
Introduction
Stem cell is a term used to describe a specific type of cell 
with two major characteristics: the capability to differ
entiate into multiple cell types and the ability to maintain 

a selfrenewing population. There are numerous classes 
of stem cells, varying in their source and differentiation 
capabilities. Embryonic stem cells are termed pluripotent 
owing to their ability to differentiate into cells of all three 
germ layers [1,2]. Other stem cells, such as neuronal 
progenitor and adult stem cells, have more limited 
differentiation capabilities and are termed multipotent 
[36]. Multipotent stem cells are innately limited to 
differ entiate only into cells from the lineages from which 
they were derived. Table  1 presents a list of the most 
relevant stem cells and their sources.

Injury and diseases of the spinal cord have classically 
had a bleak prognosis. This prognosis is not solely due to 
the nature of the disease, which affects the spinal cord, 
but to the difficulty faced in developing and delivering 
treatments to the spinal cord, which is extremely sensitive 
to direct manipulation. In this review we will look at how 
stem cellderived therapies are evolving into exciting 
therapeutics for spinal cord medicine and changing the 
way we think about delivering treatments to the spinal 
cord. As well as discussing some of the most significant 
current clinical trials, we will examine the route involved 
in realizing the benchtobedside translation of these 
therapies.

The varying array of diseases that affect the spinal cord 
(Table  2) calls for a versatile and dynamic therapeutic 
approach. When developing any given therapeutic one 
must look closely at both the disease and the target tissue 
or tissues, carefully considering the limitations and 
specific barriers that must be overcome. Each disease has 
specific requirements and obstacles, and the treatment 
should be tailored to the specific disease.

Stem cells, or stem cellderived cells, can most simply 
be used to replace lost cells such as oligodendrocytes, 
neurons, motor neurons and astrocytes. These cells may 
also provide an additional therapeutic effect by secreting 
factors that are neuroprotective or that promote neuro
regeneration, such as cytokines and growth factors [16]. 
The modification of stem cells via gene therapy to 
produce or reduce specific factors is an additional level of 
specificity, which allows the therapeutic to target specific 
aspects of the disease under investigation [17].

Before discussing the use of stem cells and stem cell
derived cells, it is important to pause for a moment to 
consider the ethical issues associated with their use. 
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support. Many more trials will need to be undertaken 
before we can fully exploit the attributes of stem cells.
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There is an ongoing debate regarding the ethics of using 
cells that are derived from human fetal and embryonic 
origins. The destruction of these fetuses and embryos for 
research is of great ethical concern and debate. We shall 
not enter into this debate in the present review; interested 
readers may wish to refer to the National Institutes of 
Health webpage on this issue [18].

Delivery methods
Several promising methods are employed for trans
planting stem cells into the spinal cord. Intravascular 
infusion, intrathecal infusion and direct intraparen chy
mal injection have all been utilized in human clinical 
trials (see Table 3). While these methods have been used 
in the clinic, the most effective method has yet to be 
determined. This uncertainty remains a critical debate 
with major implications for the future success of stem cell 
therapy in the spinal cord.

Systemic delivery methods, such as intravascular and 
intrathecal infusion, rely on the stem cells’ ability to 
migrate to local areas of pathology. While this migration 
capability has been well described in small animal 
models, convincing evidence in large animal models is 
still lacking [2325]. Regardless, systemic approaches 
have been used in many stem cell clinical trials in the 
spinal cord but with limited success. In a trial for chronic 
spinal cord injury (SCI), magnetically labeled autologous 
bone marrow CD34+ cells delivered by intrathecal 
infusion and visualized by magnetic resonance imaging 
(MRI) were shown to migrate to the injured site [26]. 
Migration has been noted in other trials in the spinal 
cord using systemic approaches [27].

Direct intraparenchymal injection delivers stem cells 
directly to the area of pathology and does not require 
systemic migration of cells. Paul and colleagues com
pared different methods of mesenchymal stem cell 

(MSC) transplantation in a rat model of SCI [28]. 
Twentyone days after a single dose, 6.1% of cells en
grafted with direct intraparenchymal injection compared 
with 3.4% and 1.6% with intravenous infusion and intra
thecal infusion, respectively. This study demon strated 
that direct injection is the preferred method of delivery 
even with only 6.1% of cells detectable 21 days post trans
plantation in a rat spinal cord. Furthermore, direct spinal 
cord injection allows for accurate and reliable delivery 
that can easily be scaled up to humans, but carries the 
additional risk of manipulation of spinal cord pathology.

Various approaches for direct intraparenchymal injec
tion have been developed. All direct injection approaches 
require a multilevel laminectomy and opening of the dura 
mater to expose the spinal cord. In small animal studies, 
intraparenchymal injections are frequently and success
fully performed without stabilization using a freehand 
method [29,30]. This presents several problems for trans
lation to humans. First, it does not allow reliable targeting 
in the spinal cord. Second, the unsteady needle can move 
and shear white matter tracts. Finally, the uncontrolled 
rate of injection promotes reflux of the therapeutic agent 
up the cannula track and increases the risk for spinal cord 
mass effect by elevated intraparenchymal pressure. In 
spite of these inherent risks, freehand intraparenchymal 
injections of stem cells have been performed in several 
clinical trials for SCI and amyotrophic lateral sclerosis 
(ALS) with limited success [3134]. Moreover, because no 
device is used in this approach, there are no additional 
regulatory hurdles associated with using a novel device.

Injection systems mounted on the operating room table 
provide several advantages over the freehand approach 
[35,36]. When used with microinjection pumps and 
micromanipulators, tablemounted systems allowed better 
control over the injection rate and pressure and more 
accurate landmarkbased targeting. The tablemounted 

Table 1. Sources, advantages and disadvantages of the main sources of stem cells

 Differentiation 
 capability  Source Advantages Disadvantages 

Embryonic stem cells [1,2] Pluripotent Blastocyst Pluripotent Ethical concerns, biomanufacturing 
issues

Neuronal progenitors [3,4] Multipotent Fetal/embryonic tissue Ethical concerns, biomanufacturing 
issues

Adult central nervous 
system stem cells [7]

Multipotent Adult central nervous 
system

Autologous, no ethical 
concerns 

Limited differentiation potential, 
biomanufacturing issues, require 
surgical harvest

Adult mesenchymal 
stem cells [5]

Multipotent Adult bone marrow Autologous, easily obtained, 
no ethical concerns 

Limited differentiation potential, 
biomanufacturing issues. 

Umbilical cord cells [8] Multipotent Umbilical cord Autologous, no ethical 
concerns

Limited differentiation potential, 
biomanufacturing issues

Induced pluripotent stem 
cells [6]

Multipotent/pluripotent Skin Autologous, no ethical 
concerns, potential for 
pluripotency

Require addition of viral vectors 
for induced pluripotency, 
biomanufacturing issues
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system also provides a degree of stability to the injection 
cannula. However, this system does not account for 
movement of the patient or spinal cord with respect to 
the injection cannula. Ventilationassociated motion of 
the patient, cardiovascular pulsation of the spinal cord 
and movement of the patient or tablemounted injection 
system may lead to injury of an already weakened spinal 
cord.

To address the concerns of potential procedural 
morbidity and suboptimal accuracy, our group developed 
an injection system that mounts to the patient’s spine for 
optimal stability [3740]. The injection platform can be 
immobilized relative to the spine with percutaneous 
mounts attached to vertebral pedicles flanking the injec
tion site. The spine mounts allow the injection system to 
move with the patient during ventilation and in the event 
of inadvertent patient movement. The stabilized platform 
also allows for accurate landmarkbased targeting with 
the adjustable microinjector attached to the platform. 
The platform allows for rostrocaudal displacement and 
angular manipulations in the coronal, sagittal and axial 
planes of the microinjector to accommodate multilevel 
injections. This injection system utilizes an outer rigid 
cannula for accurate targeting and an inner flexible or 
floating cannula for cell delivery. The flexibility provided 
by the floating cannula compensates for the natural 
pulsation of the spinal cord with ventilation and 

heart beat. These innovations reduced the procedural 
risks asso ciated with direct intraparenchymal injection 
and improved targeting capability [40]. The safety and 
accu rate targeting using this system has been extensively 
assessed by preclinical work [38,40,41]. Initial use of this 
delivery system in a clinical setting has shown 
encouraging results [42,43]. While these innovations 
allow for safer and more accurate delivery, many 
improvements must be made to further optimize the 
delivery of stem cells to the human spinal cord, such as 
incorporating imageguided techniques.

Stem cells in clinical trials for treatment of the 
spinal cord and their journey from bench to 
bedside
To facilitate the translation of stem cells from bench to 
bedside and to satisfy all regulatory bodies, extensive 
preclinical work in animal models must be undertaken 
and must provide sufficient evidence that the proposed 
treat ment is both safe and effective. The translation 
process from basic research through investigational new 
drug to human clinical trials is long and complex. For an 
indepth review on the regulatory progress of translation 
of stem cell treatments, please see the comprehensive 
review by Aboody and colleagues [44].

Before we look at the translations of stem cells to the 
clinic we must take note of the caveats that are linked to 

Table 2. Traumatic and motor neuron disease of the spinal cord, and potential for stem cell transplant

        
Disease Disease/ Symptoms/  Present Demo- Possibility for stem  
class disorder phenotype Mechanism treatments graphics cell treatment Stem cell clinical trials

Traumatic Spinal cord 
injury

Varying in extent 
and level of injury 
(as classified by 
ASIA scale), loss of 
sensation to paralysis 

Traumatic injury, 
cell loss, axonal 
and myelin 
degeneration, 
cytotoxic 
environment

Decompression 
and stabilization 
surgeries, 
rehabilitation

250,000 
sufferers in 
the USA 

Cell replacement, 
trophic support 
produced by 
transplanted cells, 
modified stem cells 
to secrete specific 
trophic factors, axonal 
regeneration 

Geron Corp. 
ID# NCT01217008 [9], 
Memorial Hermann 
Healthcare System 
ID# NCT01328860 
[10], Stem Cells Inc. 
ID# NCT01321333 [11]

Motor neuron Amyotrophic 
lateral 
sclerosis

Neurodegeneration, 
muscle wastage, 
paralysis

Upper and 
lower motor 
neuron loss, glia 
dysfunction, 
both familial and 
sporadic

One approved 
drug, riluzole

5:100,000 Trophic support to 
promote survival 
of motor neurons, 
regeneration of axons

Neuralstem Inc. 
ID# NCT01348451 
[12], BrainStorm Cell 
Therapeutics, Ltd 
ID# NCT01051882 [13], 
TCA Cellular Therapy 
ID# NCT01082653 [11,14]

Spinal 
muscular 
atrophy 

Childhood disease, 
neurodegeneration, 
muscle wastage, 
paralysis

Inherited 
autosomal 
disease, lower 
motor neuron 
loss

None as of 
present

1:6,000 Trophic support to 
promote survival 
of motor neurons, 
regeneration of axons

California Stem Cells 
Inc. [15]

Inflammatory Multiple 
sclerosis 

Multisymptomatic 
presentation, 
including motor 
dysfunction and vision 
defects

Degeneration 
of myelin, due 
to autoimmune 
response

Steroids and anti 
inflammatory 
drug to delay 
progression

250,000 in 
the USA

Replacement of 
myelin producing 
oligodendrocytes

Northwestern University, 
Hadassah Medical 
Organization, Jerusalem

ASIA, American Spinal Injury Association.
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Table 3. Current clinical trials transplanting stem cells into the spinal cord

Year Location/sponsor Cells Indication Delivery Inclusion criteria Status References

2009 Palo Alto, CA; 
Atlanta, GA; 
Chicago, IL; 
Philadelphia, PA, 
USA (Geron Corp.)

Allogenic human 
ESC-derived 
oligodendrocytes 
(GRNOPC1®)

SCI Direct single injection to the 
spinal cord lesion using a table-
mounted syringe positioning 
device (2 million cells)

Adult subacute 
complete thoracic 
SCI (ASIA grade A)

FDA phase 1. 
Terminated

ID# NCT01217008 
[9,11]

2010 Atlanta, GA, USA 
(Neuralstem Inc.)

Allogenic human 
fetal spinal cord-
derived spinal 
stem cells (NSI-
566RSC)

ALS Direct multiple injections to the 
ventral horn of the lumbar or 
cervical enlargement using a 
spine-mounted microinjection 
platform (0.5 to 1 million cells)

Adult probable 
or definite ALS 
defined according 
to El Escorial 
criteria

FDA phase 1. 
Recruiting 

ID# NCT01348451 
[11,12]

2011 Irvine, CA, USA 
(California Stem 
Cell, Inc.)

Allogenic human 
ESC-derived 
motor neuron 
progenitor cells 
(MotorGraft™)

SMA Direct multiple injections to 
the ventral horn of the thoracic 
spinal cord

Infant (age 2 to 
6 months) SMA 
type 1

FDA clinical hold. 
Reviewing IND

[15]

2001 Italy Autologous 
human bone 
marrow-derived 
mesenchymal 
stem cells

ALS Direct multiple injections to 
the central gray matter of the 
lumbar enlargement using a 
table-mounted injector (7 to 
152 million cells)

Adult definite ALS 
defined according 
to El Escorial 
criteria

Phase 1. 
Completed

Mazzini and 
colleagues [19-21]

2011 Zurich, 
Switzerland (Stem 
Cells Inc.)

Allogenic fetal 
brain-derived 
human central 
nervous system 
stem cells 
(HuCNS-SC®)

SCI Direct multiple injections to the 
inferior and superior border of 
spinal cord lesion (20 million 
cells)

Adult thoracic 
chronic SCI (ASIA 
grade A, B, or C)

Swiss medic 
phase 1/2. 
Recruiting

ID# NCT01321333 
[11,22]

2011 Jerusalem, Israel 
(BrainStorm Cell 
Therapeutics, Ltd)

Autologous 
human 
mesenchymal 
bone marrow 
stromal cells 
secreting 
neutrotrophic 
factors

ALS Early stage: multiple 
intramuscular injections to 
triceps and biceps muscles (24 
million cells). Late stage: single 
intrathecal injection (60 million 
cells)

ALS disease 
duration <2 years; 
and ALS-FRS-R 
scale >30 (early 
stage) or ALS-
FRS-R scale 15 to 
30 (late stage)

Israel Ministry of 
Health phase 1/2. 
Recruiting

ID# NCT01051882 
[11,13]

2011 Houston, TX, 
USA (Memorial 
Hermann 
Healthcare 
System)

Autologous 
human bone 
marrow-derived 
progenitor cells 

SCI Single intravenous infusion Children age 1 
to 15 years with 
chronic SCI

FDA phase 1. 
Recruiting

ID# NCT01328860 
[10,11]

2010 Covington, LA, 
USA (TCA Cellular 
Therapy, LLC)

Autologous 
human bone 
marrow-derived 
mesenchymal 
stem cells

ALS Single intrathecal infusion Moderate to 
severe ALS with El 
Escorial criteria

FDA phase 1. 
Ongoing

ID# NCT01082653 
[11,14]

2010 Covington, LA, 
USA (TCA Cellular 
Therapy, LLC)

Autologous 
human bone 
marrow-derived 
mesenchymal 
stem cells

SCI Single intrathecal infusion Subacute 
complete SCI 
below C-5 (ASIA 
grade A)

FDA phase 1. 
Ongoing

ID# NCT01162915 
[11,14]

2010 Rochester, MN, 
USA (Mayo Clinic)

Autologous 
human adipose 
tissue-derived 
mesenchymal 
stem cells

ALS Single intrathecal infusion (1 
million cells)

Adult with 
chronic onset of a 
progressive motor 
weakness

FDA phase 1. 
Ongoing

ID# NCT01142856 
[11]

2000 Israel and Belgium 
(Proneuron 
Biotech)

Autologous 
human 
macrophages

SCI Direct multiple hand-held 
injections at the caudal border 
of the spinal cord lesion (4 
million cells)

Adult acute 
complete SCI 
between C5 and 
T11 (ASIA grade A)

Phase 1. 
Suspended

ID# NCT00073853 
[11]

2006 Jerusalem, 
Israel (Hadassah 
Medical 
Organization)

Autologous 
human bone 
marrow-derived 
mesenchymal 
stem cells

MS Intrathecal infusion of 60 million 
cells and intravenous infusion of 
20 million cells

Definite MS Israel Ministry of 
Health phase 1/2. 
Status unknown 

ID# NCT00781872 
[11]

ALS, amyotrophic lateral sclerosis; ALS-FRS-R, Amyotrophic lateral sclerosis functional rating scale-revised; ASIA, American Spinal Injury Association; ESC, embryonic 
stem cell; FDA, US Food and Drug Administration; IND, investigational new drug; MS, multiple sclerosis; SCI, spinal cord injury; SMA, spinal muscular atrophy.
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stem cells, as with all developing therapeutics. Extensive 
preclinical work must establish that there is no risk of 
tumor formation, which is a major safety concern when 
dealing with stem cells. The immune response and 
rejection of nonautologous cells is also a considerable 
concern for stem cell researchers and clinicians. This 
rejection necessitates that many patients who received 
stem cell transplants are required to take immuno
suppressive drugs, which in turn have their own adverse 
effects and complications. It is also important to note 
that the generation of clinicalgrade stem cells is 
subjected to its own unique obstacles that have to be 
overcome, such as kartotype problems and removal of 
substances utilized during bio manufacturing.

Geron Corp. (Menlo Park, CA, USA) was the first 
company to bring human embry onic stem cellderived 
cells through US Food and Drug Adminis tration (FDA) 
approval for human phase 1 clinical trials. Owing to this 
important first, the Geron Corp. trial gained attention in 
both the scientific world but also in the general media. 
Geron Corp.’s combination of stem cell type and disease 
demonstrates the specific tailoring required for stem cell 
translation. They chose to look at stem cell trans
plantation for SCI. Following SCI, a glial scar and cyst are 
formed, many surviving axons are subjected to myelin 
loss, and cytotoxic and inhibitory factors are produced by 
the glial scar [45]. Human embryonicderived 
oligodendrocyte precursor cells injected into the injured 
rodent spinal cord have been shown to migrate to the 
lesion site, to provide trophic support to surviving axons, 
and also to differentiate into mature oligodendrocytes 
that are capable of remyelination of the surviving axons. 
The combination of cell replacement and trophic support 
brought about significant locomotor improvement in the 
rodent model and longterm remyelination of the 
surviving and re generated axons. Geron Corp. and their 
collaborators embarked on an extensive preclinical safety 
study in a rodent model of SCI. This study examined 
teratoma forma tion, toxicity, cyst formation, allodynia 
and allo genic immune response. Despite the absence of a 
large animal study, Geron Corp. was granted FDA 
approval for the delivery of human embryonic stem cell
derived oligodendrocyte precursor cells into the lesion 
site of subacute thoracic SCI. It is important to note not 
only that the scientific precedence set by this trial but 
also the approval of the trial using embryonic stem cells 
went a long way in dealing with the ethical issues 
surrounding the use of these and other embryonic stem 
cells. Specific details of this trail can be found online [9].

Neuralstem Inc. (Atlanta, GA, USA) and their 
collaborators chose to pursue the ALS agenda as a disease 
state for which stem cells can offer a potentially powerful 
therapeutic. ALS is a complex disease involving motor 
neuron loss, muscle innervation loss and glia dysfunction. 

Simple cell replacement is not sufficient to result in re
innervation of affected muscles. Transplanted cells must 
provide both cell replacement and trophic support 
[46,47]. The trophic support may be from the stem cells’ 
own endogenous growth factor profile, or the cells may 
be modified to produce specific growth factors via ex vivo 
gene therapy [4850]. Again this concept of both cell 
replacement and trophic support demonstrates that stem 
cells’ positive attributes are not mutually exclusive in a 
therapeutic setting. Owing to the discovery of the SOD1 
mutation in familial ALS, a rodent model of ALS was 
developed  – giving us a reliable model in which to 
observe the develop ment of the disease and a platform 
from which to examine the potential of stem cell 
transplantation in this disease state [5153]. Indepth 
research has been carried out to prove the efficacy of 
stem cell transplantation in the SOD1 rodent models. 
Human spinal stem cells have been shown to reduce loss 
of motor neuron and prolong SOD1 rat survival 
[17,47,54]. Following these promising results in rodent 
models, Neuralstem Inc. and their collaborators 
embarked on largeanimal safety studies. Pigs were 
chosen as the best model due to the similarity to the 
human spinal cord. The pig experiments allowed the 
cord’s tolerance to injection doses and number of 
injections to be determined. In combination with this 
critical safety study, rodent efficacy data and the develop
ment of a novel injection platform to reduce surgical 
complexity, Neuralstem Inc. and their collaborators were 
the first to receive approval for the first translational trial 
of stem cells for the treatment of ALS. This trial is 
presently in phase 1 to evaluate the safety and feasibility 
of direct injection of stem cells into the spinal cord. A 
positive outcome of this phase 1 safety trial will pave the 
way for the continued translation of stem cells [42,43].

California Stem Cell, Inc. (Irvine, CA, USA ) and the 
University of Cali fornia, Irvine worked together on 
developing embryonic stem cellderived motor neuron 
progenitors as a potential therapeutic approach for spinal 
muscular atrophy. An autosomal recessive neuro
muscular disease, spinal muscular atrophy is the leading 
genetic cause of mortality in children. Spinal muscular 
atrophy is characterized by muscle paralysis and atrophy, 
associated with loss of spinal cord motor neurons [55,56]. 
California Stem Cell, Inc.’s motor neuron progenitors 
have been shown to improve neuronal survival in three 
separate models of spinal muscular atrophy [57] and also 
have shown functional recovery in models of SCI [58]. 
California Stem Cell, Inc. branded these cells Motorgraft 
and received investigational new drug status in 2010. 
Following review the FDA placed this potential trial on 
clinical hold. California Stem Cell, Inc. is currently 
working to address the FDA comments and recom
mendations necessary for approval.
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In Europe a team of Italian scientists and physicians 
have been progressing the adult stem cell agenda. MSCs 
have been showed to have antiinflammatory effects, 
which have been observed to reduce the inflammatory 
and reactive state of microglia and astrocytes, promoting 
a protective microenvironment [59]. Human MSCs have 
been observed to improve motor function and reduce 
inflam mation in a mouse model of ALS [60]. MSC 
harvested from ALS patients has been shown to present 
the same differentiation potential as those from normal 
donors and they have no other observable chromo somal 
or cellular abnormalities [61]. These findings suggest that 
the autologous cells can be used, eliminating the risk of 
host rejection and the need for immuno suppression. This 
work has proceeded to clinical trial. The first phase I 
safety data from this trial showed no adverse effect [19]. 
The longterm safety results of this trial (>8  years) 
showed no adverse effects [20]. No bene ficial effects were 
observed. A more comprehensive trial is called for to 
assess the potential of these adult stem cells.

Optimizing delivery
Future methods of transplanting stem cells into the spinal 
cord must aim to both improve targeting capabilities and 
reduce procedural morbidity. Advanced imaging and 
imageguided techniques offer a means to accomplish 
both of these aims. MRI can allow for direct targeting of 
spinal cord anatomy and pathology with its unparalleled 
spatial resolution in the central nervous system.

Current clinical trials directly injecting stem cells 
utilize MRI for preoperative planning and nakedeye 
visual observation of spinal cord surface anatomy for 
calculating the final injection site. Although the current 
method is accurate, direct visualization of the injection 
cannula within the spinal cord using MRI would offer 
greater targeting accuracy and confirm the location of 
the injected cells. MRIguided approaches are well estab
lished in the brain for implantation of deep brain stimu
lation electrodes [62,63] and various other procedures. 
With the increasing availability of intraoperative MRI 
suites, the prospect of injecting stem cells directly into 
the spinal cord during surgery with the guidance of real
time MRI is becoming a reality. However, modifications 
must be made to the current generation of injection 
devices to make them MRI compatible.

Further improvements may create intraoperative MRI 
injection devices capable of direct delivery to the spinal 
cord parenchyma percutaneously, eliminating the need 
for open surgery. Before this is possible, extensive pre
clinical validation must be done in large animal models to 
assess targeting ability and morbidity associated with the 
new procedure. Directly injecting cells percutaneously 
creates many new concerns: cerebrospinal fluid leak 
associated with multiple punctures of the dura mater; 

uncontrolled hemorrhage from damaged spinal cord 
blood vessels; inaccurate targeting due to displacement of 
the spinal cord from cannula insertion; and a limited 
range of injection sites due to obstruction from the 
vertebral column.

Cell tracking
Another critical issue faced in most stem cell trials is the 
inability to monitor the cell grafts post transplantation. 
This inability has made it difficult to understand the fate 
of the graft in vivo, specifically in terms of cell graft 
location, survival and migration. Furthermore, even 
identi fying the cell graft on postmortem tissue histology 
can prove challenging due to the low number of cells and 
limitations in histological techniques. These critical 
issues highlight the need for a cell label that allows for in 
vivo visualization and/or postmortem detection.

Cells may be visualized in vivo when labeled with a 
biomarker or contrast agent prior to transplantation. 
Many different approaches have been used to label stem 
cells, such as superparamagnetic iron oxide (SPIO) 
particles for MRI visualization, radionuclides for positron 
emission tomography and/or singlephoton emission 
com puted tomography visualization and reporter genes 
for a wide variety of imaging modalities. Methods for 
labeling stem cells have been well described and have 
been utilized in a wide variety of clinical trials [64,65].

The ability to track SPIO particlelabeled stem cells 
transplanted into the central nervous system has been 
validated in numerous small animal studies and demon
strated in several clinical trials [26,27,6669]. These 
pioneering trials confirm both the ability to visualize 
labeled stem cells in vivo and the safety of these labeling 
approaches. Initially, these labeling methods proved most 
valuable in determining an initial graft location [69,70]. 
However, the followup imaging on these few patients 
was not long term and postmortem staining for 
localization of SPIO particles was not performed. Rodent 
studies have shown that SPIOlabeled cells can be 
visualized with MRI and identified in histological tissue 
samples up to a year after transplantation [66]. Caution 
should be exercised when using this approach to track 
cells long term, however, as the contrast produced by the 
SPIO particles is dependent on a high density of cells and 
the amount of contrast from the SPIO particles is finite. 
As the cells divide, the contrast produced is reduced by a 
factor of two for the individual cell. Additionally, the 
particles can be visualized after being ingested by phago
cytosing cells, leading to a false positive signal on MRI 
[71]. More investigation, specifically longterm transla
tional work, must be carried out to determine the utility 
of SPIO particles as a longterm cell label.

The majority of clinical trials transplanting stem cells 
into the spinal cord do not incorporate a method for 
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tracking cells in vivo. This limitation makes it difficult to 
confirm that the stem cells have been delivered successfully 
to the target and even more difficult to track their progress 
over time. Furthermore, without an effec tive label, 
postmortem histological identification is difficult when 
using conventional methods of identifying the different 
origins of chimeric tissue. Methodologies for labeling stem 
cells to track them in vivo and identify them postmortem 
have great potential. Overcoming these technological 
hurdles to develop a successful label is essential for 
progressing the field of stem cell transplantation.

Conclusion
Basic stem cell research and stem cell translational 
agendas present an exciting and promising future for 
spinal cord regeneration. Progress and advancements 
made within the field of spinal cord medicine will have 
positive ramifications in the larger stem cell field and 
numerous other disease states outside the central 
nervous system. Pioneering work  – like that of Geron 
Corp. and Neuralstem Inc. – not only has advanced the 
stem cell agenda on the scientific front, but also has made 
great strides toward overcoming the ethical taboo 
associated with embryonic stem cells, and has aided 
other researchers in progressing to clinical trials.

Huge strides have already been made in the translation 
of stem cells to the clinic. Promising results have been 
obtained in the preclinical setting and in establishing 
basic safety data in clinical trials – although it is 
important to remember that the translation of stem cells 
to the clinic is still in its infancy, and there are still 
important hurdles to be overcome and caveats that must 
not be overlooked. Future work needs to focus on 
optimizing the delivery and in vivo tracking of the fate of 
stem cells following transplantations. Great care also 
needs to be taken with the development of each new 
source of stem cells, to ensure karotype stability and in 
screening for potential tumor formation and other 
adverse events.

With these caveats and future advancements taken into 
account, this is an exciting time for stem cell medicine 
and spinal cord medicine. We are only beginning to 
scrape the surface of the huge potential that stem cells 
tailored to spinal cord application can offer. However, as 
is often the case in initial trials to test novel technologies, 
there will probably be clinical failures before we see 
successes.
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