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Abstract: The early fault diagnosis of rolling bearings has always been a difficult problem due to
the interference of strong noise. This paper proposes a new method of early fault diagnosis for
rolling bearings with entropy participation. First, a new signal decomposition method is proposed
in this paper: intrinsic time-scale decomposition based on time-varying filtering. It is introduced
into the framework of complete ensemble intrinsic time-scale decomposition with adaptive noise
(CEITDAN). Compared with traditional intrinsic time-scale decomposition, intrinsic time-scale de-
composition based on time-varying filtering can improve frequency-separation performance. It has
strong robustness in the presence of noise interference. However, decomposition parameters (the
bandwidth threshold and B-spline order) have significant impacts on the decomposition results of
this method, and they need to be artificially set. Aiming to address this problem, this paper proposes
rolling-bearing fault diagnosis optimization based on an improved coyote optimization algorithm
(COA). First, the minimal generalized refined composite multiscale sample entropy parameter was
used as the objective function. Through the improved COA algorithm, optimal intrinsic time-scale
decomposition parameters based on time-varying filtering that match the input signal are obtained.
By analyzing generalized refined composite multiscale sample entropy (GRCMSE), whether the
mode component is dominated by the fault signal is determined. The signal is reconstructed and de-
composed again. Finally, the mode component with the highest energy in the central frequency band
is selected for envelope spectrum variation for fault diagnosis. Lastly, simulated and experimental
signals were used to verify the effectiveness of the proposed method.

Keywords: rolling bearing; fault diagnosis; signal denoising; intrinsic time-scale decomposition;
coyote optimization algorithm; generalized refined composite multiscale sample entropy

1. Introduction

Rolling bearings are a key component in mechanical equipment. Their working status
affects the operation of the entire equipment. The existence of bearing defects inevitably
affects the dynamic performance of the equipment, and even damages the whole machine.
Therefore, rolling-bearing fault monitoring and identification can allow for understanding
the development of bearing faults. Maintenance strategies need to be developed in advance
for minor faults that appear early, so as to avoid economic losses and accidents caused
by equipment damage or sudden shutdowns [1–3]. Current research on bearing failures
is mainly based on the analysis of vibration signals. Information that can characterize the
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running state of bearings is extracted from signals and through pattern-recognition algo-
rithms. Bearing fault monitoring and diagnosis can then be realized. Currently, there are
several signal-processing methods that are widely used: wavelet transform [4,5], stochas-
tic resonance [6,7], and empirical mode decomposition (EMD) [8,9]. However, in wavelet
transform, the choice of basic function and potential function parameters in stochastic reso-
nance has great influence on signal analysis. Therefore, it cannot be defined as an adaptive
signal-processing method. Empirical mode decomposition can be based on the signal itself.
However, its modal-aliasing phenomenon seriously affects its application in actual signals.

Intrinsic time-scale decomposition (ITD) is an adaptive nonstationary nonlinear signal-
processing method. Time–frequency analysis based on the intrinsic time-scale decomposi-
tion can quantitatively describe the relationship between frequency and time, accurately
analyzing time-varying signals [10]. On the basis of these advantages, scholars introduced
this method from the medical field to the fault diagnosis of mechanical signals [11–22]. For
example, Lin and Chang published a rolling-bearing fault diagnosis method based on an
enhanced kurtosis spectrum and intrinsic time-scale decomposition [11]. Duan and Yao
et al. proposed a comprehensive eigentime decomposition method for the fault diagnosis of
a gearbox under variable operating conditions [12]. Xiang and Qu et al. proposed intrinsic
time-scale decomposition and singular-value decomposition for variable-condition gear
fault diagnosis [13]. Zhang and Liu et al. proposed a complete diesel-engine fault-diagnosis
method integrated with intrinsic time-scale decomposition [14]. Hu and Xiang et al. pro-
posed ensemble intrinsic time-scale decomposition to the fault diagnosis of fan gear [15].
Tong, Cao, et al. proposed improved intrinsic time-scale decomposition combined with
complex tree wavelet packet transform and singular-value decomposition and used it to
diagnose rolling-bearing faults [16]. Liu and Zhang et al. proposed the use of intrinsic
time-scale decomposition for diesel-engine fault diagnosis [17]. Bi and Ma et al. proposed
to use complete ensemble intrinsic time-scale decomposition and detect gasoline-engine
knock [18]. Yu and Liu proposed using sparse coding on the basis of intrinsic time-scale
decomposition to diagnose weak bearing faults [19]. Yuan and Peng proposed the use of
smooth intrinsic time-scale decomposition for the fault diagnosis of rolling bearings [20].
Lei and Zhou et al. used intrinsic time-scale decomposition to monitor tool wear during
milling [21]. Ma et al. proposed complete ensemble intrinsic time-scale decomposition with
adaptive noise (CEITDAN) that was applied to the feature extraction of rolling bearings [22].

However, there are currently still many problems in the study of intrinsic time-scale
decomposition. Existing research results improved the decomposition of the intrinsic time
scale. However, problems such as curve distortion and modal aliasing still need to be further
improved. Therefore, in order to further allow for the better application of eigentime-scale
decomposition algorithms to the early fault diagnosis of bearings, this paper proposes an
intrinsic time-scale decomposition method based on time-varying filtering (TVF-ITD). It is
applied to the framework of CEITDAN, improving the noise-reduction effect of intrinsic
time-scale decomposition on strong background noise signals in order to improve the
effectiveness of early fault diagnosis. And named it as complete ensemble intrinsic time-
scale with adaptive white noise based on time-varying filtering (TVF-CEITDAN).

In the process of engineering practice, when the bearing has an early failure, the
collected signal noise is relatively strong. The characteristic frequency of each type of fault
is also different [23–25]. Therefore, adaptive analysis is also needed to extract different
types of faults. In this paper, an TVF-CEITDAN method was used to decompose a signal.
The use of adaptive white noise can offset noise in the collected signal. The collected
signal contained both white and colored noise. Therefore, this method still retains some
colored-noise components that are difficult to remove.

In order to further reduce the interference of noise on feature extraction, this paper
proposes to introduce entropy calculation into the process of signal decomposition and
reconstruction. Entropy is used as an analytical method to estimate the complexity of time
series. It is widely used in the fault diagnosis of bearings [26–30]. At present, research
on entropy is ongoing. The emergence of multiscale entropy in recent years provides a
direction for its more accurate signal analysis [31–35]. Multiscale entropy can accurately
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measure the complexity of different mode components. It has high noise immunity and
high consistency. At the same time, it is not restricted by large amounts of data. In the
case of fewer data, a stabler entropy value can be obtained. Therefore, generalized refined
composite multiscale sample entropy was chosen as the method of noise elimination after
decomposition (GRCMSE) [36]. The entropy value of the generalized refined composite
multiscale sample was calculated under 10,000 sets of white noise as the threshold, used
in the decomposition of subsequent signals. This can further filter out residual noise in a
decomposed signal through the verification of analog and measured vibration signals. The
proposed method in this paper can accurately extract early fault features under a strongly
noisy background. Compared with other methods, it shows better practicability.

The rest of this article is organized as follows. Section 2 introduces the principles of
the ITD algorithm, GRCMSE, and the group-optimization algorithm. Section 3 introduces
the proposed method. In Section 4, the effectiveness of the proposed method is verified by
analog and measured signals. Lastly, the conclusions are drawn in Section 5.

2. Related Work
2.1. Intrinsic Time Scale Decomposition

ITD is adaptive to nonstationary signals. The method decomposes the vibration signal
into a series of proper rotation components (PRCs) with physical significance and the sum of
monotonous trend residuals. After the decomposition result is obtained, spectrum analysis
can be performed on any PRC in order to obtain amplitude and frequency-modulation
characteristics that are difficult for the original signal to show [37].

Suppose the noise signal to be processed is Xt, which is a set of discrete data composed
of real numbers. All extreme points in Xt are found, corresponding signal moments are
τk, (k = 1, 2, . . . , M), and M are the total number of signal extremes. First, L is defined as
the baseline extraction operator; then, let τ0 be the first intrinsic scale of signal Xt and be
decomposed as:

Xt = LXt + (1− L)Xt = Lt + Ht, (1)

where Lt = LXt and Ht = (1− L)Xt are the baseline extraction signal and the PRC,
respectively. In the first decomposition, a baseline extraction signal is removed from
original detection signal Xt to obtain the PRC. Using Xk and Lk is equivalent to X(τk) and
L(τk). To make Xt meaningful in t ∈ [0, τk+2], both Lt and Ht are defined to be on [0, τk].
On interval [τk, τk+1] of continuous extreme points, we define the piecewise linear baseline
extraction operator as follows:

LXt = Lt = Lk +
Lk+1 − Lk
Xk+1 − Xk

(Xt − Xk) (2)

Among them:

Lk+1 = σ

[
Xk +

(
τk+1 − τk
τk+2 − τk

)
(Xk+2 − Xk)

]
+ (1− σ)Xk+1, (3)

where σ is the linear scaling used to control the amplitude of the PRC; σ ∈ [0, 1] usually
takes the value 0.5. The decomposed PRC represents the local relatively high frequency
component in the original detection signal, that is, the PRC. The baseline signal is used as
the next original signal to continue the decomposition. Obtain a series of PRCs arranged
in different frequency ranges from high to low. When iterating to produce a monotonous
residual trend signal, decomposition ends. The decomposition process of the entire intrinsic
time scale of signal Xt can be as follows:

LXt = LXt + HXt = (H + L)LXt + HXt

=
[
H(1 + L) + L2]Xt =

(
H

p−1
∑

k=0
Lk + Lp

)
Xt

= H1
t + H2

t + H3
t + H4

t + . . . + Hp
t + Lp

t

(4)
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where Hk
t is the k-th PRC, Lp

t is the residual component, and the number of PRCs after the
decomposition is p.

2.2. Generalized Refined Composite Multiscale Sample Entropy

Multiscale sample entropy (MSE) can measure the complexity of time series and
effectively detect small changes. When a rolling bearing fails, the complexity of nonlinear
dynamics also changes [38]. Therefore, MSE is very suitable for the feature extraction of
rolling-bearing faults. Experiment results showed that MSE can overcome the shortcom-
ings of single-scale analysis of sample entropy, and analytical results are more accurate.
However, applying MSE to the feature-extraction process of rolling bearings still has the
two following defects: (1) Through the coarse-graining process of homogenized data,
the dynamic mutation behavior of the original signal is “neutralized” to a certain extent,
making the estimated entropy value biased. (2) The stability of MSE increases with an
increase in coarse-grained scale factor. In order to overcome this shortcoming, the second
moment (variance) is used in the coarse-grained step. Instead of the first moment (average
value), the generalized MSE (GMSE) algorithm is proposed [39], which still has some
shortcomings. GMSE depends heavily on the length of the time series, and the GMSE value
may be uncertain or unreliable. The probability of invalid entropy may increase. In order
to resolve these shortcomings, this paper applied the GRCMSE algorithm [36].

The process of the multiscale sample entropy algorithm is as follows:

(1) For time series {x(i), i = 1, 2, · · · , N}, following formula is used to define coarse-
grained series y(s):

y(s)j =
1
s

js

∑
i=(j−1)s+1

xi, 1 ≤ j ≤ N
s

(5)

where s is the scale factor.
(2) The sample entropy of coarse-grained sequence y(s) is calculated under different scale

factors s, that is, multiscale sample entropy:

EMSE(x, s, m, r) = ESE

(
y(s), m, r

)
= − ln

(
n(m+1)

s /n(m)
s

)
, (6)

where m is the embedding dimension; r is the similarity tolerance; ESE(·) is the sample
entropy value; n(m)

s and n(m+1)
s are the numbers of m- and m + 1-dimensional space

vectors of the coarse-grained sequence, respectively.

Generalized multiscale sample entropy (GMSE) is the calculation of the mean value of
the coarse-grained process of multiscale sample entropy, which is extended to the second
moment in order to overcome the shortcomings of “neutralizing” the dynamic mutation
behavior of the original signal caused by the coarse-grained method of the homogenized
data. The specific calculation steps are as follows:

(1) For time series {x(i), i = 1, 2, · · · , N}, the following formula is used to calculate

generalized coarse-grained series y(s)G :

y(s)G (j) = 1
s

js
∑

i=(j−1)s+1
(xi − xi)

2

1 ≤ j ≤ N
s , s ≥ 2, xi =

1
s

s−1
∑

h=0
xi+h

(7)

(2) The sample entropy of generalized coarse-grained sequence y(s)G is calculated under
different scale factors s, that is, generalized multiscale sample entropy:

EGMSE(x, s, m, r) = ESE

(
y(s)G , m, r

)
= − ln

(
n(m+1)

G,s /n(m)
G,s

)
. (8)

This aims at the second deficiency of the multiscale sample entropy algorithm. On
the basis of GMSE, considering multiple coarse-grained sequences under a unified scale
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factor, the obtained entropy value is stabler and more accurate; for scale factor s, all m-
and m + 1-dimensional generalized sequences are first averaged under the scale factor, the
n(m)

G,h,s and n(m+1)
G,h,s of coarse-grained sequence y(s)G,h. Then, entropy is calculated to reduce

the probability of invalid entropy. The above analysis is GRCMSE, and the specific steps
are as follows:

(1) For time series {x(i), i = 1, 2, · · · , N}, the following formula is used to calculate

generalized composite coarse-grained y(s)G,h =
{

y(s)G,h,j1
, y(s)G,h,j2

, · · · , y(s)G,h,js

}
:

y(s)G,h,j(j) = 1
s

js+h−1
∑

i=(j−1)s+h
(xi − xi)

2

1 ≤ j ≤ N
s , 2 ≤ h ≤ s, xi =

1
s

s−1
∑

h=0
xi+h

(9)

(2) In the range of 1 ≤ h ≤ s, the average values n(m)
G,h,s and n(m+1)

G,h,s of n(m)
G,h,s and n(m+1)

G,h,s
are calculated to obtain the GRCMSE value of time series x(i) under scale factor s:

EGRCM = − ln
(

n(m+1)
G,h,s /n(m)

G,h,s

)
n(m)

G,h,s =
1
s

s
∑

h=1
n(m)

G,h,s, n(m+1)
G,h,s = 1

s

s
∑

h=1
n(m+1)

G,h,s

(10)

2.3. Coyote Optimization Algorithm

The coyote optimization algorithm (COA) is a new group optimization algorithm
proposed in 2018 by Pierezan et al., inspired by the behavior of coyotes in North Amer-
ica [40]. The algorithm simulates existing coyote populations and their evolution, including
heuristic random coyote-population grouping, growth, birth, and death, original-group
driving-away, and new-group acceptance behavior. The COA focuses on the social struc-
ture and cultural exchange of coyotes and does not search according to social hierarchy
and ruling rules. After the coyotes are equally divided into several subgroups, the alpha
animal and cultural trends of the subgroups are independently determined. Two different
random wolves in the group form cultural differences with the alpha coyote and the cul-
tural trend, respectively. As a disturbance catalyzes the growth of a coyote, two different
coyotes in the group are randomly selected to give birth to cubs under the influence of a
specific environment, and the birth and death of coyotes are synchronized. Whether the
cub survives depends on whether its adaptability is better than that of any coyote in the
group. Either the cub dies, or the oldest coyote in the group dies. Individual coyotes are
driven out of the group to enter other groups, which plays a role in experience exchange.
Through the cyclic evolution of growth, birth, and death, the exclusion of the original
group and the acceptance of the new group obtains the coyote with the best fitness as
a solution to the optimization problem. In COA, decision variables are represented by
coyote social-state factors in each dimension of the solution vector. Each coyote represents
a candidate solution to the problem. The advantages and disadvantages of the candidate
solutions depend on the coyotes’ social adaptability.

COA groups the initialized coyote populations according to the principle of random
equal distribution. So, after setting the number of coyotes in group Np ∈ N∗ and the number
of coyotes in a single group Nc ∈ N∗, we can obtain Np × Nc individual coyotes. The initial
social conditions of these individual coyotes are randomly set. This is achieved by assigning
random values in the search space to various social-state factors of the coyotes. Equation (11)
expresses the assignment method of the j-th dimension of the c coyote in the p package:

socp
c,j = lbj + r ·

(
ubj − lbj

)
, (11)

where ubj and lbj represent the upper and lower bounds, respectively, of the j-th dimension
of the decision variable, and r is uniformly distributed in [0, 1]. On this basis, the social
adaptability of coyotes is evaluated according to Equation (12):
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f itp
c = f

(
socp

c

)
(12)

The growth of the coyotes in the group is the result of cultural interaction. It is affected
by the alpha wolf, the cultural trend

(
cultp,t) of this group, and two different coyotes (cr1

and cr2) randomly in the group. The cultural difference between alpha wolf and random
wolf cr1 forms impact factor δ1, and the cultural difference between cultp,t and random
wolf cr2 forms impact factor δ2, namely:

δ1 = alphap,t − socp,t
cr1 (13)

δ2 = cultp,t − socp,t
cr2 (14)

The alpha wolf is the coyote with the best environmental adaptation in the group.
When solving the minimization problem, it is defined as:

alphap,t =
{

socp,t
c

∣∣∣argc={1,2,...,Nc}min f
(

socp,t
c

)}
. (15)

Cultural trends provide conditions for coyotes in the group to share information,
composed of the median values of the social conditions of all coyotes in the group, and it is
the performance of algorithmic swarm intelligence. The specific calculation formula is:

cultp,t
j =


Op,t

(Nc+1)
2

, Nc is odd

Op,t
(Nc)

2 ,j
+Op,t

(Nc+1)
2 ,j

2 , otherwise

, (16)

where Op,t represents the social condition under which [1, D] in the p-th package in the t-th
iteration is sorted by dimension.

Therefore, the social state of a coyote after growing up is shown in Equation (17):

new_socp,t
c = socp,t

c + r1 · δ1 + r2 · δ2 (17)

where r1 and r2 are the weights of the influence of alpha wolf and the cultural trend within
the group, respectively; they are random numbers that obey [0, 1], uniformly distributed.

COA still uses a greedy algorithm to determine whether the growth of a coyote is
allowed. Equation (18) evaluates the growth state of a coyote. In Equation (19), coyotes with
better environmental adaptability are retained to participate in the subsequent processes
of growth, birth, and death, exclusion from the original group, and acceptance into the
new group:

new_ f itp,t
c = f

(
new_socp,t

c

)
(18)

socp,t+1
c =

{
new_socp,t

c , new_ f itp,t
c < f itp,t

c

socp,t
c , otherwise

(19)

Following the laws of nature, coyotes in the group give birth to cubs when they grow
up, and they also face death. Two parent coyotes selected at random in the group give
birth to cubs in a specific environment. The specific birth method of the cubs is:

pupp,t
j


socp,t

r1,j , randj < Ps or j = j1
socp,t

r2,j , randj ≥ Ps + Pa or j = j2
Rj , otherwise

, (20)

where r1 and r2 are two random coyotes in the current group; j1 and j2 represent two
random dimensions; randj is a random number uniformly distributed in [0, 1]; Rj is a
random number within the bounds of the j-th dimensional decision variable, representing
the impact of the reproductive environment on the cubs; and Ps and Pa are scattering
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probability and correlation probability, respectively, which determine the degree of cultural
diversity of coyotes in the group:

Ps =
1
D

, Pa =
1− Ps

2
(21)

COA synchronizes the birth and death of coyotes to maintain a stable population size.
According to the standard design of Algorithm 1, older coyotes have a higher mortality
rate. Among them, ω and ϕ represent the set of coyotes whose environmental adaptability
is not as good as that of the cubs and the number of coyotes in the set, respectively. If there
are two or more coyotes of similar age in ω, the coyote with the worst adaptability is still
set to die according to the greedy algorithm.

Algorithm 1. Birth and Death of Coyotes.

1: Compute ω and ϕ

2: if ϕ = 1 then
3: The pup survives and the only coyote in ω dies.
4: else if ϕ > 1 then
5: The pup survives and the oldest coyote in ω dies.
6: else
7: The pup dies.
8: end if

The entire population is unstable in which individual coyotes are driven out of the
group and accepted into the new group. The more coyotes there are in the group, the
higher the probability Pe of this happening is:

Pe = 0.005 · N2
c (22)

Different from sharing cultural information within groups, this mechanism can pro-
mote the global cultural exchange of coyote population. In order to ensure that A is between
0 and 1, the number of coyotes in each group is required to be up to 14 [41]. The COA
process uses pseudocode as shown in Algorithm 2:

Algorithm 2. COA Pseudo Code.

1: Define control parameters Np, Nc, and maximal iterations N_Max
2: Initialize Np packs with Nc coyotes each and verify coyote adaptation
3: While t < N_Max, do
4: for p = 1:Np
5: determine alpha and culture tendency
6: for c = 1:Nc
7: Update the social condition
8: Evaluate the new social condition
9: Adaptation
10: end for
11: Generate the pup considering intrinsic and extrinsic influence
12: The pup dies or the oldest coyote dies
13: end for
14: Transition between packs
15: Update coyote ages
16: end while
17: Select the best adapted coyote
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To sum up, the COA structure is novel and can better balance global exploration
and local development. The coyote growth model considers more factors and strengthens
its ability to jump out of the local optimum. When giving birth to cubs, the influence of
the external environment makes the algorithm capable of exploring well. An individual
coyote is expelled and reaccepted by the new group, playing a role in overall cultural
exchange, avoiding information convergence within the group and the optimization of the
mantis oriole style. The local development of individual coyotes then has global awareness.
Therefore, the algorithm has good value.

3. Proposed Method

This paper proposes an improved time-varying, filter-based self-adaptive white-
noise, fully integrated eigentime-scale decomposition algorithm, and an improved coyote
optimization algorithm. The two methods are organically combined with the generalized
fine composite multiscale sample entropy. The filtering effect was improved to extract
early fault characteristic frequencies of rolling bearings under strong noise. This section
includes three parts. The first part is an improved, time-varying filter-based self-adaptive
white-noise fully integrated intrinsic time-scale decomposition algorithm; the second part
is a coyote optimization algorithm based on gradient-based optimizer (GBO)–sine–cosine
optimization (SCA) optimization; the third part proposes the specific implementation of
feature extraction.

3.1. Fully Integrated Intrinsic Time-Scale Algorithm with Adaptive White Noise Based on
Time-Varying Filtering

Because the ITD method is the same as the EMD method, there are problems of
mode components lacking physical meaning and mode aliasing. At the same time, ITD
uses linear interpolation for curve fitting. As a result, the decomposed signal has serious
curve distortion in low-frequency components. Therefore, this article was inspired by the
TVF–EMD method [41]. TVF was applied to the ITD method in order to further improve
the modal aliasing. This article applied the TVF–ITD method to the CEITDAN technical
framework. The specific methods proposed in this article are as follows.

The intrinsic time-scale decomposition of time-varying filtering is essentially per-
formed by constructing a low-pass filter of which the cut-off frequency changes with
time to complete the iterative removal of linear interpolation in the ITD process and re-
place the inherent rotation component with the local narrowband signal as the iteration
stop condition. For a given arbitrary multicomponent signal A, it can be expressed as a
two-component signal:

x(t) = A(t)ejϕ(t) = a1(t)ejϕ1(t) + a2(t)ejϕ2(t) (23)

Therefore, only the decomposition process of the two-component signal needs to be
considered. The basic steps of time-varying filtering eigentime-scale decomposition for
two-component signals are as follows:

Step 1: Perform Hilbert transform on x(t) to obtain amplitude A(t) and phase ϕ(t) of
the complex analytical signal. The derivative of the instantaneous phase obtains instanta-
neous frequency ϕ′(t).

z(t) = A(t)ejϕ(t) = a1(t)ejϕ1(t) + a2(t)ejϕ2(t) (24)

Step 2: Determine time {tmin}, {tmax} and amplitude A({tmin}), A({tmax}) of the
minimal and maximal values of amplitude curve A(t).

Step 3: Respectively interpolate the extreme points of A(t), and the resulting curves
are β1(t) and β2(t), respectively.

Step 4: Calculate instantaneous mean value a1(t) and instantaneous envelope a2(t)
according to Equations (25) and (26).
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a1(t) = [β1(t) + β2(t)]/2 (25)

a2(t) = [β2(t)− β1(t)]/2 (26)

Step 5:

η1(t) = φ′1(t)
[

a2
1(t)− a1(t)a2(t)

]
+ φ′2(t)

[
a2

2(t)− a1(t)a2(t)
]

(27)

η2(t) = φ′1(t)
[

a2
1(t) + a1(t)a2(t)

]
+ φ′2(t)

[
a2

2(t) + a1(t)a2(t)
]

(28)

Available local cutoff frequency ϕ′bis(t):

φ′bis(t) =
φ′1(t) + φ′2(t)

2
=

η2(t)− η1(t)
4a1(t)a2(t)

(29)

The above steps are the construction of the time-varying filter.
Step 6: In order to eliminate mode aliasing caused by noise and other components,

cutoff frequency ϕ′bis(t) needs to be adjusted.
(1) Define time series ui, i = 1, 2, 3, . . . of the maximal point of signal x(t);
If:

max(φ′bis(ui : ui+1))−min(φ′bis(ui : ui+1))

(φ′bis(ui : ui+1))
> ρ (30)

where ρ = 0.25, ui is called a breakpoint. Let ej = ui, j = 1, 2, 3, . . ., where ej denotes the
sequence of discontinuities.

If φ′bis(ui+1)− φ′bis(ui) > 0, then ej is the rising edge of ϕ′bis(t); otherwise, ej is the
falling edge of ϕ′bis(t).

(2) If ej is the rising edge of ϕ′bis(t), then φ′bis
(
ej−1 : ej

)
is regarded as the lowest value;

otherwise, ej is the falling edge of ϕ′bis(t); then, φ′bis
(
ej : ej+1

)
is regarded as the lowest

value. The rest of ϕ′bis(t) is seen as a peak.
(3) Adjusted cut-off frequency ϕ′bis(t) is obtained by interpolating between the peaks.
Step 7: reconstruct the signal according to adjusted cut-off frequency:

h(t) = cos
⌊∫

ϕ′bis(t)dt
⌋

. (31)

Taking the extreme point of h(t) as the node, h(t) is divided into n segments, and the
step size of each segment is m; n is called the order of B-spline function. Using Equations (32)
and (33) for B-spline interpolation approximation, the approximation result is recorded as
m(t), which represents the local mean curve:

gn
m(t) = [pn

m ∗ x]↓m ∗ bn
m(t) (32)

pn
m =

[(
[bm

n ∗ bn
m]↓m

)−1
]
↑m
∗ bn

m (33)

bn
m(t) = βn(t/m) (34)

bm
n = βm(t/n) (35)

where [·]↓m is downsampling, sampling every m point; [·]↑m means oversampling, that is,
m sampling points are inserted between every two sampling points.

Step 8: judge whether stop criterion θ(t) < ξ is satisfied, where ξ is the given band-
width threshold. If satisfied, x(t) is PRC; if not, x(t) = x(t)−m(t) repeats Steps 1–7 until
the stop criteria are met; x(t) satisfying the stopping criterion is PRC:

θ(t) =
BLoughlin

φavg(t)
(36)
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φavg(t) =
a2

1(t)φ
′
1(t) + a2

2(t)φ
′
2(t)

a2
1(t) + a2

2(t)
(37)

BLoughlin =

√√√√ a′21(t) + a′22(t)
a2

1(t) + a2
2(t)

+
a2

1(t)a2
2(t)(φ

′
1(t)− φ′2(t))

2(
a2

1(t) + a2
2(t)

)2 (38)

As mentioned earlier, the extraction and calculation of Lt in the eigentime-scale
algorithm were replaced by the TVF method proposed in this section. This can compensate
for curve distortion and modal aliasing caused by monotonic linear interpolation. In order
to further improve the modal aliasing effect, TVF–ITD is introduced into the CEITDAN
ideological framework (TVF–CEITDAN). The specific flowchart is shown in Figure 1.
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3.2. Coyote Optimization Algorithm Based on GBO–SCA Optimization

The proposed method in this paper is inspired by the GBO method proposed in [42]
and introduced into the coyote optimization algorithm. The GBO method is an optimization
algorithm that combines the gradient method and the population method and consists of
two main parts. One of them is GSR based on the gradient search (GB) method. in the
gradient search rule (GSR), the motion of the vector is controlled to better search and obtain
a better position in the FEASIBLE region to improve the trend of exploration and accelerate
the convergence of GBO. However, the rule was extracted from Newton’s gradient-based
approach [43]. Based on the fact that many optimization problems are non-differentiable,
the numerical gradient method is used instead of the direct function derivation method.
However, the numerical gradient method uses one sample at a time for gradient descent.
Therefore, to ensure accuracy, the stochastic random gradient descent method uses only
one sample per training to determine the direction of the gradient. Local minima may be
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obtained, and the accuracy rate is not high. For convergence rate, the stochastic gradient
descent method only iterates one sample at a time. Therefore, the iteration direction varies
greatly and does not converge quickly to the local optimal solution. Therefore, in this paper,
the GSR algorithm in the GBO method is proposed to be replaced by the positive cosine
algorithm [44] to improve the overall convergence rate.

The sine–cosine optimization algorithm is a random optimization algorithm with a
high degree of flexibility. The principle is simple, easy to implement, and can be easily
applied to optimization problems in different fields. The optimization process of the sine–
cosine optimization algorithm can be divided into two stages. In the exploration stage, the
optimization algorithm quickly finds feasible regions in the search space by combining
a random solution in all random solutions. During the development phase, the random
solution gradually changes. The rate of change of the random solution is lower than the
rate of the exploration phase. In the sine–cosine algorithm, the candidate solutions are
first randomly initialized. Then, the value of the current solution in each dimension is
updated according to the sine or cosine function, combined with random factors. The
specific update equation is:

Xt+1
i =

{
Xt

i + r1 × sin(r2)×
∣∣r3Pt

i − Xt
i

∣∣ r4 < 0.5
Xt

i + r1 × cos(r2)×
∣∣r3Pt

i − Xt
i

∣∣ r4 > 0.5
, (39)

where Xt
i is the position of the current individual in the i-th dimension and t-th generation;

r2 is a random number from 0 to 2π; r3 is a random number from 0 to 2; r4 is a random
number from 0 to 1; and Pt

i means the position of the i-th dimension of the optimal
individual position variable in the second iteration:

r1 = a− t
a
T

, (40)

where a is a constant; t is the current iteration number; T is the maximal iteration number;
and parameter r1 indicates that the location area of the next solution is within or outside the
current solution and the optimal solution. A smaller value of r1 helps to enhance the local
development capability of the algorithm. A larger r1 value helps to improve the global
exploration ability of the algorithm. At the same time, the r1 value gradually decreases
with the number of iterations, which balances the local development and global search
capabilities of the algorithm. r2, r3 and r4 are random factors, and r2 defines how far the
current solution is toward or away from the optimal solution. Parameter r3 gives a random
weight for the optimal solution to immediately emphasize the effect of (r3 > 1) or ignore
the influence of the optimal solution of (r3 < 1) in defining the moving distance of the
candidate solution. Parameter r4 is an equal switch between sine and cosine functions.

For a given problem, the sine–cosine optimization algorithm randomly creates a
series of candidate solutions. According to the sine and cosine functions, the value of
each candidate solution in all dimensions is updated. The cyclic mode of sine and cosine
functions allows for one solution to be repositioned around other solutions. This can ensure
that the search is performed in the space between the two solutions, and it can converge to
the global optimum faster. The algorithm flow is as follows:

Step 1: Population initialization. Suppose that the group size of the population is m,
and m solutions are randomly generated in the range of [0, 255]. Randomly set the initial
position of each solution.

Step 2: Calculate the fitness of all solutions.
Step 3: The location of the solution is updated. Select the corresponding location

update formula according to the r4 value. Update the position of the candidate solution in
each dimension. Recalculate the fitness values of all candidate solutions. In this way, the
fitness of each solution and of the global optimal position is obtained.

Step 4: Compare and update the location of the global optimal solution. The fitness
value of each updated solution is compared with that of the global optimal solution. If the
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fitness value of the current solution is greater than the global optimal fitness value, the
position of the global optimal solution is updated.

Step 5: If the algorithm termination condition is satisfied, output the optimal solution;
otherwise, repeat Steps 2–4.

Compared with the GSR algorithm in the GBO method, this method both improves
convergence speed and reduces the parameters of the GBO method, improving the simplic-
ity of calculation. We named this method GBO–SCA.

In summary, this article aims to improve the shortcomings of the COA method. By
applying the GBO–SCA algorithm to the COA algorithm, the specific process is shown in
Figure 2.
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3.3. Specific Implementation Plan for Proposed Method

This paper proposes a new and improved method of eigentime-scale decomposition,
and a new idea of applying generalized fine compound multiscale sample entropy to early
fault diagnosis. Because the signal-to-noise ratio of each mode component in the CEITDAN
ideological framework is fixed. Therefore, according to the threshold of the generalized
fine composite multiscale sample entropy, it can be a fixed value when processing the
agreement signal. There is no need to recalculate the threshold for each decomposition.
According to the literature [36], scale factor s = 25 is determined, and similarity tolerance
is r = 0.15× SD, where SD is the standard deviation. The method of early fault diagnosis
of the overall rolling bearing in this article is as follows:

(1) Calculate the entropy value of the generalized fine composite multiscale sample of
10,000 groups of white noise, and the generalized fine composite multiscale sample
entropy of the original signal. The average of the two is chosen as the threshold value.

(2) Use GBO–SCA–COA to adaptively optimize the TVF–CEITDAN parameters and
decompose the original signal. The optimization criterion is to select the largest
Si value for all components. The coyote chooses the smallest, so the negative of
the largest weighted average of all time-domain parameters is chosen as the fitness
value. The optimization process is to first set the search range of the TVF–ITD
parameters, 0 < ξ ≤ 0.8, n = 5–30. Signal decomposition: calculate the Si of each
mode component and save the minimal fitness value of each iteration. Determine
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whether the termination condition is satisfied; the termination condition is whether
the current iteration number is greater than the termination iteration number. The
minimal fitness and corresponding optimal parameters are extracted and substituted
into TVF–CEITDAN. Re-decompose to obtain the final mode component.

(3) Calculate the entropy value of the generalized refined composite multiscale sample
entropy for each signal component.

(4) Keep the mode components smaller than the threshold and reconstruct; then, perform
the same operation as in the first step.

(5) Calculate the entropy value of the generalized fine composite multiscale sample of
each mode component again and compare it with the threshold. If there are still mode
components that are greater than the threshold, repeat from the first step until there
is no pattern component greater than the threshold.

(6) Reconstruct the final decomposition result. Then, the reconstructed signal is trans-
formed by the envelope spectrum to obtain the fault signal.

4. Results
4.1. Case A: Numerical Simulation

In order to prove the superiority of the proposed algorithm in practical application, a
bearing failure simulation signal was first selected, and complete ensemble empirical mode
decomposition with adaptive noise (CEEMDAN), ITD, and TVF–CEITDAN decomposition,
respectively, was used. The structure of the used bearing fault simulation signal is shown
in Equation (43). In order to improve the objectivity of the three comparisons, orthogo-
nality index (OI) and energy conservation index (ECI) were selected for the quantitative
evaluation of the performance of different methods [45,46]. Theoretically speaking, after
the algorithm decomposes the signal, the different obtained mode components should
belong to a completely orthogonal relationship. That is, the orthogonality index is equal to
zero. However, due to computer error and environmental interference, the orthogonality
index cannot be zero [45]. Therefore, in practical application, the closer the orthogonal
index is to 0, the more accurate the decomposition effect is; this shows that decomposition
accuracy is not high. Therefore, from an energy point of view, the energy-preservation
index can also evaluate the decomposition performance of different methods. Different
from the orthogonal index, the value of the energy-conservation index is closer to 1. This
shows that the less energy is lost in the decomposition process of this method, the more
complete the decomposition result is. However, more than 1 indicates that there is a false
component [46]. In summary, we used OI, ECI, and root mean square error (RMSE) to
compare these methods. The OI and ECI are defined as:

OI = Average
|〈modn(t), modw(t)〉|
‖modn(t)‖2‖modw(t)‖2

, n 6= w (41)

ECI = ∑T
t=0 ∑m

n=1|modn(t)|2

∑T
t=0|x(t)− rm(t)|2

, (42)

where x(t) represents the original signal, modn(t) represents the i-th mode component
decomposed by decomposition algorithm, and rm(t) indicates residual component:

x(t) =
N
∑

i=1
Ais(t− iT − ti) + n(t)

Ai = A0 cos(2π frt + ϕA) + CA
s(t) = e−2n fnrt sin(2π fnt + ϕw)

, (43)

where Ai is the amplitude modulation with a period of 1/ fr, the rotation frequency of the
shaft is fr; n(t) is random white noise; r is the damping coefficient of the system; T is the
interval between consecutive shocks; ti is the rolling during the i-th period delay caused
by body slip; A0 and C0 are arbitrary constants; and fn is the natural frequency of the
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system. Among them, fn = 3000 Hz, fn = 3000 Hz, ti = 1, A0 = 2, C0 = 1, r = 0.005 fault
characteristic frequency. The sampling rate was 8192 Hz, and the number of sample points
was 2048, as shown in Figure 3. Figure 4 shows the GRCMSE values of 10,000 groups of
white noise signals, where the minimum value is averaged with the GRCMSE value of the
numerical signal as the threshold in this section. The threshold value used in this section is
0.43. Figure 5 shows the decomposition result of CEEMDAN, ITD, and TVF–CEITDAN.
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Figure 5. Decomposition results of (a) intrinsic time-scale decomposition (ITD), (b) CEEMDAN, and (c) TVF–CEITDAN. 
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and the characteristics of the impact signal could be observed. According to the fault-di-
agnosis method proposed in this paper, the GRCMSE value of each rotation component 
of TVF–CEITDAN was calculated. Figure 6 shows that the GRCMSE values of PR2 and 
PR3 both exceeded the threshold. Therefore, the remaining rotation components were se-
lected for signal reconstruction. TVF–CEITDAN was used to decompose again. The de-
composition result is shown in Figure 7. In the application of the signal-decomposition 
algorithm, a key issue is how to select appropriate mode components to transform the 
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Figure 5 shows that the curve decomposed by ITD caused low-frequency compo-
nent distortion due to linear interpolation. CEEMDAN decomposed a total of 11 mode
components, and the curve was smooth. However, IMF5 has modal aliasing, and the
first three mode components did not highlight the impact signal. There was still strong
noise interference. In the TVF–CEITDAN method, the first three components contained
less noise, and the characteristics of the impact signal could be observed. According to
the fault-diagnosis method proposed in this paper, the GRCMSE value of each rotation
component of TVF–CEITDAN was calculated. Figure 6 shows that the GRCMSE values of
PR2 and PR3 both exceeded the threshold. Therefore, the remaining rotation components
were selected for signal reconstruction. TVF–CEITDAN was used to decompose again. The
decomposition result is shown in Figure 7. In the application of the signal-decomposition
algorithm, a key issue is how to select appropriate mode components to transform the
envelope spectrum to extract the fault characteristic frequency and perform fault diag-
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nosis. Therefore, this article used analysis of the central frequency band energy content
contained in the different mode components to select the appropriate mode components
for reconstruction, as shown in Figure 8. The central frequency band contained in PR1
accounted for the largest proportion of energy. Therefore, PR1 was selected to obtain the
fault characteristic frequency for fault diagnosis. Figures 9–11 are the envelope-spectrum
results of CEEMDAN, ITD, and the proposed method. Figures 9 and 10 show that, due to
the strong noise of the analog signal, the result of the envelope spectrum obtained after
decomposition could hardly show the characteristic frequency of the fault. There was no
way to analyze and judge the type of failure. However, Figure 11 clearly shows the fault
characteristic frequency and its multiplier. This also shows that the proposed method could
maintain good effectiveness under strong noise interference, reducing it to ideal conditions.
Figure 12 is a comparison diagram of the fitness value and the number of iterations of the
GBO-SCA-COA in this paper. The proposed method could converge faster than traditional
optimization algorithms can.
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In order to objectively compare the practicability and effectiveness of the three meth-
ods, OI and RMI machine RMSE were used in this study, and results are shown in Table 1.
As can be seen from Table 1, the ECI index of the TVF-CEITDAN method proposed in
this paper reaches 0.9471, while the other two compared methods are only 0.5512 and
0.5915, indicating that the method proposed in this paper has the least energy loss in the
signal decomposition process. For the OI index, the proposed method is much smaller
than the remaining two methods and is closest to 1, which can be for the computational
error of the computer, indicating good orthogonality and relative independence among
the components. The RMSE of the proposed method in this paper is the smallest, which
indicates that the decomposition error is the smallest. In the comparison of the output
signal-to-noise ratio, the results of the proposed method in this paper are also the largest,
which indicates that the noise reduction effect of the proposed method in this paper is
better than the other two methods. The proposed method performed best in multiple
indicators, and it can be further applied to actual engineering use.
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Table 1. Index comparison table.

- ECI OI RMSE Output SNR

TVF–CEITDAN 0.9471 0.0054 0.0802 7.8293
CEEMDAN 0.5512 0.7666 0.3223 1.7135

ITD 0.5915 0.2876 0.2870 1.7978

4.2. Case B: Experimental Analysis

In this section, we use an engineering test equipment for signal acquisition and
fault diagnosis using a method consistent with the analog signal idea to demonstrate the
effectiveness of the proposed method in this paper (Figure 13). The test platform consisted
of a test bench and control system, which was mainly composed of the tested bearings,
accompanying test bearings, test spindle, bearing outer ring fixture, drive unit, and loading
system. During the test, there were four sets of bearings, divided into two sets of tested
bearings and two sets of accompanying bearings. Two sets of loading systems respectively
applied loads to the test bearings. The drive unit provided power for the whole test bench,
and the loading system provided radial force for the test bearings, which rotated the spindle
drive of the bearings and obtained the vibration signal of the bearings during the rotation
process through vibration sensors. The drive unit provided bearing speed in the range
of 1000–20,000 rpm, which was continuous. The loading system had a loading range of
0–6 KN, loading accuracy of ±2%, and it was continuously adjustable. The operating limit
temperature of the test bench was 250 ◦C [47].
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Figure 13. Experimental rig for real measurements.

The vibration signal collected from the Fault bearing marked in Figure 13 is the signal
used for the analysis in this paper, while the Healthy bearing is the accompanying bearing
required for the test. Tables 2 and 3 show the test-bearing parameters and characteristic
frequency calculation formulas of rolling bearing, respectively.

Table 2. Test bearing parameters.

Ball Number N Pitch Diameter D Roller Diameter d Contact Angle α

14 46 7.5 0
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Table 3. Bearing-failure characteristic-frequency calculation formulas.

Bearing Fault Equation

Bearing cage (FTF) 1
2 fr[1− (d/D) cos α]

Bearing roller (BSF) 1
2 fr

{
1−

[
(d/D)2 cos2 α

]}
D/d

Bearing outer race (BPSO) (N/2) fr[1− (d/D) cos α]
Bearing inner race (BPFL) (N/2) fr[1 + (d/D) cos α]

Sampling frequency was 18,400 Hz, data length was 8192 points, and bearing rotation
speed was 3000 rpm. According to the parameters in Table 2 and the formula in Table 3,
the bearing inner ring failure frequency can be calculated as 407 Hz. Due to computer
error, the eigenfrequency in the envelope spectrum is actually 408Hz. Figures 14 and 15
show the time domain and frequency domain plots of the acquired signals. From the above
figure, it can be seen that the fault information is completely masked by the noise, and
it is impossible to get the fault characteristic frequency visually and determine the fault
type. Figure 16 shows the GRCMSE values of the 10,000 sets of white noise. The minimal
value of the 10,000 sets of white noise and the GRCMSE value of the measured signal were
selected, and their average value was used as the threshold value of 0.54.
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Figure 16. GRCMSE values of 10,000 groups of white noise and measured signals.

Figure 17 shows that the decomposed curve by ITD caused low-frequency compo-
nent distortion due to linear interpolation. CEEMDAN decomposed a total of 13 mode
components. However, IMF4, IMF5, and IMF6 had modal aliasing. The first three mode
components also had strong noise interference. In the TVF–CEITDAN method, the first
three components contained less noise, and some of the characteristics of the impact signal
could be observed. According to the proposed fault-diagnosis method, the GRCMSE value
of each rotation component of TVF–CEITDAN was calculated as shown in Figure 18. The
GRCMSE values of PR1 all exceeded the threshold. The remaining rotation components
were then selected for signal reconstruction, and TVF–CEITDAN was used to decompose
again. The decomposition result is shown in Figure 19. This part is the same as that in
the previous section. The method of analyzing the energy ratio of the center frequency
band contained in the different mode components was used to select the appropriate mode
components for reconstruction, as shown in Figure 20. The central frequency band con-
tained in PR1 accounted for the largest proportion of energy. Therefore, PR1 was selected
for fault diagnosis. Figures 21–23 are the envelope-spectrum results of CEEMDAN, ITD,
and the proposed method. Figures 21 and 22 show that, due to the stronger noise of the
measured signal, the obtained envelope spectrum after decomposition could hardly show
the fault characteristic frequency, and it was impossible to analyze and judge the fault type.
CEEMDAN and ITD could only extract one characteristic frequency of the inner ring, and
the gap between peak value and noise was small. However, Figure 23 clearly shows the
fault characteristic frequency and its double frequency. This also shows that the proposed
method maintained good effectiveness under strong noise interference, reducing noise
interference to ideal conditions. Figure 24 is a comparison diagram of the fitness value and
the number of iterations of the proposed improved coyote optimization algorithm. Our
method could converge faster than traditional optimization algorithms can.
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Figure 20. Energy ratio of central frequency band.
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In order to objectively compare the practicability and effectiveness of the three methods,
OI, ECI, and machine RMSE were used, and the results are shown in Table 4. As can be
seen from Table 4, the proposed method in this paper performs consistently with the analog
signal comparison results, and all the indexes perform best. The ECI index of the proposed
method reaches 0.9389, while the other two comparison methods are only 0.5234 and 0.5625,
indicating that the proposed method has the least energy loss in the process of signal
decomposition, and because the measured signal is noisier and the signal-to-noise ratio
is lower, the three methods are slightly lower in this index, which is also in line with the
objective rule. For the OI index, the proposed method is much smaller than the remaining
two methods and is closest to 1, which can be the calculation error of the computer, indicating
good orthogonality and relative independence among the components. The RMSE of the
method proposed in this paper is the smallest, which indicates that the decomposition error
is the smallest. Since the input and output signal-to-noise ratios cannot be calculated for
the measured signals, the output signal-to-noise ratio is not used as a comparison index
to compare the three methods in this section. The proposed method performed best in
multiple indicators and it can be further applied to actual engineering use.

Table 4. Index comparison table.

Mehtod ECI OI RMSE

TVF–CEITDAN 0.9389 0.0067 0.0932
CEEMDAN 0.5234 0.5346 0.3756

ITD 0.5625 0.3795 0.3472

5. Conclusions

This study proposed a new method for the early fault diagnosis of rolling bearings
with the three following aspects: an improved eigentime-scale decomposition algorithm,
an improved coyote optimization algorithm, and generalized fine composite multiscale
sample entropy to analyze the noise-reduction effect. Through simulation signals and
an engineering test platform, the effectiveness of the proposed method was fully proven.
The proposed method takes generalized fine composite multiscale sample entropy as
the objective function and removes the rotation component dominated by noise after
decomposition. It carries out a second decomposition, fully retaining the weak signal of
early bearing failure, and reduces the influence of noise. Through a comparison of different
physical indicators, the purpose of the quantitative analysis of the method is obtained. The
proposed method can be effectively applied to engineering practice. In future research, we
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will focus on the applicability of this method in the case of mixed failures. A set of feasible
early failure and hybrid failure diagnosis methods for rolling bearings are proposed.
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