep neural networks. Moreover, unlike
EVlncRNA-Dpred, the full EVlncRNA-pred model is based on
conservation features, which are time-consuming to calculate,
and high-throughput experimental features, which not all
lncRNAs have. EVlncRNA-Dpred can predict faster and apply to
all RNA sequences. In addition, EVlncRNA-Dpred have species-
specific models for human, mouse and plant. This would allow
more accurate species-specific prediction. Requiring species-
specific models is consistent with the cumulative evidence
suggesting that there is a large difference in the functions and
regulatory mechanisms between mouse and human [39–41], not
to mention between plant and human.

Our current models, however, are still limited due to the small
number of known EVlncRNAs. This problem can be partially
addressed by cumulative experimental validation of more and
more EVlncRNAs and continuous update of the EVLncRNAs
database [10]. Moreover, we hope to develop better deep-learning
models that can be learned from a few examples.

Key Points

• To the best of our knowledge, EVlncRNA-Dpred is the
first sequence-based deep-learning method that pre-
dicts potentially functional lncRNAs.

• EVlncRNA-Dpred have species-specific models for
human, mouse and plant, and allow more accurate
species-specific prediction

• The performance evaluations indicate that EVlncRNA-
Dpred should be useful for screening lncRNA transcripts
for experimental validations.

Data availability
EVlncRNA-Dpred is available as a web server at https://www.
sdklab-biophysics-dzu.net/EVlncRNA-Dpred/index.html. The
data and source code are freely available at the web server for
download.
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