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Abstract: The huge burden of leishmaniasis caused by the trypanosomatid protozoan parasite Leishmania
is well known. This illness was included in the list of neglected tropical diseases targeted for elimination
by the World Health Organization. However, the increasing evidence of resistance to existing antimonial
drugs has made the eradication of the disease difficult to achieve, thus warranting the search for
new drug targets. We report here studies that used computational methods to identify inhibitors
of receptors from natural products. The cell division cycle-2-related kinase 12 (CRK12) receptor is a
plausible drug target against Leishmania donovani. This study modelled the 3D molecular structure of
the L. donovani CRK12 (LdCRK12) and screened for small molecules with potential inhibitory activity
from African flora. An integrated library of 7722 African natural product-derived compounds and
known inhibitors were screened against the LdCRK12 using AutoDock Vina after performing energy
minimization with GROMACS 2018. Four natural products, namely sesamin (NANPDB1649), methyl
ellagic acid (NANPDB1406), stylopine (NANPDB2581), and sennecicannabine (NANPDB6446) were
found to be potential LdCRK12 inhibitory molecules. The molecular docking studies revealed two
compounds NANPDB1406 and NANPDB2581 with binding affinities of −9.5 and −9.2 kcal/mol,
respectively, against LdCRK12 which were higher than those of the known inhibitors and drugs,
including GSK3186899, amphotericin B, miltefosine, and paromomycin. All the four compounds
were predicted to have inhibitory constant (Ki) values ranging from 0.108 to 0.587 µM. NANPDB2581,
NANPDB1649 and NANPDB1406 were also predicted as antileishmanial with Pa and Pi values of 0.415
and 0.043, 0.391 and 0.052, and 0.351 and 0.071, respectively. Molecular dynamics simulations coupled
with molecular mechanics Poisson–Boltzmann surface area (MM/PBSA) computations reinforced their
good binding mechanisms. Most compounds were observed to bind in the ATP binding pocket of the
kinase domain. Lys488 was predicted as a key residue critical for ligand binding in the ATP binding
pocket of the LdCRK12. The molecules were pharmacologically profiled as druglike with inconsequential
toxicity. The identified molecules have scaffolds that could form the backbone for fragment-based drug
design of novel leishmanicides but warrant further studies to evaluate their therapeutic potential.

Keywords: Leishmaniasis; Leishmania donovani; CRK12; molecular docking; molecular dynamics
simulation; natural products; leishmanicide
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1. Introduction

Leishmaniasis is a worldwide menace that exists in all continents except Oceania and
it is endemic in the tropical and subtropical areas in Eastern Africa, Southern Europe, the
Middle East, South-eastern Mexico, and Central and South America [1]. Approximately one
million new cases and between 26,000 to 65,000 deaths occur annually [2]. Leishmaniasis is
a neglected tropical disease caused by the trypanosomatid protozoan Leishmania parasites
transmitted to humans through the bites of infected phlebotomine sand flies [3–7]. The
disease manifests in three major forms, namely cutaneous leishmaniasis (CL), mucocuta-
neous leishmaniasis (MCL), and visceral leishmaniasis (VL) [8,9]. During the last decade,
leishmaniasis has been observed with cases of co-infections in areas including the Mediter-
ranean region, France, Italy, Portugal, Spain, Thailand, and Brazil [10–12]. Moreover, VL
co-infection with HIV-infected patients living in Asia (especially India) and some African
countries have been reported [13].

Leishmaniasis mostly affects people living in poor areas and places further economic
stress on scanty financial resources [14–16]. The savings of most households are depleted
to get treatment, while the few others incur debt. Leishmaniasis impacts negatively on the
psychological and social status of infected persons. The disfiguring scars lead to various
forms of social stigmatization and exclusion from community activities [17].

Currently, the dearth of effective and affordable drugs is a major problem hinder-
ing the eradication of leishmaniasis. Existing drugs are expensive, ranging from USD 30
to 1500 [17]. Paromomycin (PM) is the cheapest option in India, while liposomal ampho-
tericin B (AmBisome) and miltefosine (Milt) costs USD 162–229 and USD 119 per patient,
respectively [18].

Drug resistance is also a major issue facing the existing therapeutic options, hence the
need to identify new drug targets. The cell division cycle (CDC)-2-related kinases CRK3,
CRK6, and CRK12, which are cyclin-dependent kinases (CDKs) have recently been identified
as plausible targets [19,20]. The overexpression of both CRK12 and the cyclin protein CYC9
have been reported to increase the resistance of L. donovani to pyrazolopyrimidines [20].
However, CRK12 has been reported to exist in a complex with CYC9 [19–21]. In bloodstream
trypanosomes, both CRK12 and CYC9 are critical for proliferation in vitro [21]. Computa-
tional modelling studies showed that the most promising compound (GSK3186899), which
inhibited the L. donovani parasites in a mouse model, binds to the CRK12 in the ATP binding
pocket [19,20]. Mutation studies also suggested that GSK3186899 binds to CRK12 and
not CYC9 since the effectiveness of GSK3186899 was reduced in a mutant version of the
CRK12 [19,20]. The CRK12 is an essential gene for L. donovani and Leishmania mexicana
promastigotes [20,22] and critical in the bloodstream stage of Trypanosoma brucei [21]. It also
plays an essential role in the survival of trypanosomatids of Trypanosoma brucei [21], which
corroborates CRK12 as a drug target for parasitic kinetoplastids belonging to the Trypanosoma
genus [20,22]. In addition, the depletion of CRK12 results in the expansion of the flagellar
pocket and impairment of endocytosis [21,23].

Computer-aided drug design (CADD) has become more advantageous than the tradi-
tional approach of high-throughput screening (HTS) as it has helped reduce the wastage of
resources in terms of cost, effort, and time by significantly decreasing the number of com-
pounds and filtering out only hits for further HTS. Natural products remain an untapped
reservoir of new drug candidates for combating various kinds of diseases. The African
flora is rich in biodiversity [24] and can be exploited to produce novel drug candidates from
their natural sources. Therefore, the identification of new bioactive compounds via in silico
drug design is vital in unravelling novel leads that have the potential to inhibit the activity
of L. donovani by targeting the Leishmania donovani cell division cycle (CDC)-2-related kinase
12 (LdCRK12).

This study seeks to model a reasonably accurate 3D structure of the LdCRK12 and
identify potential natural product-derived LdCRK12 inhibitory compounds through virtual
screening. It also sought to characterize the mechanisms of binding between the LdCRK12
and potential inhibitory molecules using molecular dynamics (MDs) simulations integrated
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with molecular mechanics Poisson–Boltzmann surface area (MM/PBSA) [25,26]. In addi-
tion, it undertakes predictive pharmacokinetic and physicochemical profiling as well as
the biological activity of compounds to identify potential novel drug-like leads.

2. Materials and Methods

A schematic pipeline detailing the step-by-step techniques employed in the study is
described in Figure 1. After modelling and validating the 3D structure of the LdCRK12,
structure-based virtual screening (SBVS) was performed to identify compounds with high
binding affinity to the LdCRK12 protein. Additionally, the selected hits were docked against
the human cyclin-dependent kinase 9 (CDK9) since it is a homologue of the kinase domain
of the LdCRK12. Molecular interactions between the receptors and the compounds were
investigated using MD studies including MM/PBSA. Chemical absorption, distribution,
metabolism, excretion, and toxicity (ADMET) predictions were performed to evaluate the
toxicity of the compounds. Thereafter, the biological activity of identified biomolecules
was predicted using machine learning-based Open Bayesian techniques [27,28].

Figure 1. Methodology schema employed in this study for predicting potential antileishmanial compounds. Three modelling
techniques comprising Modeller [29,30], I-TASSER [31–34] and Robetta [35–37] were used to predict potential LdCRK12
structures. Evaluation of the predicted protein structures revealed the reasonably best model. Natural compounds from the
African Natural Product Database (AfroDB), as well as the North African Natural Product Database (NANPDB) and known
antileishmanial compounds, were docked against LdCRK12 and the human CDK9 receptors. The potential lead compounds
were subjected to absorption, distribution, metabolism, excretion, and toxicity (ADMET), biological activity predictions, and
molecular dynamics (MDs) computations.
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2.1. Sequence Retrieval

Since the experimental 3D structure of the LdCRK12 does not exist, there was the need
to employ modelling techniques to predict a reasonably accurate structure. The protein
sequence of the LdCRK12 with UniProtKB ID: A0A3S7WQK2 was retrieved from UniProtKB,
a repository for amino acid sequences of proteins [38–40].

2.2. Obtaining the Structure of LdCRK12 and Human CDK9

Three different modelling approaches were employed in this study, comprising I-
TASSER Suite [31–34], Robetta [35–37] and Modeller 9.20 [29,30] to predict the 3D structures
of the LdCRK12 protein. The structure of the human CDK9 was retrieved from the protein
data bank (PDB) with PDB ID 4BCF. The details used to generate a reasonably valid
structure of the LdCRK12 via Modeller 9.20, I-TASSER, and Robetta are described.

2.2.1. Template Search and Selection

The sequence of the LdCRK12 was uploaded into SWISS-MODEL which performed
a basic local alignment search tool (BLAST) search to obtain suitable templates that were
identical to the target sequence [41]. A BLAST search was also conducted on the kinase
domain using the BLAST option in UniProtKB. The most suitable template was then
selected for modelling.

2.2.2. Structure Prediction Using Modeller

EasyModeller 4.0 [42], a graphical user interface (GUI) for Modeller was used to
model the structure of LdCRK12. The sequence and the selected template (PDB ID 4BCF)
were imported into EasyModeller 4.0. Sequence alignment was performed to predict the
secondary structure of the protein by using the selected template and the sequence of the
LdCRK12. Modeller then used the outcome to generate five models from which the best
is selected based on their discrete optimized protein energy (DOPE) scores. DOPE is a
statistical potential score used to evaluate homology models in protein structure prediction.
For the same target, the model with the lowest DOPE score was chosen as the best [30,43].

2.2.3. Structure Prediction Using I-TASSER

I-TASSER (https://zhanglab.ccmb.med.umich.edu/I-TASSER/; accessed on 22 October
2019) was employed to predict the structure of LdCRK12. The amino acid sequence of the
LdCRK12 protein was uploaded into the I-TASSER platform and 5 protein structures were
predicted using default parameters.

2.2.4. Structure Prediction Using Robetta

The LdCRK12 amino acid sequence was also uploaded into Robetta (https://robetta.
bakerlab.org; accessed on 27 February 2020) and the “comparative modelling (CM) only”
option was selected. Robetta then parsed the sequence into putative domains and built
models for the domains which are homologues to solved protein structures using compara-
tive modelling [37]. Five protein structures were predicted using default parameters.

2.3. Structural Validation

The quality of the generated models was assessed via SAVESv5.0 (http://servicesn.
mbi.ucla.edu/SAVES/; accessed on 9 March 2020) along with Ramachandra plots from
PROCHECK (https://www.ebi.ac.uk/thornton-srv/databases/pdbsum/Generate.html;
accessed on 6 February 2021) [44]. The z-score obtained from ProSA-web [45,46], an
indication of the overall model quality of the structures, was also determined. The z-score
determines whether the input model is of X-ray or NMR quality. The local model quality of
the structures was also determined by plotting the energies as a function of protein residue
position. The positive values signify problematic or erroneous parts of the input structure.
The reasonably best structure was selected based on the quality assessments performed.

https://zhanglab.ccmb.med.umich.edu/I-TASSER/
https://robetta.bakerlab.org
https://robetta.bakerlab.org
http://servicesn.mbi.ucla.edu/SAVES/
http://servicesn.mbi.ucla.edu/SAVES/
https://www.ebi.ac.uk/thornton-srv/databases/pdbsum/Generate.html
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2.4. Prediction of Binding Sites

Computed Atlas of Surface Topography of proteins (CASTp) [47,48] was used to
predict potential binding sites of the LdCRK12 protein. Chimera and PyMOL were used to
assess the features of the predicted binding sites [49–51].

2.5. Preparation of Proteins and Ligand Libraries

The ligands were obtained from the African Natural Product Database (AfroDB) and
the North African Natural Product Database (NANPDB) [52,53]. A total of 6842 compounds
were obtained in 2D spatial data file (sdf) format from the NANPDB and were converted
to 3D structures using Open Babel’s “gen3d” option. Additionally, 880 compounds were
retrieved from the AfroDB in 3D sdf format. A total of 7722 compounds were obtained for
this study by combining the two databases and removing duplicates. Additionally, the
compound libraries were filtered based on Lipinski’s rule of five.

Compounds labelled 5, 7, and 8 which showed very good half-maximum effective
concentration (EC50) values in a mouse model of visceral leishmaniasis by inhibiting CRK12
were used in this study [20]. Amphotericin B, miltefosine, and paromomycin were also in-
cluded in the study. GSK3186899 (also known as compound 7 or DDD85365), amphotericin
B, miltefosine, and paromomycin were retrieved from PubChem with compound identi-
fiers (CIDs) 122429808, 5280965, 3599, and 165580, respectively. MarvinSketch 17.17.0 was
used to generate the 3D sdf of compounds 5 and 8. Additionally, a 2-amino-4-heteroaryl-
pyrimidine inhibitor (Code: T6Q), an inhibitor of the human CDK9 was extracted from the
complex and saved in sdf format. All ligand structures were then energy minimized using
the universal force field (UFF) under the Conjugate Gradient algorithm in 200 steps before
being converted to the partial charge and atom type (pdbqt) file format of the Protein Data
Bank using Open Babel.

Both LdCRK12 and the human CDK9 were energy minimized using the Optimized
Potentials for Liquid Simulations (OPLS)/All Atom (AA) force field in GROMACS 2018.
PyMOL (PyMOL Molecular Graphics System, Version 1.5.0.4, Schrödinger, LLC) was
used to visualize the energy minimized structures and to remove the water molecules
surrounding the protein. The protein structures were then saved in the Protein Data Bank
format (pdb) using PyMOL. The protein structures were then converted to AutoDock
Vina’s compatible pdbqt format using the “make macromolecule” option in PyRx.

2.6. Virtual Screening

Autodock Vina was employed for the virtual screening process [54]. The pre-filtered
library and the known drugs were screened against the LdCRK12 using a grid box dimen-
sion of 91.21 × 93.45 × 78.24 Å3 and centered at (74.47, 128.44, 81.76) Å to cover the kinase
domain. Compounds that possessed binding energies higher than −8.5 kcal/mol were
not selected. A more stringent threshold was used herein since a previous study showed
that −7.0 kcal/mol which was defined for AutoDock users can significantly distinguish
between putative specific and non-specific protein–ligand bonds [55]. The result was then
inspected visually using PyMOL to select the best docked ligands.

The known ligands and the selected compounds were re-docked to the human CDK9
using AutoDock Vina. The CDK9 protein was remodelled using the existing CDK9 structure
(PDB ID: 4BCF) as a template via Modeller before molecular docking studies due to missing
residues. A grid box with the dimension of 80.86 × 62.73 × 91.07 Å3 and center (81.89, 80.83,
70.34) Å was specified for the CDK9. Compounds that demonstrated a higher binding
affinity to the human CDK9 than 2-amino-4-heteroaryl-pyrimidine were not considered for
downstream analysis.

2.7. Characterisation of Mechanism of Binding

The interactions between LdCRK12 and the ligands were determined and analyzed
via LigPlot + v1.4.5 using default parameters [56]. Additionally, the human CDK9–ligand
interactions were investigated.
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2.8. Pharmacological Profiling

Selected compounds with high binding affinities with the LdCRK12 protein and
low binding affinities to the human CDK9 were subjected to absorption, distribution,
metabolism, and excretion (ADME) evaluation using SwissADME [57]. The toxicity profiles
of the selected compounds were evaluated using OSIRIS Property Explorer in DataWarrior
5.0.0 [58]. DataWarrior uses features of chemical structures to predict physicochemical
properties. The algorithm in the OSIRIS Property Explorer predicts the likelihood of a drug
being a mutagenic, tumorigenic, irritant, and possessing a reproductive effect. Prediction
of activity spectra for substances (PASS) was used to predict the biological activity of
the compounds. PASS predicts the biological activity spectra of compounds using the
simplified molecular input line entry system (SMILES) files of the structures based on the
Bayesian approach [27,28].

2.9. Quality Evaluation of Shortlisted Molecules

The inhibitory constant (Ki) was calculated using the binding energies of the se-
lected compounds along with other metrics consisting of ligand efficiency (LE), LE scale
(LE_Scale), fit quality (FQ), and LE-dependent lipophilicity (LELP). The abovementioned
metrics were determined using the method described previously [59,60].

2.10. MD Simulations of Proteins and Protein–Ligand Complexes

A 10 ns MD simulation was performed for LdCRK12 and protein–ligand complexes
using GROMACS 2018 [61,62]. Xmgrace [63] was used to plot the graphs generated from
the MD simulations. The binding free energies of the complexes were calculated using
the MM/PBSA method [25]. MM/PBSA calculations of the complexes were carried out
using g_MM/PBSA, which calculates binding energy components and the individual
energy contributions of the residues [25]. The graphs from the MM/PBSA computations
were generated using the R programming package [64].

3. Results and Discussion

The results of the molecular modelling, molecular docking, ADMET evaluation, pre-
diction of antileishmanial activity and MD simulations are presented.

3.1. Modelling the Structure of LdCRK12

There was the need to model the structure of the LdCRK12 since there is no available
structure in the protein data bank. An earlier study modelled the structure of the LdCRK12
using Molecular Operating Environment (MOE version 2014.09; Chemical Computing
Group, Inc.) [20]. MOE-Homology combines segment-matching and methods of inserting
or deleting regions to model protein structures. Advanced knowledge-based loop searching
and sidechain rotamer selection methods are then employed to build models by default. An
average model is then generated by MOE for a user-controlled energy minimization [65].

Studies have compared the quality of protein structures generated using different
modelling techniques [65–67]. No technique has been found to be superior in every aspect
to the others [65,66]. The protein family and the sequence identity between the query and
template structures influence the quality of a model built using a homology modelling tech-
nique [66]. A comparison study of various homology modelling algorithms including MOE,
I-TASSER, Rosetta, PRIME, SWISS-MODEL, Composer, and ORCHESTRAR reported that
all the techniques produced high quality models when the sequence identity between the
query and the template is greater than 35% [66,67]. However, for low sequence identities,
it becomes difficult for the modelling algorithms to produce high-quality structures [66].
It is therefore imperative that different modelling techniques are used to build protein
structures that have relatively low sequence identities to their templates. The quality of the
modelled structures must be assessed to select the reasonably best model.

Herein, three freely accessible and widely used techniques comprising Modeller, I-
TASSER and Robetta were employed to predict structures of the LdCRK12. The present
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study compares the structures from these three techniques to select the reasonably best
model, as carried out previously [68–70].

3.1.1. Template Search

A BLAST search was performed to retrieve identical structures as suitable templates
for modelling the LdCRK12 structure. The BLAST search via SWISS-MODEL revealed
5449 templates with a sequence identity lower than 30%. A further BLAST search was
conducted on the kinase domain (amino acid residues 459–833) using the BLAST option
(BLASTP 2.9.0+) by selecting BLOSUM62, the most commonly used scoring matrix in
BLAST [71]. The search revealed six reviewed protein structures that were identical to the
kinase domain of the LdCRK12 (Table 1). One of the most widely used template selection
criteria is to select the model with the highest sequence identity to the protein sequence. The
quality of the experimentally determined structure is also an important factor to consider
in the template selection. The reasonably best template was selected based on the E-value,
sequence identity, query coverage, and the availability of a 3D structure. The human CDK9
was thus selected as the template for modelling the LdCRK12 via Modeller 9.2 as described
previously [20]. Although, sequences O14098 and Q9TVL3-2 had sequence identities of
36% and 35% and BLAST scores of 356 and 348, respectively, they were not selected due to
their relatively low coverage to the LdCRK12 (Table 1). Cyclin-dependent kinase 9 (CDK9)
of humans, rats, and mice had the same E-value, BLAST score, and sequence identity of
7.4 × 10−34, 345, and 31.3%, respectively. The three proteins also had better coverage of
the LdCRK12. However, the human CDK9 was the only protein with a solved 3D structure.

Table 1. BLAST results showing identical proteins to the LdCRK12. The best template is selected based on the E-value,
sequence identity, BLAST score, and availability of a 3D structure.

ID Protein Name E-Value BLAST Score Identity (%)

O14098
C-terminal heptapeptide repeat domain CTD
kinase subunit alpha (Schizosaccharomyces

pombe (strain 972/ATCC 24843) (Fission yeast))
4.2 × 10−34 356 36

Q9TVL3-2 Isoform a, of Probable cyclin-dependent kinase 9
(Caenorhabditis elegans) 9.7 × 10−34 348 35

Q641Z4 Cyclin-dependent kinase 9 (Rattus norvegicus) 7.4 × 10−34 345 31.3
Q99J95 Cyclin-dependent kinase 9 (Mus musculus) 7.4 × 10−34 345 31.3
P50750 Cyclin-dependent kinase 9 (Homo sapiens) 7.4 × 10−34 345 31.3

Q5EAB2 Cyclin-dependent kinase 9 (Bos taurus) 1.4 × 10−33 343 31

3.1.2. Structure Prediction Using Modeller

Modeller 9.2 was employed to generate five structures of the LdCRK12 using the
human CDK9 (PDB ID: 4BCF) as a suitable template [20]. The human cyclin-dependent
kinase 9 (CDK9) is a cdc2-like serine/threonine kinase whose related pathways have
been associated with various human malignancies and cardiomyocyte hypertrophy. The
sequence of the LdCDK12 was aligned to the template sequence and five structures were
modelled using Modeller 9.2.

The qualities of the five generated models were evaluated using the DOPE and genetic
algorithm 341 (GA341) scores. The GA341 score, which is derived from statistical potential,
assesses the reliability of a model [72]. A model can be said to be reliable when the GA341
score is higher than the determined threshold of 0.7. The five generated models using
Modeller 9.2 had a GA341 score lower than the 0.7 cut-off, thus the DOPE score was used
to select the most suitable model. The DOPE score is also a statistical potential score used
to assess predicted models. The reasonably best model is selected by choosing the structure
with the least DOPE value [30,43]. The DOPE and GA341 scores of the five predicted
models from Modeller 9.2 are shown (Table 2). For the Modeller generated structures,
model MOD5 was selected as the most suitable structure of the LdCRK12 due to its very
low DOPE score of −50486.88281 (Table 2 and Supplementary file 1).
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Table 2. Discrete optimized protein energy (DOPE) and GA341 scores of the 5 generated models
using Modeller 9.2.

Models Dope Score GA341 Score

MOD1 −49,545.96484 0.36807
MOD2 −49,137.34766 0.20576
MOD3 −47,466.54688 0.10907
MOD4 −49,459.57422 0.28138
MOD5 −50,486.88281 0.21007

3.1.3. Structure Prediction Using I-TASSER

I-TASSER was used to generate five protein structures of the LdCRK12. Based on the
magnitude regarding the threading template alignments and the convergence parameters
of the structure assembly simulations, I-TASSER computed a confidence rating for each
model, which is known as the C-score. A higher C-score value represents a model with
higher confidence and is usually in the range of (−5, 2) [31–34]. Out of the five generated
I-TASSER structures, model ITAS5 was selected as the most suitable model due to its high
C-score of −2.66 (Table 3 and Supplementary file 2).

Table 3. Predicted I-TASSER models and C-scores.

Models ITAS1 ITAS2 ITAS3 ITAS4 ITAS5

C-Score −3.68 −3.85 −2.87 −2.77 −2.66

3.1.4. Structure Prediction Using Robetta

Robetta was also employed to model five structures of the LdCRK12. Robetta uses the
ROSETTA to model protein structures either by comparative modelling or ab initio. For
the LdCRK12, Robetta used comparative modelling to predict plausible structures (Table 4).
ROB1 was considered as the reasonably best model since the predicted models are ranked
based on the model quality assessment method available in ProQ2 after clustering. The
predicted b-factors by color representation of the models were also visualized in Pymol.
The b-factor, which influences the local quality of a model, shows the parts of the structure
that were remodelled and not covered by a template. These regions are the least accurate
and have the most variation between models. All five predicted structures showed similar
b-factor coloration. Therefore, the five models were further evaluated using SAVES v5.0
(Table 4). ROB1 had a VERIFY score of 82.97%, which was the highest; ERRAT quality
factor of 88.0579; PROVE score of 0.0% and four PROCHECK errors, three warnings, and
two passes (Table 4). ROB1 was thus selected as the most acceptable structure from Robetta
(Supplementary file 3).

Table 4. Model evaluation of the Robetta predicted models using SAVES v5.0.

Models
Model Score

Verify (%) Errat Prove (%) Procheck

ROB1 82.97 88.0579 0.0 (Pass) 4E, 3W and 2P
ROB2 66.06 87.4259 0.0 (Pass) 5E, 2W and 2P
ROB3 65.83 84.7073 6.1 (Error) 5E, 1W and 3P
ROB4 67.54 83.6538 6.8 (Error) 5E, 2W and 2P
ROB5 78.55 87.822 5.8 (Error) 5E, 0W and 4P

3.2. Quality Assessment of Selected Models

The quality of the best models from each of the three techniques was assessed using
SAVES v5.0. Modelled protein structure MOD5 had poor values for all the quality metrics
(Table 5). MOD5 had VERIFY, ERRAT, and PROVE scores of 41.20%, 10.0536, and 16.1%,
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respectively. MOD5 was also predicted by PROCHECK to have five errors, two warnings,
and one pass (Table 5). ITAS5 had very good VERIFY and ERRAT scores of 85.36% and
80.2158, respectively. Although ITAS5 had the highest VERIFY score, it was predicted using
PROVE to be 9.5% erroneous (Table 5). PROCHECK also predicted ITAS5 to have six errors,
two warnings, and one pass. ROB1 had the highest ERRAT quality factor of 88.0579 and
0.0% erroneous parts, as predicted by PROVE (Table 5). The ERRAT error plots for MOD5,
ITAS5, and ROB1 were generated (Figure S1). MOD5 had the most erroneous or misfolded
regions (Figures 2a and S1A), while ROB1 had the lowest error rate for protein folding
(Figures 2c and S1C). Furthermore, the kinase domain of the LdCRK12 (residues 459–833) in
the ROB1 structure was not predicted to have any misfolded or erroneous regions (Figure
S1C). ITAS5 was also observed to have few misfolded portions (Figures 2b and S1B).

Table 5. Model evaluation of the top 3 LdCRK12 structures modelled via Modeller, Robetta, and
I-TASSER. Models ROB1, ITAS5, and MOD5 were generated using Robetta, I-TASSER, and Modeller,
respectively. E: error; W: warning; and P: pass.

Tool
Model Score

ROB1 ITAS5 MOD5

Verify (%) 82.97 85.36 41.20
Errat (Quality Factor) 88.0579 80.2158 10.0536

Prove (%) 0.0 (Pass) 9.5 (Error) 16.1 (Error)
Procheck 4E, 3W and 2P 6E, 2W and 1P 5E, 2W and 1P

Figure 2. Cartoon views of the top 3 predicted tertiary structures of the LdCRK12 from the 3 techniques
used: (a) MOD5; (b) ITAS5; (c) ROB1; and (d) top 3 models aligned. MOD5, ITAS5, and ROB1 are
colored in magenta, cyan and green, respectively.
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The Ramachandran plots of all the three shortlisted models were obtained using
PROCHECK which evaluates the stereochemistry of protein models by determining
residue-by-residue geometry and overall structure geometry [44]. A protein structure
is considered as quality based on the percentage of residues in the most favored (core),
additionally allowed, generously allowed, and disallowed regions [73]. Protein structure
MOD5 had 79.7%, 15.5%, 3.0%, and 1.8% of residues in the most favored, additionally al-
lowed, generously allowed, and disallowed regions, respectively (Table 6 and Figure S2A).
ITAS5 was also predicted to have 61.0%, 29.8%, 5.9%, and 3.3% of residues in the most
favored, additionally allowed, generously allowed, and disallowed regions, respectively
(Table 6 and Figure S2B). For the ROB1 structure, 82% of the amino acid residues were
present in the most favored region, 17.1% residues were found in the additionally allowed
regions, 0.4% of residues were in the generously allowed regions, and 0.4% in the disal-
lowed region (Table 6 and Figure 3). The Ramachandran plots revealed that the model
ROB1 had the most reasonably good structure (Table 6, and Figures 3 and S2A,B).

Table 6. Ramachandran plot statistics for the best models from the 3 modelling techniques. For all 3 models, the number of
end residues (excluding Gly and Pro) = 2, Glycine residues = 65, Proline residues = 85, and the total number of residues = 881.

Model MOD5 ITAS5 ROB1

No. of Residues Percentage No. of Residues Percentage No. of Residues Percentage

Most favored regions
[A, B, L] 581 79.7 445 61.0 598 82.0

Additionally allowed
regions [a, b, l, p] 113 15.5 217 29.8 125 17.1

Generously allowed
regions [~a, ~b, ~l, ~p] 22 3.0 43 5.9 3 0.4

Disallowed regions 13 1.8 24 3.3 3 0.4
Non-glycine and

non-proline residues 729 100.0 729 100.0 729 100.0

The quality of the overall best model (ROB1) was evaluated using the z-score from
ProSA-web [45,46]. The overall best model was predicted to be of X-ray quality and had a z-
score of −9.7 (Figure 4a). The local model quality of the chosen model was also determined
by plotting the energies as a function of amino acid residue position. Most of the residues
were predicted to have negative energy values, signifying a very good model (Figure 4b).
Generally, positive values signify problematic or erroneous parts of the input structure.

3.3. Binding Site Characterization

A binding site is a region on a protein that binds to a ligand or another macromolecule
with specificity [74]. CASTp was employed to predict the binding sites of the LdCRK12. At
the active site, a ligand or a substrate binds to an enzyme to induce a chemical reaction [75].
CASTp uses the Delaunay triangulation, alpha shape, and discrete flow methods to identify
topographic features, measure areas and volumes [76,77].

CASTp predicted 127 binding sites for the chosen LdCRK12 protein model. The predicted
binding cavities with no openings and with relatively small volumes and areas such that
no ligand could fit were ignored [59,78]. Since the modelled structure had many disordered
regions from residues Met1 to about Ala400, only binding cavities predicted to border the
kinase domain (459–833) were considered. A total of 14 binding sites were selected after
visualization in Chimera 1.12 and Pymol. The residues lining each of the 14 binding sites are
shown (Table 7). Pocket 7 was observed to overlap with pocket 3 (Table 7). Aligning the 3D
structures of the LdCRK12 and the human CDK9 in complex with T6Q revealed that pocket 1
is the ATP binding site of the kinase domain (Figure 5 and Table 7).
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Figure 3. Ramachandran plot of the selected LdCRK12 structure (ROB1) obtained via PROCHECK.
The percentages of residues in the most favored regions, additionally allowed regions, generously
allowed regions and disallowed regions are 82.0%, 17.1%, 0.4%, and 0.4%, respectively.

Figure 4. Model quality assessment using ProSA-web. (a) A z-score of the best LdCRK12 structure indicating the overall
model quality, and (b) a local model quality of the selected LdCRK12 structure by plotting energies as a function of amino
acid sequence position.
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Table 7. Predicted binding sites located around the kinase domain of the LdCRK12. Solvent accessible (SA) values are
shown.

Pocket Area (SA)/Å2 Volume (SA)/Å3 Residues Lining the Pocket

1 566.585 712.561

Leu438, Pro439, Ala441, Pro442, Pro443, Pro444, Ser445, Glu463,
Lys464, Leu465, Ser466, Glu467, Gly468, Thr469, Tyr470, Val473, Lys475,

Ala486, Leu487, Lys488, Glu506, Leu510, Ser544, Phe563, Ala564,
Tyr565, Ala566, Thr567, Ala568, Ser569, Ala571, Gly572, Arg575,

Arg576, His606, Asp608, Lys610, Asp612, Asn613, Leu615, Thr625,
Asp626, Phe627, Leu629, Cys630, Val650, Thr652

2 312.963 420.314

Met492, Thr495, His496, Gly498, Phe499, Pro500, Gln501, Thr502,
Arg505, Arg607, Gly628, Leu629, Cys630, Ser631, Arg639, Cys640,

Val644, Thr647, Pro648, Ser649, Val650, Ile651, Arg656, Met660, Thr665,
Tyr667, Ser708, Ala709, Glu712

3 443.095 377.107

Ile536, Arg597, Lys598, His600, Glu601, Arg603, Pro635, Asp668,
Glu669, Lys670, Thr823, Ala825, Glu826, Leu828, Arg829, Leu836,
Asp837, Asp838, Ala839, Pro840, Leu841, Leu842, Tyr845, Gln846,

Arg847, Val848, Leu849

4 207.834 203.064
Arg692, His693, Ala695, Gln696, Gln699, Gln700, Arg703, Pro705,
Thr711, Glu714, Gln715, Ser717, Thr720, Glu721, Gln749, Ala758,

Ala759, Gln760, Ala762

5 110.211 105.944 Thr720, Pro725, Leu726, Pro727, Pro728, Val731, Leu743, Leu746,
Glu747, Gln749, Gly750, Arg751, Glu754, Pro761, Ala762, Asn763

6 141.403 95.351 Ala571, Arg575, Lys610, Ser611, Asp612, Thr652, Ala654, Tyr655,
Gln682, Leu686, Glu687, Pro688, Tyr691, Arg694, Phe780

7 50.346 89.822 Pro635, Gly636, Ser637, Leu849, Pro850, Thr852

8 159.056 87.650
Leu685, Glu687, Pro688, Pro689, Tyr691, Arg692, Arg694, Ala695,
Gln698, Gln699, Arg718, Glu721, Ser774, Phe775, Leu776, Gln778,

Gln779, Phe780

9 101.847 84.378 Ala342, Val402, Ala403, Met404, Gly405, Leu412, Arg413, Leu415,
Pro417, Tyr420, Arg429

10 60.970 41.895 Phe580, Glu584, Leu587, Leu588, Lys591, Glu619, Gly620, Val622

11 150.732 38.172
Cys574, Phe578, Ala579, Phe580, Thr581, Pro582, Met585, Gln682,
Met683, Phe684, Leu686, Ile770, Phe771, Gly785, Trp786, Glu788,

Glu790, His799, Arg801, Pro802

12 68.900 28.853 Thr642, His643, Val644, Pro658, Glu659, Leu662, Gly663, Ser664,
Leu726, Ser736, His739, Met740, Leu816, Pro818, Arg821

13 69.295 22.359 Pro427, Arg429, Arg430, Val434, Gly435, Phe448, Gln452, Lys456

14 71.553 21.095 Pro658, Leu662, Leu713, Leu716, Ser717, Ile719, Thr720, Gly724, Pro725,
Leu726, Val742, Gln745, Leu746, Gln749, Leu816

3.4. Preparation of Screening Library

A total of 7722 African natural compounds were used as the screening library [52,53].
Additionally, Lipinski’s rule of five was used to filter the library to obtain 4409 compounds
comprising 3872 and 537 ligands from the NANPDB and AfroDB, respectively.

Three known antileishmanial drugs, namely amphotericin B, miltefosine, and paro-
momycin, were also retrieved from PubChem with CIDs 5,280,965, 3599, and 165,580,
respectively. Three inhibitors of LdCRK12 comprising compounds 5, 7, and 8, which had
very good EC50 values in mouse models of visceral leishmaniasis ranging from 0.005 µM
to 2 µM, were also used. The 3D structure of GSK3186899 was downloaded from Pub-
Chem with CID 122,429,808 whereas those of compounds 5 and 8 were generated using
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MarvinSketch 17.17.0. Additionally, a 2-amino-4-heteroaryl-pyrimidine inhibitor (Code:
T6Q), complexed with the human CDK9 (PDB ID: 4BCF) was extracted from the complex
and saved in sdf format.

Figure 5. Superimposition of human CDK9-T6Q complex with the LdCRK12. LdCRK12, CDK9, and
T6Q are colored in red, blue, and green, respectively.

All ligand structures were energy minimized using the universal force field (UFF)
under the Conjugate Gradient algorithm in 200 steps and converted to the partial charge
and atom type (pdbqt) format using Open Babel before the virtual screening.

3.5. Virtual Screening of Compounds

Autodock Vina was used for the virtual screening process [54]. The compounds were
first screened against the LdCRK12. Compounds with good pose and low binding energies
against the LdCRK12 were re-docked against the human CDK9 to select compounds that
are less likely to interact with critical residues of the human CDK9.

3.5.1. Screening the Library against LdCRK12

The pre-filtered library comprising a total of 4409 compounds and the known in-
hibitors were screened against the energy minimized LdCRK12 using a grid box dimension
of 91.21 × 93.45 × 78.24 Å3 and centered at (74.47, 128.44, 81.76) Å to cover the kinase
domain of the protein. A total of 4369 compounds were successfully screened against
the LdCRK12. A stringent threshold of −8.5 kcal/mol was used to select the compounds
after the virtual screening process. This threshold was used since it has been shown that
an AutoDock score of −7.0 kcal/mol differentiates well between certain and uncertain
protein–ligand interactions [55]. A total of 290 compounds had binding energies less than
or equal to −8.5 kcal/mol. AutoDock Vina uses a negative function to rank the output in
the order of decreasing binding affinity, thus, the higher the negativity, the more plausible
the candidate as a potential lead compound.

The protein–ligand complexes were then inspected visually using PyMOL to select
the best docked ligands. A total of 17 compounds were eliminated since they did not
dock deep into the LdCRK12. Additionally, based on the generated protein–ligand inter-
action profiles, 27 compounds that did not exhibit any hydrogen bonding with LdCRK12
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were excluded. A total of 246 compounds were thus selected from the virtual screening
output. Of the 246 compounds, ZINC000095485940 demonstrated the least binding en-
ergy to the LdCRK12 with a value of −10.1 kcal/mol. NANPDB1406, NANPDB2581 and
NANPDB6446 also demonstrated low binding energies of −9.5, −9.2 and −9.1 kcal/mol, re-
spectively. ZINC000095485940, NANPDB1406, NANPDB2581, and NANPDB6446 demon-
strated a higher binding affinity to the LdCRK12 than all the known inhibitors used in this
study (Table 8).

Table 8. The binding energies and intermolecular bonds between LdCRK12 and selected compounds.

Compound
Binding Energy (kcal/mol) Hydrogen Bonds (Bond Length (Å)) Hydrophobic Bonds

LdCRK12 CDK9 LdCRK12 CDK9 LdCRK12 CDK9

ZINC000095485940 −10.1 −7.7 Gly468 (2.93), Ser569
(2.95), Asp626 (2.70)

Arg195 (3.06, 3.22),
Glu234 (2.9),
Arg343 (3.1)

Leu465, Ser466,
Thr469, Val473,
Ala486, Lys488,
Ser544, Phe563,

Asp612, Asn613,
Leu615, Thr625

Arg188, Leu192,
Arg195, Thr233,
Glu234, Tyr338,
Ala340, Arg343

NANPDB1406 −9.5 −7.3
Lys488 (3.26), Ala566

(2.89, 2.97, 3.07),
Ser569 (3.01)

Asn232 (2.8),
Phe336 (3.08),

Ala340 (2.69, 3.15),
Arg343 (2.88, 3.1,

3.17, 3.25)

Leu465, Ser466,
Gly468, Val473,
Ala486, Tyr565,
Thr567, Ala568,
Asp612, Leu615,

Asp626

Asn232, Thr233,
Met335, Phe336,
Tyr338, Ala340,

Arg343

NANPDB2581 −9.2 −7.5 Lys610 (3.08) Arg195 (3.32),
Arg343 (3.09, 3.35)

Leu465, Ser466,
Thr469, Tyr470,
Ala568, Ser569,

Asp612, Asn613,
Leu615, Asp626

Leu192, Arg195,
Thr233, Glu234,
Pro341, Pro342,

Arg343

NANPDB6446 −9.1 −7.3 Ser569 (2.77, 3.02),
Arg575 (2.87, 3.15)

Asn179 (3.04),
Tyr259 (2.89)

Leu465, Ser466,
Ala568, Gly572,
Asp612, Asp626

Asn179, Pro182,
Glu203, Asp205,
Trp253, Asn258,
Tyr259, Pro300

Compound 8 −9.1 −9.0 Leu723 (2.83) Lys48 (2.91),
Asp149 (2.99, 3.08)

Gly724, Pro725,
Leu726, Pro727,
Pro728, Val731,
Leu743, Glu747,
Asn763, Trp764,
Gln815, Leu816

Thr29, Phe30,
Leu51, Pro60,

Thr62, Asp149,
Leu170, Arg188,
Val190, Thr191,
Leu192, Met335

T6Q −9.1 −8.6 Thr469 (3.06) -

Leu465, Ser466,
Gly468, Thr469,
Val473, Lys488,
Ala568, Ser569,
Arg575, Lys610,
Asp612, Asn613,
Leu615, Asp626

Ile25, Phe30,
Val33, Ly48,

Asp109, Gly112,
Ala153, Leu156,
Ala166, Asp167,
His331, Leu332,

Thr333

DDD853651/
GSK3186899/
Compound 7

−8.5 −8.8

Ser466 (2.96), Gly468
(3.19), Lys488 (3.03),
Ser544 (3.27), Thr625
(3.12), Asp626 (3.31,
3.3), Tyr691 (2.98)

Glu107 (3.07, 2.98)

Gly468, Thr469,
Tyr470, Val473,
Ala486, Lys488,
Phe563, Lys610,
Asp612, Leu615,
Asp626, Tyr691

Ile25, Val33,
Lys35, Lys48,

Phe103, Glu107,
His108, Asp109,
Ala166, Asp167

Compound 5 −7.2 −8.6 Leu723 (2.98, 3.07) Cys106 (3.2, 3.0)

Gly724, Pro725,
Leu726, Pro727,
Pro728, Val731,
Tyr732, Leu743,
Asn763, Trp764,
Gln815, Leu816,
Asp817, Gln820

Ile25, Val33,
Ala46, Lys48,

Phe103, Phe105,
Glu107, His108,
Asp109, Gly112,
Leu113, Ala153,
Asn154, Leu156,
Ala166, Asp167
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Among the known inhibitors, the compound 8 and TQ6 demonstrated the least bind-
ing energy of −9.1 kcal/mol to the LdCRK12. Compound 8 was reported to inhibit the
Leishmania parasite with EC50 values of 0.025 µM and 0.075 µM in the axenic and intra-
macrophage assays, respectively. GSK3186899, paromomycin, and compound 5 also had
binding energies of −8.5, −7.9, and −7.2 kcal/mol, respectively (Table 8). These three com-
pounds demonstrated binding energies lower than the −7.0 kcal/mol threshold defined for
AutoDock users [55]. This implies that these compounds have the potential to demonstrate
significant inhibitory activities against the parasite as exhibited by compounds 5 and 7
previously [20]. Miltefosine demonstrated the highest binding energy of −5.0 kcal/mol to
the LdCRK12 (Table S1).

3.5.2. Re-Docking Compounds against the CDK9

Since the kinase domain is conserved and the human CDK9 is homologous to the
LdCRK12, there was the need to screen the shortlisted compounds against the CDK9. A total
of 246 were re-docked against the human CDK9 to select compounds with a relatively
low binding affinity to the CDK9, which were less likely to interact with critical residues
of the human CDK9. Before the virtual screening, the CDK9 was remodelled with PDB
structure 4BCF as a template using Modeller 9.2 due to missing residues. Residues 1–5,
89–96, 177–181, and 327–330 were missing in the human CDK9 structure. The complete
sequence of the human CDK9 was retrieved from UniProt with ID P50750 [38–40]. The
sequence was aligned to the 4BCF structure and five models were generated using Modeller
9.2. The qualities of the five models were assessed using the DOPE and GA341 scores. All
the modelled structures had a GA341 score of 1, thus the structure with the lowest DOPE
(−38809.11328) score was chosen.

Ligands that docked into the ATP binding site of the human CDK9 were not considered
for downstream analysis. Additionally, compounds with similar binding energy against
the CDK9 as T6Q were eliminated to prevent the likelihood of drug off-target binding.
T6Q had a binding energy of −8.6 kcal/mol when docked into the ATP binding site of the
human CDK9 (Table 8).

Compounds 8, GSK3186899, and 5 were observed to have binding energies of −9.0,
−8.8 and −8.6 kcal/mol against CDK9, respectively (Table 8). However, GSK3186899 had
an IC50 value higher than 20 µM against the human CDK9 [20]. Miltefosine had the lowest
binding affinity to CDK9, with a binding energy of −5.6 kcal/mol (Table 8).

ZINC000095486260 demonstrated the highest binding energy (−6.4 kcal/mol) against
CDK9, followed by NANPDB4609 and NANPDB328, with both having a binding energy
of −6.6 kcal/mol each (Table 8). ZINC000095485940, NANPDB1406, NANPDB2581, and
NANPDB6446, which had the highest binding affinity to LdCRK12, had binding energies of
−7.7, −7.3, −7.5 and −7.3 kcal/mol with the human CDK9, respectively (Table 8). A total
of 133 compounds with a high binding affinity against the CDK9 were eliminated.

3.6. Characterisation of Mechanisms of Binding

The protein–ligand interactions were determined for both LdCRK12- and the human
CDK9–ligand complexes using LigPlot + v1.4.5 [56].

3.6.1. Characterization of LdCRK12–Ligand Interactions

Most compounds were observed to dock into the ATP binding pocket, consistent with
pocket 1 (Table 7; Table 8) with paromomycin and T6Q docking into the ATP binding cavity.
Compounds 5 and 8 docked into pocket 14 and formed hydrogen bonds with Leu723
(Table 7; Table 8). Compound 5 formed 2 hydrogen bonds with Leu723 of lengths 2.98
and 3.07 Å, and interacted with Gly724, Pro725, Leu726, Pro727, Pro728, Val731, Tyr732,
Leu743, Asn763, Trp764, Gln815, Leu816, Asp817, and Gln820 via hydrophobic bonds.
Compound 8, which had a binding affinity of −9.1 kcal/mol with the LdCRK12 interacted
via one hydrogen bond with Leu723 (2.83 Å), and formed hydrophobic contacts with
Gly724, Pro725, Leu726, Pro727, Pro728, Val731, Leu743, Glu747, Asn763, Trp764, Gln815,
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and Leu816. The interactions between compounds 5 and 8 with these residues may account
for their high L. donovani inhibitory activity.

GSK3186899, which docked into pocket 1, interacted with Ser466 (2.96 Å), Gly468
(3.19 Å), Lys488 (3.03 Å), Ser544 (3.27 Å), Thr625 (3.12 Å), Asp626 (3.31 Å, 3.3 Å), and Tyr691
(2.98 Å) via hydrogen bonding, and Gly468, Thr469, Tyr470, Val473, Ala486, Lys488, Phe563,
Lys610, Asp612, Leu615, Asp626, and Tyr691 via hydrophobic bonding (Figures 6d and S3D,
and Tables 7 and 8). The multiple hydrogen bonding formed between GSK3186899 and the
LdCRK12 may be a key influencer of its activity [79].

Figure 6. Cartoon representation of LdCRK12 in complex with: (a) ZINC000095485940; (b) NAN-
PDB1406 (methyl ellagic acid); (c) NANPDB2581 (stylopine); and (d) GSK3186899 (Compound 7).
The binding site is shown as surface representation with the ligands shown as sticks.

ZINC000095485940 interacted with the LdCRK12 via hydrogen bonds with Gly468,
Ser569 and Asp626 of bond lengths 2.93, 2.95 and 2.70 Å, respectively (Figures 6a and S3A,
and Table 8). ZINC000095485940 also formed hydrophobic contacts with Leu465, Ser466,
Thr469, Val473, Ala486, Lys488, Ser544, Phe563, Asp612, Asn613, Leu615, and Thr625
(Figures 6a and S3A, and Table 8). NANPDB1406 interacted with Lys488, Ala566, and Ser569
via hydrogen bonds and also formed hydrophobic bonds with Leu465, Ser466, Gly468,
Val473, Ala486, Tyr565, Thr567, Ala568, Asp612, Leu615, and Asp626 (Figures 6b and S3B, and
Table 8). NANPDB2581 formed a hydrogen bond with Lys610 with a bond length of 3.08
Å and hydrophobic contacts with Leu465, Ser466, Thr469, Tyr470, Ala568, Ser569, Asp612,
Asn613, Leu615, and Asp626 (Figures 6c and S3C, and Table 8). NANPDB6446 also interacted
with the LdCRK12 via hydrogen bonds with Ser569 and Arg575, and hydrophobic bonds with
Leu465, Ser466, Ala568, Gly572, Asp612, and Asp626. The formation of multiple hydrogen
bonds between an enzyme and a molecule influences the activity of the compound [79].
Leu465, Ser466, Thr469, Ala486, Ala568, Ser569, Asp612, Asn613, Leu615, and Asp626 are
predicted as critical residues for ligand binding in the ATP binding pocket.
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Amphotericin B docked into binding pocket 3 forming hydrogen bonds with Arg603,
Pro635, Tyr845, Gln846, and Arg847 (Table S1). Amphotericin B also interacted with Pro635,
Gly636, Thr642, His643, Glu669, Lys670, Thr823, Glu826, Tyr845, Gln846, Arg847, and
Leu849 via hydrophobic contacts. These residues were found to line binding pocket 3
(Table 7). NANPDB2521 and NANPDB1011 also formed interactions with the aforemen-
tioned residues.

Miltefosine formed 2 hydrogen bonds with Gly422 with bond lengths of 3.05 and
3.1 Å, and interacted with Leu181, Gly344, Ile345, Thr396, Arg397, Ala399, Pro401, Thr418,
Pro419, Tyr420, Pro421, Gly422, Tyr428, and Arg432 via hydrophobic bonds (Table 8), which
lined pocket 9 (Table 7). Pockets 3 and 9 are worthy of further experimental exploration.

3.6.2. Characterization of Human CDK9–Ligand Interactions

The human CDK9–ligand interactions were also investigated (Table 8 and Table S1).
Ligands which interacted with the critical residues of the human CDK9 (Ile25, Ala46, Lys48,
Phe103, Glu107, Asp109, Asp145, Leu156, and Asp167) were not considered for downstream
analysis due to the possibility of drug off-target activity [80,81]. Previous studies have re-
ported on the crystal structures of analogues of 4-(thiazol-5-yl)-2-(phenylamino)pyrimidine-
5-carbonitrile bound to CDK9/cyclin T [82,83]. The compounds demonstrated Ki values
ranging from 6–43 nM with an increase in the thermal stability of CDK9/cyclin T [82].
It was reported that the thiazole, pyrimidine, and aniline moieties docked into the ATP
binding site and formed a hydrogen bond with the hinge region of the kinase [82]. The
pyrimidine ring was observed to lie between Ala46 and Leu156 while the C5-carbonitrile
was reported to form a lone pair−π interaction with an average distance of 3.7 Å with
the gatekeeper residue Phe103 [82]. Hydrogen-bonds were also formed between the com-
pounds and residues Ile25, Lys48, Asp145, with Glu107 and Asp167 [82]. Other studies
have corroborated the above listed residues as being critical to CDK9–ligand binding [84,85].
A molecular docking study involving CDK9 and BAY-958 also reported BAY-958 to form
a hydrogen-bond with Asp109 [84].

A total of 94 compounds that interacted with the critical residues of the human CDK9
were eliminated from this study. A total of 19 compounds with a relatively high binding
affinity to the LdCRK12 and did not interact with the critical residues of the human CDK9
were obtained.

3.7. ADMET Prediction

Though the screening library was pre-filtered using Lipinski’s rule, Veber’s rule was
further applied to the 19 identified compounds, of which two failed. NANPDB4609 and
NANPDB3239 violated Veber’s rule due to their high total polar surface area (TPSA)
values of 151.96 and 145.91, respectively. Veber’s rule requires a TPSA of no more than
140 Å2 [86]. Compounds with a TPSA not more than 140 Å2 are considered to have good
oral bioavailability [86]. TPSA values are considered as good indicators of excellent human
intestinal absorption (HIA) and Caco-2 permeability [87]. The calculated logP (cLogP)
values were also determined using the OSIRIS DataWarrior 5.0.0 (Table S2).

Most of the compounds were predicted to be moderately soluble, including compounds
5, 7, and 8 (Table S2). Compound 5 was shown experimentally to have poor solubility and
is metabolically unstable although it was the most potent against LdCRK12 with an EC50
value of 0.014 µM in the intra-macrophage assay [20]. NANPDB6446 was predicted to be
very soluble while NANPDB1406 was predicted to be moderately soluble. ZINC95485940,
NANPDB1406, and NANPDB1649 were also predicted to be soluble (Table S2).

The potential of a drug to move across the blood–brain barrier to the brain is referred
to as BBB permeation. Only NANPDB2581, NANPDB2582, NANPDB3614, NANPDB1649
and ZINC000095485880 were predicted to have permeation into the brain–blood barrier
(BBB) [Table S2]. In the brain, the drug binds to specific receptors to activate certain
signaling pathways. Additionally, for a drug to exhibit the desired pharmacological
activities with the brain parenchyma, it needs to be able to permeate the BBB [88].
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T6Q, compound GSK3186899, compound 5, NANPDB4609, NANPDB3239, ampho-
tericin B, paromomycin, and miltefosine were predicted to have low gastrointestinal (GI)
absorption, which suggests a low probability of successful absorption into the bloodstream
(Table S2). Another factor considered was the likelihood of the compounds to be non-P-
glycoprotein (P-gp) substrates. P-gp aids in the removal of drugs or xenobiotics from the
central nervous system (CNS) by functioning as a biological barrier by removing toxins and
xenobiotics from cells. It is also crucial in the absorption and distribution of drugs [89]. All
the inhibitors or drugs used in this study were predicted to be P-gp substrates (Table S2).
Of the top 19 hits, 10 compounds were predicted to be non-P-gp substrates (Table S2) and
may likely have desirable distribution in the circulatory system upon administration.

3.8. Toxicity Prediction with OSIRIS Property Explorer

The toxicity profiles of the 17 hits and the known drugs were determined using
OSIRIS DataWarrior 5.0.0 (Table S3). Of the 17 hits, 13 compounds were predicted to be
non-tumorigenic, non-mutagenic and non-irritant, and to have no reproductive effects
(Table S3). NANPDB6446 was predicted to be highly mutagenic, tumorigenic, and irritant.
NANPDB6446 can serve as a scaffold for fragment-based drug design due to its relatively
low molecular weight of 365.381 g/mol.

NANPDB3614 and ZINC000000828203 were also predicted to be highly tumorigenic
while NANPDB3284 was predicted to have reproductive effects (Table S3). Compounds
5, 8, amphotericin B, miltefosine, paromomycin, and T6Q were also predicted to have no
mutagenicity, tumorigenicity, irritancy, and reproductive effect (Table S3). GSK3186899 was
predicted to possess low tumorigenicity though it was non-mutagenic, non-irritant, and
had no reproductive effect (Table S3). GSK3186899 was selected as the preclinical candidate
due to its effectiveness, efficacy, pharmacokinetics, and safety profile [20]. GSK3186899
was reported to possess L. donovani inhibitory activity in cidal axenic amastigote and
intra-macrophage assays with EC50 values of 0.1 and 1.4 µM, respectively [20].

3.9. Biological Activities of Hits

The biological activities of the 17 identified hits were determined using PASS, an Open
Bayesian machine learning technique. Structure descriptors, which are also referred to as
multilevel neighborhoods of atoms (MNAs) descriptors, were generated as inputs [27].

A total of 13 compounds were predicted to possess antiprotozoal activity, of which 10
were predicted to be antileishmanial (Table S4). NANPDB1406, NANPDB2521, NAN-
PDB3435, NANPDB3284 and ZINC000095486260 were predicted as kinase inhibitors
(Table S4). Since the LdCRK12 has a kinase domain, these predictions necessitate the in vitro
testing of these compounds to validate their anti-LdCRK12 and antileishmanial properties.
Fifteen of the hits were predicted to possess antineoplastic (anticancer) activity (Table S4).
A review on the in vitro leishmanicidal potential of anticancer compounds suggested the
use of antineoplastic compounds for the treatment of leishmaniasis [90]. Protein kinase
inhibitors such as sunitinib, sorafenib, and lapatinib which are used for treating cancers
were reported to be active against Leishmania donovani amastigotes in murine macrophages
with IC50 values of 1.1, 3.7, and 2.5 µM, respectively, showing similar efficacy to that of
miltefosine (IC50 = 1.0 µM) [91]. Sunitinib, sorafenib, and lapatinib were also reported to
be non-toxic to mammalian cells [91].

NANPDB1011, NANPDB3949, ZINC000095486260, NANPDB3435, NANPDB3284
and NANPDB2521 were predicted to possess dermatological activities. These compounds
may be beneficial in treating post kala-azar dermal leishmaniasis (PKADL). NANPDB1649
(sesamin) has been reported to be active against Leishmania amazonensis with an IC50
value of 15.8 µg/mL and was not cytotoxic to macrophage cells with CC50 values greater
than 100 µg/mL [92]. Additionally, ZINC000000828203 (diphyllin) isolated from Haplo-
phyllum bucharicum (Rutaceae) has been reported to demonstrate antileishmanial activity
against Leishmania infantum promastigotes and intracellular amastigotes with IC50 values
of 14.4 µM and 0.2 µM, respectively [93]. NANPDB3614 (justicidin B) has also been shown
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to be a potential antiprotozoal agent by showing antitrypanosomal activities against Try-
panosoma brucei rhodesiense and Trypanosoma cruzi with IC50 values of 0.2 and 2.6 µg/mL,
respectively [94]. Since Leishmania and Trypanosoma are trypanosomatids, repurposing
NANPDB3614 for the development of therapeutic agents for leishmaniasis can be explored.

3.10. Ligand Efficiency-Based Metrics for Selected Compounds

Quality metrics for the top compounds such as the inhibitory constant (Ki), ligand
efficiency (LE), fit quality (FQ), LE scale (LE_scale), and LE-dependent lipophilicity (LELP)
were determined as described previously [59,60]. The predicted Ki values ranged from
0.039 to 0.587 µM (Table 9). ZINC000095485940 demonstrated the lowest predicted Ki
value of 0.039 µM while NANPDB1649 (sesamin) showed the highest Ki value of 0.587 µM
against the LdCRK12 (Table 9; Table 10). Sesamin was shown to inhibit L. amazonensis with
an IC50 value of 15.8 µg/mL (44.588 µM) [92]. The relatively low Ki values indicate the
potential inhibitory activities of the selected compounds [95].

Table 9. Ligand quality assessment metrics for selected compounds. The metrics include inhibitory constant (Ki), ligand
efficiency (LE), LE scale (LE_scale), fit quality (FQ), LE-dependent lipophilicity (LELP), and calculated logP (cLogP).

Compound Binding Energy NHA cLogP Ki (µM) LE LE_Scale FQ LELP

ZINC000095485940 −10.1 29 −0.1814 0.039 0.348 0.347 1.003 0.521
NANPDB1406 −9.5 23 1.5531 0.108 0.413 0.416 0.993 3.761
NANPDB2581 −9.2 24 3.3633 0.180 0.383 0.404 0.948 8.781
NANPDB6446 −9.1 26 −0.8296 0.213 0.35 0.380 0.921 2.370
NANPDB1649 −8.5 26 3.2246 0.587 0.327 0.380 0.861 9.861

Table 10. Selected compounds and known LdCRK12 inhibitors with their two-dimensional (2D) structures and common
names or International Union of Pure and Applied Chemistry (IUPAC) names. The IUPAC names were generated using the
Marvin suite (http://www.chemaxon.com/; accessed on 27 February 2020).

Compound ID Common/IUPAC Name 2D Structure

ZINC000095485940

(1R,2R,4R,7S,8R,10R,11R,12R,13R,16S)-7-(furan-
3-yl)-10,13-dihydroxy-8,13-dimethyl-3,6,14-

trioxapentacyclo[9.7.0.02,4.02,8.012,16]octadecane-
5,18-dione

NANPDB1406 methyl ellagic acid
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The ligand efficiency (LE) of the selected compounds ranged from 0.327 to 0.413 (Table 9)
which are very close to the average ligand efficiency values reported for fragment-like com-
pounds (0.38). LE is used to assess the binding affinity, taking into account the number of
heavy atoms (NHA) of a molecule [96,97]. Herein, NANPDB1649 demonstrated the lowest
LE value of 0.327. ZINC000095485940, NANPDB6446, NANPDB2581 and NANPDB1406 had
LE values of 0.347, 0.380, 0.404 and 0.416, respectively (Table 9; Table 10). Similarly, these LE
values are close to the average LE values of fragment-like molecules (0.38) [97].

The LE_Scale takes into consideration size dependency, which is a limitation of the LE
metric. The computed LE_Scale values ranged from 0.347 to 0.416 (Table 9), in concordance
with the LE_Scale values of similar active compounds with the same number of heavy
atoms [98,99]. ZINC000095485940 had the lowest LE_Scale value of 0.347, while NAN-
PDB1406 had the highest value of 0.416. NANPDB2581, NANPDB6446 and NANPDB1649
also had LE_Scale values of 0.404, 0.380 and 0.380, respectively (Table 9).

The fit quality (FQ), which is a more accurate metric used to assess ligand efficiency, is
determined as a ratio of the observed LE to the LE_Scale of a compound. The closer the FQ to
1, the more ideal the ligand. The calculated FQ values ranged from 0.861 to 1.003 (Table 9),
suggestive that the selected molecules have plausible binding to the LdCRK12 receptor [97].
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Another important metric, ligand-efficiency-dependent lipophilicity (LELP) was also
computed for the selected molecules. For a promising compound, the recommended LELP
should be between 0 and 7.5, although molecules that satisfy Lipinski’s rule are reported to
have LELP values less than 16.5 [100]. The LELP values of all proposed molecules ranged
between 0.521 and 9.861, which suggests that the selected molecules have a good affinity to
LdCRK12, considering lipophilicity. ZINC000095485940, NANPDB1406 and NANPDB6446
had LELP values of 0.521, 3.761 and 2.370, respectively (Table 9).

3.11. Molecular Dynamics Simulations

Molecular dynamics studies the motion of atoms along the course of time by the
integration of Newton’s equations of motions [101]. Molecular dynamics simulations
were performed using GROMACS 2018 to elucidate the dynamic behavior of selected
compounds within the active sites of the LdCRK12 protein. The root mean square deviation
(RMSD), the radius of gyration (Rg), and root mean square fluctuation (RMSF) were
analyzed for the unbound protein and the protein–ligand complexes (Figure 7a–c).

3.11.1. The Root Mean Square Deviation (RMSD) of the Complexes

To evaluate the stability of the LdCRK12–ligand complexes, the RMSD plots of the
unbound protein and the LdCRK12–ligand complexes were analyzed (Figure 7a). The RMSD
is a frequently used measure of the differences between the structures sampled during the
simulation and the reference structure [102]. MD simulations require systems to be close to
their native conformation. The time trajectory of RMSD shows the deviation of a protein
structure from a reference structure as a function of time [102].

The RMSD values of all nine structures experienced a gradual rise from 0 to 3 ns.
The unbound LdCRK12 was observed to rise steadily until about 4 ns and maintained
stability until about 5 ns, with an average RMSD of 1.1 nm. The RMSD of the unbound
protein rose to an average of 1.25 nm until about 8 ns, and experienced a fall to an average
of 1.0 nm until the end of the 10 ns simulation period. The RMSD plot of the LdCRK12-
GSK3186899 complex showed a similar trend to that of the unbound LdCRK12. However,
the LdCRK12-GSK3186899 complex did not experience a decline at 8 ns, but maintained
the average 1.25 nm value until the end of the period. LdCRK12-compound 8 complex
demonstrated the highest RMSD values with the most fluctuations. LdCRK12-compound
8 complex demonstrated a steep rise from 0 to 1.6 ns, maintained an average RMSD value
of 1.25 nm for about 1.5 ns, and experienced some fluctuations until the end of the 10 ns
period (Figure 7a). The LdCRK12-compound 5 complex experienced stability until about
6 ns with an average RMSD of 1.0 ns and rose gradually to an average of 1.25 from 7 ns
until the end (Figure 7a).

LdCRK12-NANPDB1406 complex exhibited the lowest RMSD average of 0.8 nm until
about 4.2 ns where it rose to 1.2 nm (Figure 7a). The LdCRK12-NANPDB2581 complex
experienced the longest stability with an average RMSD value of 0.9 nm until about 7 ns
where a gradual rise was observed (Figure 7a). LdCRK12-ZINC000095485940, LdCRK12-
NANPDB1649, and LdCRK12-NANPDB6446 complexes were unstable from 0 to about 6 ns
where they maintained stable RMSDs with averages of 1.5, 1.55, and 1.5 nm, respectively,
until the end of the 10 ns simulation period (Figure 7a).

3.11.2. The Radius of Gyration (Rg) of Complexes

This study analyzed the compactness and folding of the unbound protein and the
protein–ligand complexes by plotting the radius of gyration over simulation time. The loss
of compactness affects the stability of the complex by introducing weak intermolecular
bonds. When the Rg of a complex is higher, the compactness of the protein–ligand complex
is lower, causing the interactions between ligand and protein to be weaker [103]. A stably
folded protein will maintain a relatively steady Rg while the Rg value is likely to change
over time if the protein unfolds [104].
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Figure 7. The root mean square deviation (RMSD), radius of gyration (Rg), and root mean square fluctuation (RMSF)
graphs of the LdCRK12–ligand complexes generated over a 10 ns molecular dynamics simulation. (a) RMSD versus time
graph of LdCRK12–ligand complexes; (b) Radius of gyration (Rg) versus time graph of LdCRK12–ligand complexes; and (c)
Analysis of RMSF trajectories of residues of LdCRK12–ligand complexes. For the 3 graphs, the unbound protein (LdCRK12),
compound 5, GSK3186899 (compound 7), compound 8, NANPDB1406, NANPDB1649, NANPDB2581, NANPDB6446, and
ZINC000095485940 are represented as black, red, green, blue, yellow, brown, grey, purple and cyan, respectively.

The Rg values of the unbound LdCRK12 and all the eight LdCRK12–ligand complexes
ranged between 3.9 nm and 4.9 nm (Figure 7b). The Rg of the LdCRK12 experienced
a decline from 0 ns to about 5.5 ns, maintained a steady Rg of an average of 4.05 nm
until about 8.6 ns, and experienced a rise to 4.2 nm (Figure 7b). LdCRK12-compound 5
and LdCRK12-GSK3186899 complexes exhibited similar Rg trends as that of the unbound
LdCRK12. Both complexes also exhibited relatively lower Rg values than that of the
unbound protein throughout the 10 ns simulation period. Both complexes experienced
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a fall in Rg values until about 4 ns. The Rg of LdCRK12-compound 5 complex was observed
to fall to about 5.8 ns and maintained a steady Rg average of 4 nm till the end of the 10 ns
period. The Rg of the LdCRK12-GSK3186899 complex rose at 5 ns and maintained an
average Rg value of 4.1 nm until the end of the simulation period (Figure 7b).

The Rg values of the LdCRK12-compound 8, LdCRK12-NANPDB6446, LdCRK12-
ZINC000095485940, LdCRK12-NANPDB2581 and LdCRK12-NANPDB1649 complexes
experienced various degrees of fluctuations due to unstable Rg values (Figure 7b). The
LdCRK12-NANPDB1406 complex demonstrated the most stable Rg from 0 to 8 ns with an
average of 4.2 ns, which then rose to 4.35 ns for about 1.5 ns and experienced a sharp rise
to 4.6 nm.

3.11.3. The Root Mean Square Fluctuation (RMSF) of the Complexes

The RMSF trajectories of the unbound LdCRK12 structure and LdCRK12–ligand com-
plexes were also investigated. The RMSF reveals the flexibility of different regions of a
protein, which can be related to crystallographic B-factors [102]. Residues contributing to
the complex structural fluctuation can be assessed by this stability profile analysis. Higher
RMSF values imply greater fluctuations. Protein regions involved in ligand binding and
catalysis are known to demonstrate greater fluctuations [105]. Adaptive variation in flexi-
bility lies principally in these regions of the protein sequence that affect the conformational
stabilities of the protein–ligand complex [105].

The RMSF plots revealed that all eight compounds caused some degree of fluctuations
in similar regions of the LdCRK12 (Figure 7c). Fluctuations were observed at regions from
residue index 30–50, 60–150, 280–350, and 700–800. The highest fluctuation was observed
between residues 60–150 followed by residues 280–350, implying they could be involved
in ligand binding.

3.12. MM/PBSA Computations
3.12.1. Contributing Energy Terms

The molecular mechanics Poisson–Boltzmann surface area (MM/PBSA) computation
was employed to determine the binding free energies of the LdCRK12–ligand complexes.
At a quantitative level, simulation-based methods provide substantially more accurate
estimates of ligand binding free energies than other computational approaches such as
docking [106]. The calculation of the binding free energy ∆Gbind, which is the free energy
difference between the ligand-bound state and the corresponding unbound states of protein
and ligand, is used to quantify the affinity of a ligand to its target. Assessing the ∆Gbind
of a series of ligands against a particular target can reveal those ligands with higher
binding affinities to the target. Thus, the ∆Gbind calculations are important to gain in-depth
knowledge about the binding modes of the hits in drug design [107].

The MM/PBSA calculations showed that compound 8 had the lowest binding free
energy of −68.609 kJ/mol (Table 11). Compound 5 was also observed to have a binding free
energy of −54.023 kJ/mol while GSK3186899 had −27.382 kJ/mol (Table 11). Compounds
5 and 8 demonstrated better inhibitory activities against L. donovani than GSK3186899, al-
though GSK3186899 was selected as the preclinical candidate due to pharmacokinetics and
safety concerns [20]. NANPDB1649 had the lowest binding free energy of −50.434 kJ/mol
among the five selected hits (Table 11). NANPDB2581, NANPDB6446 and NANPDB1406
also demonstrated low binding free energies of −49.374, −37.179 and −24.518 kJ/mol,
respectively. These compounds exhibited binding affinities similar or better than that of the
preclinical candidate (GSK3186899), thus are worthy of further experimental validation.

Even though ZINC000095485940 was predicted to have the lowest binding energy to
the LdCRK12 (−10.1 kcal/mol) by Autodock Vina, it had the highest binding free energy of
0.593 kJ/mol from the MM/PBSA computations (Table 11), thereby potentially limiting its
lead-likeness. In a previous study, compounds with high binding free energies have been
shown to demonstrate inhibitory activity against receptors due to their very low electrostatic
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energies and very high polar energies [108]. ZINC000095485940 demonstrated high polar
solvation energy of 136.331 kJ/mol and electrostatic energy of −29.485 kJ/mol (Table 11).

Table 11. Contributing energy terms of the MM/PBSA computations for the LdCRK12–ligand complexes. Energy values are
shown as average ± standard deviations in kJ/mol. SASA denote solvent accessible surface area.

van der Waal
Energy (kJ/mol)

Electrostatic Energy
(kJ/mol)

Polar Solvation
Energy (kJ/mol)

SASA Energy
(kJ/mol)

Binding Energy
(kJ/mol)

Compound 5 −98.909 ± 22.552 −9.113 ± 13.340 67.471 ± 24.307 −13.471 ± 2.359 −54.023 ± 17.067
DDD853651/GSK3186899/

Compound 7 −107.423 ± 24.517 −43.202 ± 23.069 140.188 ± 36.187 −16.945 ± 2.444 −27.382 ± 20.792

Compound 8 −138.191 ± 15.201 −17.732 ± 9.037 103.997 ± 24.258 −16.683 ± 1.392 −68.609 ± 13.327
NANPDB1406 −125.840 ± 9.460 −40.995 ± 10.072 157.502 ± 22.889 −15.186 ± 0.971 −24.518 ± 14.412
NANPDB1649 −111.638 ± 18.534 −4.178 ± 8.634 80.033 ± 25.137 −14.651 ± 1.960 −50.434 ± 13.538
NANPDB2581 −110.229 ± 10.366 −7.999 ± 7.595 83.680 ± 20.147 −14.826 ± 1.181 −49.374 ± 14.169
NANPDB6446 −84.419 ± 19.455 −64.626 ± 32.749 125.008 ± 32.850 −13.141 ± 2.305 −37.179 ± 17.980

ZINC000095485940 −91.882 ± 13.394 −29.485 ± 12.960 136.331 ± 31.350 −14.372 ± 1.704 0.593 ± 16.180

Previous studies have reported that electrostatic and van der Waals forces contribute
predominantly and continuously to the binding energy along with simulations that favored
the binding of complexes [26,109]. All compounds demonstrated very low van der Waal’s
energies, ranging from −84.419 kJ/mol to −138.191 kJ/mol (Table 11).

3.12.2. Per-Residue Energy Decomposition

The MM/PBSA method can be used to calculate free binding energies by per-residue
decomposition. This involves the decomposition of each residue by including the inter-
actions in which each residue is involved. These provide useful insight into important
interactions of key residues in free energy contribution. Residues contributing binding
free energy greater than 5 kJ/mol or less than −5 kJ/mol are worth considering as key
residues for the binding of a ligand to a protein [110]. The per-residue energy decomposition
computations for each complex were performed (Figures 8 and S4A–G).

Figure 8. Molecular mechanics Poisson–Boltzmann surface area (MM/PBSA) plot of binding free
energy contribution per residue of the LdCRK12-NANPDB1406 complex.
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From the protein–ligand interactions, residues Leu465, Ser466, Thr469, Ala486, Lys488,
Ala568, Ser569, Asp612, Asn613, Leu615, and Asp626 were considered as key residues
for ligand binding in the ATP binding site (Section 3.6). From the MM/PBSA per residue
decomposition computations for the LdCRK12-GSK3186899 complex, it was observed that
only Lys488 and Arg575 contributed individual energies beyond the ±5 kJ/mol thresh-
old with energy values of 10.1287 and 5.8145 kJ/mol, respectively (Figure S4B). For the
LdCRK12-NANPDB1406 complex, Val473, Lys488 and Leu615 contributed energies of
−5.0135, 14.2430, and −7.2060 kJ/mol, respectively (Figure 8). Only Lys488 was observed
to contribute individual energy above the ±5 kJ/mol threshold with values of 7.8042 and
13.3733 kJ/mol in the LdCRK12-NANPDB1649 and LdCRK12-NANPDB2581 complexes,
respectively (Figure S4D,E). Additionally, Asp612 was the only residue that contributed
individual energy beyond the ±5 kJ/mol with an energy value of 5.4536 kJ/mol in the
LdCRK12-NANPDB6446 complex (Figure S4F). For the LdCRK12-ZINC000095485940 com-
plex, Lys488 and Asp626 contributed 17.8578 and 9.9136 kJ/mol, respectively (Figure S4G).
From the per-residue energy decomposition computations, it is suggested that Lys488 is
a very crucial residue for ligand binding in the ATP binding site, which warrants further
experimental validation to determine its role.

For the ligand binding in pocket 14, residues Leu723, Gly724, Pro725, Leu726, Pro727,
Pro728, Val731, Leu743, Asn763, Trp764, and Gln815 were identified as key. From the
MM/PBSA per residue decomposition of LdCRK12-compound 8, Pro728 and Trp764 were
observed to contribute energies beyond the ±5 kJ/mol threshold with individual energy
values of −6.7576 and −6.5709 kJ/mol, respectively (Figure S4C). No residue was observed
to contribute energy beyond the ±5 kJ/mol threshold in the LdCRK12-compound 5 complex
(Figure S4A).

3.13. Future Outlook and Implication of the Study

This study modelled a reasonable structure of LdCRK12 with good quality parameters
which has been made available to the scientific community to enrich work on structure-
based drug discovery. Additionally, small molecules with the potential to inhibit the activity
of LdCRK12 were identified, which could serve as the building blocks for the design of novel
biotherapeutics. The study further proposed suitable molecules with negligible toxicity.
Since the study is entirely computational, making available structures and compounds
enable synthesis and screening to ascertain their potency as antileishmanial molecules. These
predicted compounds can help stimulate the pace of searching for effective antileishmanial
drugs globally.

In order to identify polypharmacological agents against leishmaniasis, it warrants
investigating the inhibitory potential of the identified biomolecules against other CDC-
2-related kinases of Leishmania, especially CRK3 and CRK6 [111]. CRK3 is essential for
cell cycle progression and growth in Leishmania mexicana [112,113], while the role of CRK6
remains unclear [113,114], it has accessory functions in the cell cycle in T. brucei [114].

4. Conclusions

Natural products have shown the potential to be repurposed as effective L. donovani
CRK12 inhibitors. This study sought to identify potential Leishmania inhibitors from the
African flora by targeting the LdCRK12. The study identified four potential bioactive
compounds comprising NANPDB1406, NANPDB2581, NANPDB6446 and NANPDB1649
with binding affinities of −9.5, −9.2, −9.1 and −8.5 kcal/mol, respectively. NANPDB1406,
NANPDB2581 and NANPDB6446 demonstrated higher binding affinities than the preclini-
cal compound (GSK3186899) which had the binding energy of −8.5 kcal/mol [20]. This
study suggests Lys488 as a very crucial residue for ligand binding in the ATP binding site.
MD simulations, including MM/PBSA, corroborated the potential inhibition of LdCRK12
by the compounds. Physiochemical and toxicological profiling predicted the compounds
to be drug-like and have insignificant toxicity concerns. Ligand quality metrics comprising
inhibitory constant (Ki), ligand efficiency (LE), fit quality (FQ), LE scale (LE_scale), and
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LE-dependent lipophilicity (LELP) also indicated that the potential antileishmanial com-
pounds could serve as templates for fragment-based drug design for Leishmania inhibitors.
The predicted Ki values of the potential drug candidates ranged from 0.108 to 0.587 µM.
Furthermore, the molecules were predicted as antileishmanial molecules, necessitating
experimental evaluation to corroborate their bioactivity.

Supplementary Materials: The following are available online at https://www.mdpi.com/2218-2
73X/11/3/458/s1, Figure S1: ERRAT error plots of the selected models: (A) ERRAT error plot for
MOD5, (B) ITAS5, and (C) ROB1. Red bars represent the misfolded regions, yellow bars demonstrate
the error region between 95% and 99%, and green bars indicate the region with a lower error rate for
protein folding, Figure S2: Ramachandran plots of the protein structures obtained via PROCHECK.
(A) Ramachandran plot of protein model MOD5 (B) Ramachandran plot of protein model ITAS5. The
percentages of residues of model MOD5 in the most favored regions, additionally allowed regions,
generously allowed regions and disallowed regions are 79.7, 15.5, 3.0 and 1.8%, respectively. For
model ITAS5, 61.0, 29.8, 5.9 and 3.3% of the amino acid residues were predicted to be in the most
favored, additionally allowed, generously allowed and disallowed regions, respectively, Figure S3:
The 2D diagrams of the LdCRK12–ligand interaction generated using LigPlot+. Interaction profiles
of (A) LdCRK12-ZINC000095485940 complex; (B) LdCRK12-NANPDB1406 complex; (C) LdCRK12-
NANPDB2581 complex and (D) LdCRK12-GSK3186899 complex. The ligands are colored in purple,
hydrogen bonds are represented as green dash lines and hydrophobic contacts are represented
as red spoke arcs, Figure S4: Molecular mechanics Poisson–Boltzmann surface area (MM/PBSA)
plot of binding free energy contribution per residue of protein–ligand complexes (A) LdCRK12-
compound 5 (B) LdCRK12-compound 7; (C) LdCRK12-compound 8; (D) LdCRK12-NANPDB1649 (E)
LdCRK12-NANPDB2581 (F) LdCRK12-NANPDB6446 (G) LdCRK12-ZINC000095485940, Table S1:
The binding energies and intermolecular bonds between LdCRK12 and compounds, Table S2: ADME
Prediction of top 19 hits and known drugs for Gastrointestinal (GI); Blood Brain Barrier (BBB);
Estimated Solubility (ESOL) class, P-glycoprotein (Pgp) and TPSA, Table S3: Toxicological profiles
of the 17 hits and the known drugs, Table S4: Predicted biology activity of the lead compounds
using Prediction of Activity Spectra for Substances (PASS). Pa and Pi represent probable activity and
probable inactivity, respectively. Supplementary_file_1: 3D model of the LdCRK12 generated using
Modeller (MOD5). Supplementary_file_2: The 3D model of the LdCRK12 generated using I-TASSER
(ITAS5). Supplementary_file_3: The 3D model of the LdCRK12 generated using Robetta (ROB1).
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