
RESEARCH ARTICLE

Dimethyl Fumarate Ameliorates Lewis Rat
Experimental Autoimmune Neuritis and
Mediates Axonal Protection
Kalliopi Pitarokoili*, Björn Ambrosius, Daniela Meyer, Lisa Schrewe, Ralf Gold*

Department of Neurology, St. Josef Hospital, Ruhr- University of Bochum, Bochum, Germany

* kalliapit@yahoo.gr (KP); ralf.gold@rub.de (RG)

Abstract

Background

Dimethyl fumarate is an immunomodulatory and neuroprotective drug, approved recently

for the treatment of relapsing-remitting multiple sclerosis. In view of the limited therapeutic

options for human acute and chronic polyneuritis, we used the animal model of experimen-

tal autoimmune neuritis in the Lewis rat to study the effects of dimethyl fumarate on autoim-

mune inflammation and neuroprotection in the peripheral nervous system.

Methods and Findings

Experimental autoimmune neuritis was induced by immunization with the neuritogenic pep-

tide (amino acids 53–78) of P2 myelin protein. Preventive treatment with dimethyl fumarate

given at 45 mg/kg twice daily by oral gavage significantly ameliorated clinical neuritis by

reducing demyelination and axonal degeneration in the nerve conduction studies. Histology

revealed a significantly lower degree of inflammatory infiltrates in the sciatic nerves. In addi-

tion, we detected a reduction of early signs of axonal degeneration through a reduction of

amyloid precursor protein expressed in axons of the peripheral nerves. This reduction corre-

lated with an increase of nuclear factor (erythroid derived 2)-related factor 2 positive axons,

supporting the neuroprotective potential of dimethyl fumarate. Furthermore, nuclear factor

(erythroid derived 2)-related factor 2 expression in Schwann cells was only rarely detected

and there was no increase of Schwann cells death during EAN.

Conclusions

We conclude that immunmodulatory and neuroprotective dimethyl fumarate may represent

an innovative therapeutic option in human autoimmune neuropathies.
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Introduction
Guillain-Barré syndrome (GBS) and chronic inflammatory demyelinating polyneuropathy
(CIDP) represent a spectrum of heterogeneous disabling neuropathies pathogenetically charac-
terized by an autoimmune reaction against specific components of the peripheral myelin
sheath [1,2,3]. For both of them, a response rate of up to 50% to first-line immunmodulatory
treatment has been reported whereas immunosuppressive agents are beneficial in two- thirds
of CIDP patients at the expense of serious adverse effects [4,5]. Neuroprotective agents are not
yet available, although disability seems to be mainly determined by the degree of axonal degen-
eration. This may occur very early in the disease progression, and may have no direct correla-
tion to the degree of demyelination [6,7].

The animal model of experimental autoimmune neuritis (EAN) enables the study of
electrophysiological characteristics, histological appearance and immunological features of
acute peripheral autoimmune neuropathy. It can be induced in Lewis rats by the inoculation of
susceptible strains with various peripheral nervous system (PNS) antigens, like myelin protein
P2 emulsified in complete Freund's adjuvant (CFA) [8,9]. After immunization, autoantigen-
specific lymphocytes in secondary lymphoid organs migrate to the PNS and in turn recruit and
activate mostly macrophages, which represent the major cell population in the inflamed PNS
[10]. Subsequent demyelination and axonal damage occur through direct phagocytic attack,
T-cell- mediated cytotoxicity, damage from Th1 cytokines, free oxygen radicals, complement-
dependent attack, and antibody-mediated functional impairment [11].

The second-generation oral dimethyl fumarate (DMF) is approved since 2013 for multiple
sclerosis, on the grounds of strong immunmodulatory and putative neuroprotective effects
with a favourable safety profile in two large phase III studies (DEFINE and CONFIRM) and
the extension study ENDORSE [12,13].

Studies in experimental autoimmune neuritis (EAE), the mouse model for multiple sclero-
sis, showed that DMF and its primary metabolite, monomethyl fumarate (MMF) ameliorated
EAE course and preserved myelin and axonal intergrity [14,15]. As putative neuroprotective
mechanism the activation of the transcription factor Nrf-2 (nuclear factor (erythroid derived
2)-related factor 2) was observed. Nrf-2 in turn raises the levels of the antioxidant glutathione
and downregulates the expression of inflammatory cytokines, chemokines, and adhesion mole-
cules [15,16,17,18,19]. Fumarates can induce T cell apoptosis in vitro, resulting to a decrease of
T-cells in peripheral blood in nearly all treated patients with psoriasis [20,21].

Autoimmune neuropathies seem to have many pathogenetic similarities to multiple sclero-
sis on the basis of T cell- and macrophages-mediated demyelination and axonal damage and
the regulatory role of myelinating Schwann cells in analogy to oligodendrocytes in CNS [22].
Therefore, we investigated the effect of orally administered DMF in EAN as a novel neuropro-
tective treatment option for autoimmune peripheral neuropathies.

Materials and Methods

Antigens
The neuritogenic P2 peptide, corresponding the amino acids 53–78 of bovine myelin P2 pro-
tein, was synthesized by Dr. Rudolf Volkmer from Charité University (Berlin, Germany).

Induction of EAN and assessment of clinical score
A total of 62 female Lewis rats, 6–8 weeks old, purchased from Charles River Co. (Sulzfeld,
Germany) and weighing 160–180 g were used in the present study. All animals were anaesthe-
tized by exposure to 1.5%–2.0% halothane in oxygen) and immunized by subcutaneous
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injection into the root of the tail of 250 μg P253-78 peptide in PBS, emulsified in an equal
volume of CFA containing 1 mg/mlMycobacterium tuberculosisH37RA (Difco, Detroit, MI).
Animals were weighed and scored for disease severity daily by two investigators. Disease
severity was assessed clinically employing a scale ranging from zero to 10 originally
described by Enders et al. [23]: 0 normal; 1 less lively; 2 impaired righting/limb tail; 3 absent
righting; 4 atactic gait, abnormal position; 5 mild paraparesis; 6 moderate paraparesis;
7 severe paraplegia; 8 tetraparesis; 9 moribund; 10 death. All experiments were reviewed
and approved by the North-Rhine-Westphalia authorities for animal experimentation
(TVA 84–02.04.2014-A451).

In vivo treatment with dimethyl fumarate
Dimethyl fumarate (Biogen Idec, Cambridge, USA) was dissolved in 0.08% methylcellulose in
tap water and a total volume of 300 μl was administered twice daily by oral gavage starting
from the day of immunization to day 23 p.i; control groups received similar volume of methyl-
cellulose 0.08% by oral gavage twice daily. Rats were kept under standardized, pathogen free
conditions at the local animal facility, Medical Faculty, Ruhr-University, Bochum, Germany.
Food and water were given ad libitum to all animals.

The animals were randomly divided into the following groups: control group treated with
methylcellulose 0.08% in tap water (n = 8), a 15 mg/kg body weight DMF-treated group
(n = 8), a 30 mg/kg body weight DMF-treated group (n = 8) and a 45 mg/kg body weight
DMF-treated group (n = 8).

Nerve conduction studies
Nerve conduction tests were performed on the day before immunisation (-1) and on days 16
(maximum of natural disease course) and 23 (recovery) post-immunization. At each time
point 10 rats pro group were tested for each group. The rats were anesthetized intraperitoneally
(i.p.) with xylazine and ketamine (10mg/kg and 50mg/kg respectively). By examining ampli-
tude and latencies of the evoked compound muscle action potentials (CMAPs) recorded
from the feet, we assessed sciatic nerve motor conduction. Using a fully digital recording
Keypoint apparatus (Dantec, Skovlunde, Denmark) and paired needle electrodes inserted at
the sciatic notch (hip; proximal) or the popliteal fossa (distal), the sciatic nerve was stimulated
with supramaximal rectangular pulses of 0.05-ms duration and the resulting CMAP was
recorded from needle electrodes placed subcutaneously over the dorsal foot muscles. A
ground electrode was placed between the distal stimulating electrode and the active recording
electrode. To calculate the motor nerve conduction velocity (MNCV), the distance between
stimulating cathodes was divided by the latency difference. Similarly, the persistence and mini-
mum latency of 10 F-waves evoked by stimulation at the popliteal fossa were recorded for the
right side [24,25,26]. Temperature differences were minimized by conducting the study as
soon as the anaesthesia had taken effect and by warming the leg with a heating lamp.

Histopathological assessment and immunohistochemistry
After transcardial perfusion with phosphate buffered saline (PBS, Gibco) on disease maximum,
Day 16 post immunization (p.i.) the two sciatic nerves were dissected, the segments were
embedded in Tissue-Tek OCT Compound and snap-frozen in liquid nitrogen. For histopathol-
ogy assessment, tissue of six (n = 6) rats per group (methylcellulose-treated, 15 mg/kg and 45
mg/kg DMF) was sectioned (10 μm) on a cryostat (Leica Biosystems, Nussloch, Germany) and
mounted on slides.
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For the immunohistochemical staining, cryostat sections after fixation in acetone at 20°C
for 10 minutes, were exposed to the mouse monoclonal antibodies (mAb) anti-rat 15-6A1 (Pan
T-Cells CD3, 1:100, Hycultec), anti-rat ED1 (anti-CD68, macrophages, 1:100, Hycultec) and
anti-APP (amyloid precursor protein) (MAB348SP, 1:100, Millipore) using the avidin-biotin
technique (Dako ARK KIT for mouse primary antibody). Schwann cell detection was per-
formed using the anti-S-100 antibody (Dako, 1:100) whereas for Schwann cell apoptosis we
used the In Situ Cell Death detection Kit (POD, Roche). Axons were stained with NF200 (neu-
rofilament 200) antibody (MAB1523, Abnova, 1:100). Specificity of the staining was also con-
trolled on sections of peripheral lymphoid organs for T cells and macrophages and rat brain
for amyloid precursor protein. The numbers of positive cells were counted at ×40 magnifica-
tion for 12 sections per animal. The average results are expressed as cells per mm2 tissue
section.

For identification of Nrf2 expression a staining using the antibody anti-Nrf2 (C-20, sc-722,
1:100, Santa Cruz Biotechnologies) was performed according to manufacturer’s protocol and
DAPI (4',6' diamino-2-phenylindole�2HCl) was used for fluorescent staining of DNA. Fluores-
cent signals were detected using an inverted fluorescence microscope (BX51; Olympus, Tokyo,
Japan) equipped with an Olympus DP50 digital camera. For assessment of Nrf2 staining,
images (20x-magnification) of twelve transverse sections of the sciatic nerve from each animal
were digitally generated (Cell imaging software). The percentage of the area with Nrf2 staining
per section was determined using image analysis software (ImageJ). Omission of the primary
antibodies served as negative control.

Isolation of mononuclear cells from lymph nodes and spleen and FACS
analyses
The inguinal lymph nodes and spleen were removed after transcardial perfusion with phos-
phate buffered saline (PBS, Gibco) on disease maximum (day 16 p.i.) under aseptic conditions.
Single cell suspensions of mononuclear cells from individual rats were prepared separately
(n = 6/group). We evaluated the frequency of CD4+ T cells, CD11b+ cells, CD4+CD11b+ den-
dritic cells (DCs), CD4+ CD25+ FoxP3+ regulatory T-cells (Tregs) and CD4+CD11b-MHCII+

plasmatocytoid DCs and the expression of IL-10 and IL-17 fromMNC by fluorescence-acti-
vated cell sorting (FACS) staining. FACS analyses were performed with a FACS Canto II (BD
Pharmingen, Heidelberg, Germany) machine and FlowJo software (Tree Star). Monoclonal
antibodies purchased from BD Pharmingen or eBioscience were used to detect CD4, CD11b,
CD25 and MHC-II in accordance with the manufacturers’ instructions. Intracellular staining
for Foxp3 was performed using the Foxp3 Staining Set (eBioscience, San Diego, CA) and intra-
cellular staining for IL-10 and IL-17 was performed according to the manufacturer’s instruc-
tions (BD Pharmigen and eBioscience).

Statistical methods
All analyses were performed completely blinded with respect to treatment. Statistical analysis
was performed by one-way analysis of variance (ANOVA) or Kruskal–Wallis test (Graph Pad
Prism6, San Diego, CA, USA). Data are provided as mean ± SEM. Differences between pairs of
groups were tested by Student’s t-test. As post-hoc tests Bonferroni's Multiple Comparison
Tests were performed. A probability level (p-value) of �p< 0.05, ��p< 0.005 and
���p< 0.0001 was considered to be statistically significant for all tests. All error bars represent
SEM.
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Results

Dimethyl fumarate ameliorates rat experimental autoimmune neuritis
After immunization with P2 protein peptide 53–78, clinical signs of EAN started around day
11 p.i.. The incidence of EAN for the control group was 100% and the groups receiving DMF
showed an incidence of 100% (15 mg/kg), 100% (30 mg/kg) or 87.5% (45 mg/kg) respectively
(n = 8). Treatment with 15 and 30 mg/kg had no statistically significant effect on the clinical
course of EAN. Treatment with 45 mg/kg DMF delayed the onset of clinical EAN by 2–3 days
and reduced significantly the clinical signs of EAN when compared with methylcellulose-
treated control rats (Fig 1, ROC AUC, area under curve, �p<0,05). A further experiment was
performed with a group treated with 100mg/kg DMF (n = 8). This high dosage showed no clin-
ical effects and no overt signs of toxicity (data not shown). There was a non-significant reduc-
tion of body weight of sham-treated controls during the course of active EAN as compared to
rats treated with 45 mg/kg DMF (data not shown), in accord with our experience with this dis-
ease model [11].

Dimethyl fumarate improves proximal and distal nerve conduction
As described in material and methods we performed electrophysiological measurements of the
sciatic nerve at different stages of the clinical course in order to elucidate the mechanisms of
EAN attenuation after DMF treatment. The following measures were evaluated: 1) axonal dam-
age, as indicated by a synchronous reduction of CMAP amplitude after proximal and distal
stimulation 2) degree of demyelination, as implied by conduction block and/or reduction of
the motor nerve conduction velocity (MNCV) (conduction block was defined as a 50% reduc-
tion of the amplitude after proximal stimulation without significant dispersion relative to the
distal (popliteal fossa) CMAP) and 3) lumbar root involvement, depicted by prolongation of F-
wave latencies.

Fig 1. Clinical EAN course under dimethyl fumarate treatment. EANwas induced in Lewis rats by
immunisation on day 0 with P2 peptide 53–78 plus CFA. Rats received DMF diluted in 0,08%methylcellulose
in tap water at doses of 15 mg/kg, 30mg/kg and 45mg/kg twice daily from day 0 to day 23-post immunisation
by oral gavage. Control rats received 0,08%methylcellulose in tap water only. Mean values and SEM are
depicted, ROC Area under curve (AUC) 45mg/kg vs. methylcellulose, n = 8 * p<0,05. The experiment was
repeated 2 times with similar results.

doi:10.1371/journal.pone.0143416.g001
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The electrophysiological measurements of the sciatic nerve at the maximum of the clinical
course (day 16 p.i.) showed a significant reduction of the MNCV in the methylcellulose-treated
rats (mean MNCV on day 16 p.i. 31.9 m/s vs. day -1 p.i. 46.9 m/s, ���p<0.0001, n = 10) and the
rats treated with 15 mg/kg DMF, a non-significant reduction of MNCV for the 30 mg/kg DMF
treated group, whereas no difference was seen on day 16 p.i. as compared to the mean MNCV
on day -1 for 45 mg/kg DMF-treated group (Fig 2).

Fig 2. Dimethyl fumarate improved proximal and distal nerve conduction. (A) Representative CMAP (compound motor action potentials) traces during
EAN course at days −1 and 16 p.i. showing a conduction block for methylcellulose-treated rats at day 16 p.i. whereas for 45 mg/kg DMF-treated rats no
conduction block was recorded. (B) Representative F-wave traces after distal stimulation showing prolonged F-waves latencies only for the methylcellulose-
treated group at day 16 p.i. in comparison to day -1. Rats treated with 45mg/kg did not show any significant differences in the F-wave latencies between day
-1 and 16 p.i. The black vertical line defines the motor (M) response and the F (F-wave) response latency. On the left of the red vertical line applies the M
response regarding distance (horizontally, ms) and vertically (mV) and on the right of the red vertical line applies the F response data (ms, mV), (M: M
response, F: F response, D: distance of one side of the dotted lined squares). (C) After proximal and distal stimulation of the sciatic nerve the conduction
velocity was calculated. A statistical significant reduction of the MNCV (motor nerve conduction velocity) appeared for the control group and the 15mg/kg
group (p<0,0001 ***, n = 10), but no difference in the MNCV was seen for the 45mg/kg DMF treated group indicating a protective role of DMF against
demyelination. Mean values and SEM are depicted.

doi:10.1371/journal.pone.0143416.g002
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At this time point a synchronous distal and proximal reduction of the CMAP amplitude
was measured for 40% of sham-treated controls and for 40% of the 15mg/kg treated group but
in no rat of the 45mg/kg treated group (n = 10), indicating a protective role of DMF against a
conduction block located in the nerve roots or the peripheral nerve myelin sheath (�p<0.05).
20% of the control group animals and 20% of the 15 mg/kg DMF treated group showed a con-
duction block on day 16 p.i., whereas no animals receiving 45 mg/kg DMF showed a conduc-
tion block (Fig 2A).

No statistical significant differences regarding the persistence of F-wave response, as defined
by the number of F-waves elicited after 10 distal stimulations or the average minimum latencies
of the elicitable F-waves were observed for the DMF treated groups but prolonged F-waves
were measured for the methylcellulose-treated control group at day 16 p.i., indicating that
DMF reduced proximal demyelination as well (for control-group F-wave minimal latency 9.9
ms at day 16 p.i. vs 8.2 ms at day -1 p.i., �p<0,05, Fig 2B).

The MNCV was still reduced for the methylcellulose-treated rats (mean MNCV on day 23
p.i. 35.1 m/s vs. day -1 p.i. 44.3 m/s, n = 8) and for the groups treated with 15mg/kg DMF
(mean MNCV on day 23 p.i. 29.4 m/s vs. day -1 p.i. 45.8 m/s, �p<0,05, n = 8) and 30mg/kg
DMF, whereas no difference as compared to the mean MNCV on day -1 was seen for the 45
mg/kg DMF-treated group (mean MNCV on day 23 p.i. 52.3 m/s vs. day -1 p.i. 50.8 m/s,
p>0,05, n = 8), indicating the protective role of DMF against demyelination even at this late
time point with scarce clinical signs of the disease.

No significant differences regarding the persistence of F-wave response, as defined by the
number of F-waves elicited after 10 distal stimulations or the average minimum latencies of the
elicitable F-waves were observed at day 23 p.i. (data not shown).

Dimethyl fumarate reduces T cell and macrophage infiltration in
peripheral nerves
We next analysed if the therapeutic efficacy of DMF correlates with a reduction of inflamma-
tory infiltration of the PNS. Histopathological data showing inflammation within the sciatic
nerves are depicted in Fig 3. Administration of 45mg/kg DMF reduced significantly the degree
of macrophage- and lymphocyte- infiltration at the peak of the disease (day 16 p.i.) compared
to methylcellulose-treated group (Fig 3A, 3B and 3C ���p<0.001). The groups treated with
15mg/kg DMF showed a significant reduction of T cell infiltration, yet no reduction of the
macrophage infiltrates was found at this dosage (Fig 3C).

Effects of DMF on immune cell populations in peripheral lymph nodes
and spleen
Next we investigated potential immunmodulatory mechanisms for the reduction of infiltrating
T cells and macrophages in the peripheral nerves during DMF treatment.

We analysed by FACS the effect of DMF on effector cells (CD4+ cells or macrophages) and
immunregulatory cell populations in the peripheral lymphoid organs at the peak of disease
(day 16 p.i., n = 6). We did not observe any change in the frequency of CD4+ T cells or CD11b+

DCs between methylcellulose-treated and DMF-treated animals in spleen or lymph nodes
(p>0,05).

CD4-positive regulatory T cells (CD4+CD25+FoxP3+ T cells) in peripheral lymph nodes
and spleen did not show any significant change between sham- and DMF-treated groups in
peripheral lymphoid organs (in the lymph nodes, percentage of CD4+CD25+FoxP3+ cells at
day 16 p.i. methylcellulose-treated group: 3.5% vs. 45mg/kg DMF-treated group: 3.3%, p>0.05,
Geometric Mean (GeoMean) of FoxP3 on CD4+CD25+ cells at day 16 p.i. methylcellulose-
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Fig 3. Dimethyl fumarate reduced inflammatory infiltrates of T cells andmacrophages in sciatic
nerves of EAN rats. (A) Rats were daily force fed with DMF or tap water and 16 days p.i. (at expected
disease maximum), sciatic nerves were isolated and stained for CD3+ cells (a, b, c) and CD68+ cells
(macrophages) (d, e, f). Representative photos of sciatic nerves in transverse sections of methylcellulose-
treated animals (a and d), 15 mg/kg DMF-treated animals (b and e) and 45mg/kg DMF treated animals (c and
f). Scale bars indicate 100μm. (B) Mean numbers of T cells per mm2 sciatic nerve sections and B. Mean
numbers of macrophages (CD68+) per mm2 sciatic nerve sections as calculated by immunohistochemistry on
day 16 p.i. from EAN rats (n = 6/group) receiving orally DMF at different doses (15mg/kg, 45mg/kg/day) and
methylcellulose-treated rats. Mean values and SEM are depicted (** p<0,005, ***p<0,0001). The
experiment was repeated 2 times with similar results.

doi:10.1371/journal.pone.0143416.g003
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treated group: 1760 vs. 45mg/kg DMF-treated group: 1688, p>0.05). Regarding different popu-
lations of dendritic cells (CD11b+CD4++/-MHCII) we found no significant changes after DMF
treatment.

In order to dissect potential qualitative immunmodulatory mechanisms after DMF treat-
ment we investigated the expression of IL-10 and IL-17 cytokines on MNC of the peripheral
lymphoid organs through intracellular FACS staining. Again no statistically significant differ-
ences were found (data not shown).

Dimethyl fumarate reduces early signs of axonal degeneration
Our electrophysiological data may indicate a possible protective effect of DMF on axonal dam-
age at the peak of disease. We therefore proceeded to confirm these results in terms of histolog-
ical signs of early axonal damage and therefore stained for APP.

Histological data showing APP staining within the sciatic nerves are depicted in Fig 4A.
Administration of 45mg/kg DMF reduced significantly APP positive axons at the peak of the
disease (day 16 p.i.) compared to methylcellulose-treated group (Fig 4B �p<0.05, n = 6). The
groups treated with 15mg/kg DMF showed no significant reduction of APP positive axons.

Dimethyl fumarate induces Nrf2 in axons at the peak of clinical EAN
course
We next proceeded to investigate potential mechanisms for this neuroprotective effect, which
have been suggested in previous EAE studies [15].

Representative pictures from an immunofluorescent staining, showing Nrf2 positive cells in
the sciatic nerves are depicted in Fig 5 and revealed a significantly increased expression of Nrf2
in the peripheral nerves of 45mg/kg DMF treated group at the peak of disease (�p<0,05, n = 6).

In order to investigate the structures expressing Nrf2 in the peripheral nerves we performed
double staining for Nrf2-S100 (Fig 6) and for Nrf2-NF200 (Fig 7A), which revealed that axons
and not Schwann cells showed an induction of Nrf2 after dimethyl fumarate treatment on day
16 p.i. (Fig 7B, ��p<0.05). A possible protective role of DMF on Schwann cells was investigated
with a double staining TUNEL-S-100 staining, which did not show any significant reduction of
Schwann cell death in the DMF treated groups (data not shown).

Discussion
In the present study we investigated the therapeutic effects of orally administered dimethyl
fumarate in EAN of Lewis rats. We were able to show its preventive therapeutic efficacy in
EAN resulting in amelioration of the disease course. This went along with reduced T cell and
macrophage inflammation, reduced demyelination and higher survival of axons as reflected by
electrophysiology and histology.

Interestingly, only one concentration of dimethyl fumarate (45 mg/kg) showed a robust and
significant effect in the treatment of EAN, with an improvement of the clinical score, inflam-
matory and electrophysiological parameters. This was in contrast with previous EAE studies in
mice, where the concentrations of 15 mg/kg exhibited a marked preventive effect [27]. This dis-
crepancy may be attributed to the fact that the concentration of 15 mg/kg DMF induced only a
reduction of T cells and failed to induce a reduction of CD68+ macrophages in rat peripheral
nerves, which represent a main inflammatory population in EAN. Also strain specific differ-
ences in metabolism may exist between mice and rats. Toxic effects were observed neither with
45 mg/kg DMF nor with 100 mg/kg DMF. These findings raise the necessity of a careful titra-
tion of dimethyl fumarate for each species in order to optimize its therapeutic effects.

Dimethyl Fumarate in Experimental Autoimmune Neuritis
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Fig 4. Dimethyl fumarate reduced early axonal damage at the peak of EAN course. (A) Representative
photos of APP (amyloid precursor protein) staining for sciatic nerve transverse sections of rats (n = 6/group)
treated with DMF 15mg/kg (b, e), 45mg/kg (c, f) and methylcellulose-treated animals (a, d), showing an
reduction of APP positive cells for DMF-treated rats. Scale bars indicate 100μm for a-c and 50μm for d-f. (B)
Mean numbers of APP positive cells per mm2 sciatic nerve sections as calculated by immunohistochemistry
on day 16 p.i. from EAN rats (n = 6/group) receiving orally DMF at different doses (15mg/kg, 45mg/kg/day)
and methylcellulose-treated rats. Mean values and SEM are depicted (*p<0,05). The experiment was
repeated 2 times with similar results.

doi:10.1371/journal.pone.0143416.g004
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Fig 5. Dimethyl fumarate induced Nrf2 at the peak of EAN course. (A) Representative photos of Nrf2 staining for sciatic nerve transverse sections of rats
(n = 6/group) treated with DMF 15mg/kg (d-f), 45mg/kg (g-i) and methylcellulose-treated animals (a-c), showing an increase of Nrf2 positive cells for 45mg/kg
DMF-treated rats. Pictures a, d and g show nuclear stain (DAPI), pictures b, e and h Nrf2 stain and pictures c, f and i indicate double staining. Scale bars
indicate 100μm. (B) Percentage of Nrf2 positive staining per sciatic nerve section measured by immunofluorescent staining on day 16 p.i. from EAN rats
(n = 6/group) receiving DMF at different doses (15mg/kg, 45mg/kg/day) and methylcellulose-treated rats. Mean values and SEM are depicted (*p<0,05).

doi:10.1371/journal.pone.0143416.g005
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Taking advantage of the easy accessibility of the PNS for nerve conduction studies, we
found a significant reduction of electrophysiological signs of demyelination for the 45 mg/kg
DMF groups both in proximal (increase of F-wave latencies) and distal parts (reduction of
motor nerve conduction) of the sciatic nerve. Protection against demyelination correlated with
a reduction of T cells and macrophages in the PNS.

We then evaluated potential immunological mechanisms responsible for this reduction of
immune infiltration of the peripheral nerves, which of course may also indirectly support sur-
vival of axonal structures. Regarding effector cells we found no significant modulation neither
of the percentage of CD4+ and CD11b+ cells nor of regulatory populations (regulatory T cells,
dendritic cells) in the spleen or lymph nodes of DMF treated rats. There was also no difference
between the production of IL-10 and IL-17 from MNC in the peripheral lymphoid organs.

Fig 6. Dimethyl fumarate did not induce Nrf2 in Schwann cells at the peak of EAN course.Representative photos of double (merge) Nrf2 positive
Schwann cells (S100 positive) staining for sciatic nerve transverse sections of rats (n = 6/group) treated with DMF 15mg/kg, 45mg/kg and methylcellulose.
No statistical significant increase between Nrf2 positive Schwann cells for DMF-treated vs. methylcellulose-treated rats on day 16 p.i. was detected (insets
depict details of staining). Scale bars indicate 50μm.

doi:10.1371/journal.pone.0143416.g006
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Fig 7. Dimethyl fumarate induced Nrf2 in axons at the peak of EAN course. (A) Representative photos of
double (merge) Nrf2-NF (neurofilament-axons) staining for sciatic nerve transverse sections of rats (n = 6/
group) treated with DMF 15mg/kg, 45mg/kg and methylcellulose, showing Nrf2 positive axons. Scale bar
indicates 50μm. (B) Mean numbers of Nrf2 positive axons per mm2 sciatic nerve sections as calculated by
immunohistochemistry on day 16 p.i. from EAN rats (n = 6/group) receiving orally DMF at different doses
(15mg/kg, 45mg/kg/day) and methylcellulose-treated rats. Mean values and SEM are depicted (**p<0,005).
The experiment was repeated 2 times with similar results.

doi:10.1371/journal.pone.0143416.g007
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Our experiments could not confirm the reports from in vitro experiments in murine EAE,
which have shown that DMF induced T helper 2 cells and generated type II dendritic cells
(DCs) that produce IL-10 [28,29,30]. However our findings are in line with the findings of
Schilling et al, who could not confirm these effects in murine EAE in vivo [14]. Again it may be
of note that even in mice different immune effects were seen in the SJL strain [29] but not C57/
BL6 strain [14]. On the other hand, we have to point out that the effector and regulatory cell
populations were examined at the maximum of clinical disease (day 16 p.i.). A regulation of
the immune system through DMF could also precede the reduction of immune infiltrates in
the peripheral nerves and may have occurred early at the beginning of the disease (day 11 p.i.).

Beyond peripheral immunmodulatory mechanisms, the reduction of inflammatory infil-
trates in EAN may be attributed to the interference of dimethyl fumarate with the adhesion of
effector cells to endothelial cells and reduction of chemotaxis [31].

Axonal damage already in early disease stages is a crucial pathophysiological aspect of auto-
immune diseases of the central as well as of the peripheral nervous system. Long-term disability
in acute and chronic inflammatory demyelinating neuropathy is crucially determined by the
degree of axonal degeneration [32]. There are questions as to whether the release of neurotoxic
cytokines (e.g., tumor necrosis factor a) and noxious mediators (e.g., nitric oxide and metallo-
proteinases) enhance axonal destruction, but it has become clear that early, effective therapy
minimizes axonal loss [6]. Therapeutic substances with neuroprotective potential for periph-
eral autoimmune neuropathies are as yet not approved.

In our model, although primarily representing a demyelinating neuropathy, we found signs
of early axonal degeneration in nerve conduction studies and histology, which were attenuated
for the 45 mg/kg DMF treated group. These findings correlated with a statistical significant
increase of Nrf2 positive structures in the sciatic nerves as shown by immunohistochemistry. A
histological analysis of different cells populations expressing Nrf2 revealed that it was primarily
expressed in axons and not in Schwann cells, which have been implicated as active participants
in autoimmune inflammation and neuroprotection [33,34].

Our findings are in line with previous publications of our group in EAE suggesting that
fumarates activate the Nrf2 transcriptional pathway in neurons. They showed in chronic EAE
that DMF modifies cysteine 151 on inhibitor Keap1, thereby activating Nrf2, which binds to
antioxidant response elements in the promoters of protective genes such as NADPH-quinone-
oxidoreductase-1 (NQO1) [15] and heme-oxygenase-1 [17]. This ultimately raises the levels of
the important intracellular antioxidant glutathione exerting neuroprotective effects. Studies in
Nrf2-knockout mice revealed that most of the therapeutic ability of fumarates was abolished in
the absence of Nrf2 [15]. In acute EAE Reick et al. also reported an increased axonal density on
day 18 p.i. after DMF treatment [27].

In conclusion, the clinical severity of EAN and inflammatory nerve infiltrates are markedly
suppressed by oral treatment with dimethyl fumarate. In addition upregulation of Nrf-2 and
improved axonal survival is observed. Dimethyl fumarate may therefore be an attractive candi-
date for the treatment of autoimmune diseases of the PNS, and may open neuroprotective ave-
nues for this devastating group of diseases.

Supporting Information
S1 Fig. Clinical EAN course under dimethyl fumarate treatment. Analytical data depicting
the clinical course and weight changes during EAN induced in Lewis rats by immunisation on
day 0 with P2 peptide 53–78 plus CFA. Rats received DMF diluted in 0,08% methylcellulose in
tap water at doses of 15 mg/kg, 30mg/kg and 45mg/kg twice daily from day 0 to day 23-post
immunisation by oral gavage. Control rats received 0,08% methylcellulose in tap water only.
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Mean values and SEM are depicted, ROC Area under curve (AUC) 45mg/kg vs. methylcellu-
lose, n = 8 � p<0,05. The experiment was repeated 2 times with similar results.
(PZF)

S2 Fig. Dimethyl fumarate improved proximal and distal nerve conduction. After proximal
and distal stimulation of the sciatic nerve the conduction velocity was calculated. Analytical
data providing the calculations are provided. A statistical significant reduction of the MNCV
(motor nerve conduction velocity) appeared for the control group and the 15mg/kg group
(p<0,0001 ���, n = 10), but no difference in the MNCV was seen for the 45mg/kg DMF treated
group on day 16 p.i. indicating a protective role of DMF against demyelination. Mean values
and SEM are depicted. The F waves of all groups calculated at the end of the disease showed no
statistical significant increase.
(PZF)

S3 Fig. Dimethyl fumarate reduced inflammatory infiltrates of T cells in sciatic nerves of
EAN rats. Analytical data and mean numbers of T cells per mm2 sciatic nerve sections and as
calculated by immunohistochemistry on day 16 p.i. from EAN rats (n = 6/group) receiving
orally DMF at different doses (15mg/kg, 45mg/kg/day) and methylcellulose-treated rats. Mean
values and SEM are depicted (�� p<0,005, ���p<0,0001). The experiment was repeated 2 times
with similar results.
(PZF)

S4 Fig. Dimethyl fumarate reduced inflammatory infiltrates of macrophages in sciatic
nerves of EAN rats. Analytical data and mean numbers of macrophages per mm2 sciatic nerve
sections and as calculated by immunohistochemistry on day 16 p.i. from EAN rats (n = 6/
group) receiving orally DMF at different doses (15mg/kg, 45mg/kg/day) and methylcellulose-
treated rats. Mean values and SEM are depicted (�� p<0,005, ���p<0,0001). The experiment
was repeated 2 times with similar results.
(PZF)

S5 Fig. Dimethyl fumarate reduced early axonal damage at the peak of EAN course. Analyt-
ical data and mean numbers of APP positive cells per mm2 sciatic nerve sections as calculated
by immunohistochemistry on day 16 p.i. from EAN rats (n = 6/group) receiving orally DMF at
different doses (15mg/kg, 45mg/kg/day) and methylcellulose-treated rats. Mean values and
SEM are depicted (�p<0,05). The experiment was repeated 2 times with similar results.
(PZF)

S6 Fig. Dimethyl fumarate induced Nrf2 at the peak of EAN course. Analytical data and
mean values of the percentage of Nrf2 positive staining per sciatic nerve section measured by
immunofluorescent staining on day 16 p.i. from EAN rats (n = 6/group) receiving DMF at dif-
ferent doses (15mg/kg, 45mg/kg/day) and methylcellulose-treated rats. Mean values and SEM
are depicted (�p<0,05).
(PZF)

S7 Fig. Dimethyl fumarate induced Nrf2 in axons at the peak of EAN course. Analytical
data and mean numbers of Nrf2 positive axons per mm2 sciatic nerve sections as calculated by
immunohistochemistry on day 16 p.i. from EAN rats (n = 6/group) receiving orally DMF at
different doses (15mg/kg, 45mg/kg/day) and methylcellulose-treated rats. Mean values and
SEM are depicted (��p<0,005). The experiment was repeated 2 times with similar results.
(PZF)
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